
1

An Efficient Path Robustness Metric for Compliant
Robots

Nathan Hughes
Autonomous Robotic Collaboration Lab

Worcester Polytechnic Institute
Dmitry Berenson (Advisor)

Autonomous Robotic Collaboration Lab
Worcester Polytechnic Institute

Abstract— Compliant robots are able to make contact with
obstacles safely, but many compliant robots suffer from sig-
nificant actuation uncertainty. When executing a path that is
collision-free contact with a nearby obstacle, though safe, can
lead to the robot becoming “stuck” and being unable to continue
execution. It is very computationally expensive to compute
the probability of being stuck through forward-simulation and
impractical to capture the distribution over the robot state in
contact with parametric probability distributions, precluding the
use of existing methods to evaluate the robustness of the path.
This paper presents a robustness metric for compliant robots that
captures the probability of the robot completing a given path,
i.e. the probability of avoiding stuck configurations. Our metric
is intended to be used inside a motion planner to determine the
quality more efficiently than forward simulation. Our approach
constructs a set of reachable C-space volumes between the way-
points of a path that bound the set of configurations the robot
could achieve given the actuation noise. We can then identify
stuck configurations within these volumes and approximate their
joint pre-image, which we then use to compute the probabil-
ity of successfully reaching a way-point and subsequently the
probability of reaching the path’s goal. In our experiments we
compare our method to forward-simulation on 3DoF and 6DoF
free-flying robots in a narrow passage environment. We find that
our method computes similar robustness predictions to forward-
simulation but does so significantly more efficiently.

I. INTRODUCTION

In recent years researchers have focused on the development
of compliant robots for assembly and human-robot collab-
oration applications. These robots possess a key advantage:
that they can make contact safely, even when the contact
is unexpected. However, especially if the robot’s compliance
is implemented mechanically, compliant robots’ motion often
exhibits a significant amount of actuation noise. Thus, while
the robot may make contact safely, the uncertainty in its
motion makes it unclear if the robot will successfully execute
a given task in the presence of obstacles, even if it is following
a path that is collision-free. We seek to formulate an efficient
metric to compute the robustness of a path. This metric should
approximate the probability of the robot successfully reaching
the goal when executing the given path.

This report represents the work of WPI undergraduate students sub-
mitted to faculty as evidence of completion of a degree requirement.
WPI routinely publishes these reports on its website with editorial or
peer review. For more information about the projects program, please see
http://www.wpi.edu/academics/ugradstudies/project-learning.html

Fig. 1. A depiction of several sample trajectories for a 3DoF robot. The
PD velocity controller tracking the path has a chance of getting stuck on the
obstacle (trajectories in red) or reaching the goal successfully (trajectories in
green)

Understanding what happens when the robot contacts ob-
stacles is central to computing this metric. When a compliant
robot contacts an obstacle two outcomes are possible: either
the robot slides along the obstacle or it becomes “stuck”
(i.e. unable to make further progress toward its goal). In this
paper we assume that sliding is permissible for the robot
but that being stuck is considered an execution failure. A
motion planner that is planning a path for a compliant robot
should thus attempt to plan a path that maximizes robustness,
minimizing the probability of being stuck. Such a planner
would need a function S : Π→ R that efficiently determines
the probability of path Π not being stuck. For instance a
trajectory optimizer would need to compute such a metric at
every iteration.

A method to calculate this probability without making
further assumptions about the distribution of the robot’s state
is readily apparent: Starting at the robot’s initial configuration,
we can sample many particles and forward simulate the
robot’s controller for each particle with perturbations drawn
from the distribution of the actuation noise [13, 5, 16]. The
percentage of particles that reach the goal region would
then be an approximation of S(Π). However, there are three
important problems with this forward-simulation approach:
First, forward-simulating particles for the duration of the path

2

is computationally expensive. Consider that each simulation
step requires at least a collision-check and possibly a pro-
cedure to resolve collisions through sliding and the number
of simulation steps would scale with the length of the path.
Second, a large number of particles would be needed to ensure
that a representative sampling of the noise distribution is
obtained (especially in high dimensions), thus compounding
the computational expense. Third, the accuracy of this method
is very sensitive to obstacle geometry. If the path enters a
narrow passage and the actuation noise is high, the number
of particles that enter the passage will be much smaller than
the total number and this small number of particles may not
approximate the probability distribution for the remainder of
the path well. This issue could be resolved by re-sampling
particles (as in a particle filter), but the sampling distribution
for re-sampling is very unclear in the presence of obstacles.

The prupose of this major qualifying project was to in-
vestiagate a solution to these above limitations and create an
algorithm that efficiently and accurately computes s, and then
explore the effectiveness of this solution. Over the course of
this project, we created a simulation environment for simple
3DoF and 6Dof robots and used these environments to test
and verify the different approaches we created to compute
s. After exploring several different approaches, the first of
which was using graph centrality metrics to detect regions of
configuration space that would contribute to trajectory failure,
the second of which was identifying an explicit representation
of the configuration of an abitrary controller and noise. Our
final approach constructs a set of reachable C-space volumes
between the way-points of a path that bound the set of
configurations the robot could achieve given the actuation
noise. We can sample these reachable volumes and determine
which samples lie approximately on the contact manifold
of the obstacles. We then evaluate which of the points on
the contact manifold are stuck for the current way-point and
approximate the pre-images of these points. The probability
of being stuck is then the union of these pre-images. This
union can be used to compute the probability of successfully
reaching a way-point and the probabilities of reaching each
way-point can be multiplied to compute the probability of
reaching the goal.

The key advantage of our approach is its efficiency. As
opposed to the forward-simulation approach, which simulates
the robot’s controller and collision response at every time step
regardless of where the robot is in space, we only simulate
configurations on the contact manifold for one time step to
determine if they are stuck or sliding. Despite using geometric
approximations in the computation of S our experiments in
3DoF and 6DoF virtual environments suggest that we obtain
similar probabilities of success to the forward-simulation ap-
proach, even when the forward-simulation approach uses large
numbers of samples. Thus, while we improve significantly in
efficiency, we do not significantly compromise on the accuracy
of the metric. This suggests that the metric we have developed
will be useful in motion planning algorithms for compliant
robots. As a final outcome of this project, this approach (and
the majority of this paper) was submitted to the Robotics
Science and Systems 2016 Conference.

In the remainder of the paper we present related work, the
problem statement, and our approach to computing the robust-
ness metric. We concluded with experiments that demonstrate
the efficacy of the metric.

II. RELATED WORK

There are many varieties of compliant robots that can make
contact safely. These range from completely flexible robots
[11, 19], to rigid-bodied robots with series-elastic actuators
[18, 22], to flexible/steerable needles [24, 16], to robots where
compliance is controlled in software [25, 14]. Our method is
not focused on a particular type of compliant robot but rather
requires that a simulator is available for the robot in question.
A common strategy for these kinds of robots is to use an
Impedance controller or PD controller to track a desired path.
Likewise, our method assumes that the robot is endowed with
a PD controller that tracks the input path.

Planning motion in the presence of actuation uncertainty
dates back to the seminal work of Lozano-Perez et al. [9]
on pre-image backchaining. A pre-image, i.e. a region of
configuration space from which a motion command attains
a certain goal recognizably, was used in a planner that pro-
duced actions guaranteed to succeed despite pose and action
uncertainty. However, it was shown that constructing pre-
images was computationally expensive [4, 3]. In our work,
we approximate the pre-images of stuck configurations. While
this process incurs some inaccuracy, we show that our method
compares favorably with simulating particles.

Motion planning for robots under uncertainty has been stud-
ied extensively in recent years. Significant progress has been
achieved through methods that plan in the belief space of the
robot, i.e. the space of probability distributions over the robot’s
state. Belief-space planning in its general form is formulated
as a Partially-Observable Markov Decision Process (POMDP).
POMDPs are difficult to solve in high dimensions (though
some approximation methods are making advances [6, 15]).
Thus researchers have pursued relaxations of the problem
which are low-dimensional [23], and/or locally explore the
space around an initial trajectory [17, 23, 7]. Regardless of
the planning approach, these methods seek to find a path
that minimizes the probability that the robot collides with an
obstacle. However, in our work the robot is assumed to be
compliant, thus collisions are not inherently problematic, and
may even be useful to complete a task. Instead, we focus on
computing the probability that the robot will become stuck,
which results in failure. This paper presents a metric that
could be used by a planning algorithm like the ones above
to compute the quality of a path.

Many methods compute the quality of a given motion by
first determining the belief state of the robot that would result
when executing that motion. This is done either by using
parametric distributions or forward-simulating particles subject
to actuation noise (see [8] for an overview). In terms of para-
metric distributions, the Gaussian distribution is commonly
used to represent the belief state of the robot for motion
planning [21, 23, 2, 20, 10]. However when the robot is in
contact the distribution of states can be trans-dimensional and

3

disconnected, making it difficult to fit parametric distributions
to sets of possible states. Alternatively, forward-simulation
of particles has been used to plan paths under actuation
uncertainty as part of RRT-based methods [13, 5, 16]. Our
approach avoids the need for an explicit representation of the
belief state by computing the probability of the robot becoming
stuck through geometric approximations.

Finally, our method computes a set of reachable volumes
of configuration space for a given waypoint as part of the
computation of our robustness metric. Reachable volumes
for kinematic linkages, such as robot arms, were introduced
by [12]. These reachable volumes allow fast sampling of
valid configurations of a linkage given a fixed root and end
effector. [12] shows their applicability for very high (70DoF or
greater) robots. We extend this concept to trajectory-linkages,
i.e. sequences of configurations which are used to compute
reachable volumes in C-space.

III. PROBLEM STATEMENT

The goal of this project is to provide an efficient metric
to evaluate how successful a trajectory controller will be at
tracking an arbitrary path Π composed of a sequence of way-
points π0, π1, . . . , πg , i.e. a mapping S : Π→ R that outputs
the probability of reaching πg . We assume that each way-point
in Π is collision free, and that each way-point πi is visible
from πi−1. A configuration q′ is visible from configuration q
if for θ ∈ [0, 1], θq+ (1− θ)q′ is collision-free. The execution
of the trajectory is deemed successful if the end configuration
of the robot is within the Euclidean ball Bε(πg), where ε > 0 is
the amount of error allowed. We assume execution terminates
once the robot reaches a configuration inside Bε(πg).

Throughout this paper, we use the notation X(q, t) to denote
the random process describing the configuration of the robot,
q, at time t. Using this notation, our trajectory robustness
metric should approximate

S(Π) = lim
t→∞

P(X(q, t) ∈ Bε(πg)) (1)

We assume that independent of the trajectory controller,
the robot is displaced by some arbitrary amount every time-
step by actuation noise. The displacement at each time-step is
denoted as W (t). We assume that P(W (t)) has convex finite
support. This paper focuses on path robustness in the presence
of actuation noise, so we assume no sensor noise is present
during execution.

We assume that the robot is only prevented from making
forward progress towards the goal region when in contact with
obstacles, i.e. no other constraints on the motion of the robot
exist (such as non-holonomic or torque constraints). We also
assume that the robot is allowed to make sliding contact with
obstacles — one of the major advantages of compliant robots.
While sliding contact allows forward progress, it is possible
for the robot to reach a configuration where it is no longer
possible to slide along the obstacle while making progress
towards the next way-point. For the rest of the paper, we refer
to such configurations as “stuck” configurations. We assume
that we are given a function f : C×C → C which simulates the
execution of the trajectory in the presence of obstacles for a

single time-step. For example, to compute the result of moving
from a configuration qcurrent toward a way-point πt for one
time-step, we would compute qresult = f(qcurrent, πt).

Finally, we assume the trajectory controller is a stable
PD velocity controller that outputs velocities to a lower-level
controller responsible for the actuation of the robot. This is
the standard control structure used on many robots, e.g. the
PR2.

IV. COMPUTING PATH ROBUSTNESS

Our approach models the actuation noise of the robot as a
random process that is independent of the trajectory controller.
When the path is near obstacles, some trajectories that result
from the combination of this actuation noise and the trajectory
controller reach stuck configurations; the likelihood that these
trajectories will occur is the complement to the probability in
Equation 1. We compute this likelihood for each waypoint
independently and then multiply the likelihoods to arrive at
our metric. Below we describe how to model the current
configuration of the robot as a random process and then how
to bound the volume of the random process. This volume is
sampled to find stuck configurations and the pre-images of
stuck configurations are approximated to arrive at a probability
of being stuck. Below we describe in detail how each step of
this computation is performed.

A. Modeling the Trajectory Controller as a Random Process

This section describes how the PD velocity controller and
actuation noise of the robot interact. Denoting the proportional
constant and derivative constant of the controller as Kp and
Kd respectively, and denoting the time-step of the PD velocity
controller as ∆t, we can write the update equation for the
random process X(q, t) as:

Xi = [Kpei +Kdėi +Wi]∆t+Xi−1

ei = πt −Xi

ėi =
Xi−1 −Xi

∆t

(2)

Here we use the notation Xi and Wi to denote the state
of the random processes X(q, t) and W (t) at the time step
ti. This update equation is given in terms of the set-point πt,
which is chosen from the way-points that make up the desired
path. We use the following policy to select the target way-
point:

πt =

{
πj Xi(q) ∈ Bε(πj) ∧ j > i

πi otherwise
(3)

where πi is the current element of Π chosen as the set point.
πt starts at π1 and the initial error is π1−π0. The pseudo code
describing the implementation of this controller is shown in
Algorithm 1.

This way-point selection policy guarantees that the robot is
always within some ε of the previous way-point when a way-
point is selected as a set-point. This means that independent
of when a way-point is selected as the set-point, the process

4

will generate the same set of trajectories for the duration of the
time that the way-point remains the set-point. This allows us to
examine the behavior of the trajectory controller when trying
to reach each way-point individually, i.e. as if the starting
configuration of the controller is within Bε(πi−1). For each
way-point we can calculate how likely the controller is to fail
to reach that way-point, i.e. to be stuck, conditional on starting
at the previous way-point. Using these probabilities, we can
approximate Equation 1 as follows:

lim
t→∞

P(X(q, t) ∈ Bε(πg)) =

N∏
i=1

lim
t→∞

P(Xt ∈ Bε(πi)|X0 ∈ Bε(πi−1))

(4)

Algorithm 1: PD controller implementation with way-
point selection
inputs: Kp,Kd,Π,∆t, tmax, ε

xi ← Π0;
i ← 1;
πt ← Π1;
t ← 0;

while t < tmax do
xi ← GetCurrentPosition();
t ← t +1;
j ← i;

while j < Length(Π) do
if Distance(xi, Πi) < ε then

i ← i +1;
πt ← Πi;
Break;

j ← j +1;

u ← Kp(πt − xi)∆t+Kd(xi−1 − xi);
SetControlOutput(u);
xi−1 ← xi;
Wait(∆t);

B. Reachable Volumes of Random Processes

We now present a method of computing bounds on the
configuration of the robot for a given time-step and set-point.
This is important to our approach because it allows us to
define a subset of the configuration space to check for stuck
configurations rather than naively simulating forward. We do
this by extending the concept of reachable volumes of linkages
to trajectories. As presented in [12], the reachable volume of
a joint in a linkage is the set of all possible points in the
workspace that the center point of the joint could occupy
given every possible workspace position of the previous joints
in the linkage. We extend this concept to trajectories by
considering each joint in the linkage to be a configuration
X(q, ti); i.e. a linkage is a sequence of configurations. For the

rest of this section, we refer to the sequence of configurations
ln = (q0, q1, . . . , qn) as a trajectory-linkage. The reachable
volume of a trajectory-linkage is the set of configurations
that the trajectory-linkage could end at, given any sequence
of previous configurations in the trajectory-linkage that may
have occurred.

The advantage of using reachable volumes is that it is
possible to sample configurations of linkages while fixing
the end-effector of the linkage to a certain position in the
workspace [12]. This same framework allows us to examine
which trajectories lead to a stuck configuration. To do this,
we must first define explicitly what the reachable volume for
a trajectory-linkage is. The reachable volume of a trajectory
linkage ln is recursively defined as (adapted from [12]):

RV (ln) = RV (ln−1 : ln)⊕RV (ln−1) (5)

Here, we denote the reachable volume of the entire
trajectory-linkage ln−1 as RV (ln−1) and the reachable volume
of the link (qn−1, qn) as RV (ln−1 : ln). The reachable volume
of a single link (such as the link ln−1 : ln) in a trajectory-
linkage is the set of configurations that could be reached
in a single time-step by the controller, given that the first
configuration in the link is grounded at the origin. This is
expressed as:

RV (li : li+1) = {a+ ω} ; a ∈ Rd (6)

where a represents the possible displacement produced by
the trajectory controller and ω represents the finite volume
of displacements from which W (t) is draw. The reachable
volume of a zero length trajectory-linkage RV (l0) is Bε(q0).

This reachable volume of a link is not informative as it
encompasses all of C when a is unbounded. Instead, we
examine the constrained reachable volume of a trajectory
linkage. For a trajectory-linkage of length greater than two,
we can express the constrained reachable volume of some
trajectory linkage li, CRV (li) in terms of constraints on the
displacement vector a:

a ∈ {Kp(πt − qi−1)∆t+Kd(qi−2 − qi−1)}
qi−1 ∈ CRV (li−1)

qi−2 ∈ CRV (li−2)

(7)

Illustrations of the constrained reachable volumes for a path
segment are shown in Figure 2.

We show an important property for the reachable volume of
an arbitrary trajectory-linkage: that it is possible to calculate
the bounds of the constrained volume recursively from the
last bounds of a constrained reachable volume. We denote the
bounds of the constrained reachable volume of a trajectory-
linkage li as Bi. We show this for a single dimension of the
reachable volume and a set-point πt in the following proof.

Theorem 1: Let α = Kp∆tπt, β = 1 −Kp∆t −Kd, γ =
Kd, and Kp,Kd > 0. For |li| > 1, β < 0, minBi and maxBi
are given as:

minBi = α+ βmaxBi−1 + γminBi−2 + minω

maxBi = α+ βminBi−1 + γminBi−2 + minω
(8)

5

Fig. 2. A depiction of how we compute the probability that the trajectories
generated from one way-point to another will fail (in this case, πi−1 to
πi).The reachable volume for each trajectory linkage CRV (lk) is a dashed
black box. Stuck samples for the current reachable volume (l4) are blue and
the other samples as black. Each stuck sample (q1 and q2) corresponds to
their respective pre-images (P1 and P2). The bounding box of the pre-images
is dashed blue. Samples inside the union of the pre-images are green, other
samples from CRV (lk−1) are red.

For |li| > 1, β >= 0:

minBi = α+ βminBi−1 + γminBi−2 + minω

maxBi = α+ βmaxBi−1 + γminBi−2 + minω
(9)

Proof: We can write the constrained reachable volume
for any trajectory linkage li as:

α⊕ (β · CRV (li−1))⊕ (γ · CRV (li−2))⊕ ω (10)

Provided that the previous two constrained reachable vol-
umes are convex (Wi was assumed to have convex finite
support, thus ω is convex and finite), the resulting constrained
reachable volume is convex as it would be a Minkowski
sum of convex sets. The initial reachable volume, Bε(q0) is
also convex. The constrained reachable volume of l1 is also
convex as it is the Minkowski sum of the noise and a affine
transformation of the initial reachable volume. By induction
the constrained reachable volume is always convex.

It can be shown that the Minkowski sum of the convex
hulls of convex sets is equal to the convex hull of the
Minkowski sum of the sets. The bounds in one dimension
can be calculated from the convex hull. Using this property,
Equation 10 can be bounded by summing the bounds of the
following sets: β · CRV (li−1), γ · CRV (li−2) and ω. This
yields Theorem 1.

It is also important to show that the process X(q, t) is
bounded by the constrained reachable volume for the corre-
sponding trajectory-linkage for every time-step.

Theorem 2: Xi ⊆ CRV (li) ∀i ∈ (0, 1, . . .)
Proof: It is trivial to show that X0 ⊆ CRV (l0). Addition-

ally by substitution, it is trivial to show that X1 ⊆ CRV (l1).
For an arbitrary time-step i, we have that Xi = Kp(πt −
Xi−1)∆t + Kd(Xi−2 − Xi−1) + Wi∆t + Xi−1. Assuming

that Xi−1 ⊆ CRV (li−1) and Xi−2 ⊆ CRV (li−2), it is clear
that Xi can never exceed the bounds of CRV (li) presented
in Theorem 1. Therefore, Xi ⊆ CRV (li) ∀i ∈ (0, 1, . . .) by
induction.

Finally, we show that when neglecting obstacles, the process
is guaranteed to reach Bε(πt) at some time. This justifies
our approach of individually analyzing each way-point as a
set-point; if this guarantee was not present we would need
to also consider the probability trajectories fail due to other
constraints (e.g. torque limits). For this, we assume that the
PD controller is stable.

Theorem 3: ∃ti : X(q, ti) ∈ Bε(πn)
Proof: At t0, the reachable volume is Bε(πn−1). It is

clear from Theorem 1 that the bounds of the reachable volume
never decrease, so the reachable volume will always be able
to contain a ball Bε. It is also clear that the reachable volume
continues to advance toward πn at every time-step. Once Bε is
contained in the reachable volume, it will not advance further
since the controller always moves the current configuration
toward πn. We know that X(q, ti) must be contained in
the reachable volume and that its probability distribution
has non-zero support everywhere within the bounds. Thus
X(q, t) will eventually cover all of the reachable volume, and
because Bε is contained in the reachable volume it follows
that ∃ti : X(q, ti) ∈ Bε(πn).

C. Computing Stuck Configurations

Stuck configurations are configurations where the robot can-
not make any more progress towards the next way-point. Our
assumptions in our problem statement allow us to conclude
that these stuck configurations only occur on the obstacle
manifold. The region of C where the robot is in collision with
obstacles in the workspace is Cobs = {q ∈ C : Pr(q)∩Po 6= ∅}
(Po is the geometry of all the obstacles in the workspace and
Pr(q) is the geometry of the robot in the workspace for some
configuration q). The contact manifold for all obstacles in this
space is given as Cobs\int(Cobs). This is a zero measure set with
respect to the configuration space and therefore impossible to
sample via rejection sampling.

To identify stuck configurations, we need an approximate
representation of this manifold:

O = {q ∈ Cobs|∃q′ ∈ Cfree : norm(q − q′) < rmax} (11)

O represents the region of configuration space where the
configuration generated by the PD velocity controller and ac-
tuation noise of the robot results in collision with an obstacle,
forcing the robot to slide along or be stuck on an obstacle.
rmax is a parameter that allows us to trade off between ease of
sampling and the accuracy of projection onto the manifold. As
rmax increases, it becomes more likely to be able to generate
samples inside O, but it becomes more and more unreliable
to project these samples onto the contact manifold.

One of the advantages of our approach is that we can
identify bounds on where the robot will be in the configuration
space for a given time-step and set-point using constrained
reachable volumes. This allows us to only examine the portion

6

Algorithm 2: isStuck
input : A starting configuration q and a tolerance εstuck
returns: Whether the configuration is stuck or not

qcurrent ← q;
while inCollision(qcurrent) do

qcurrent ← qcurrent + ∇ qcurrent ·∆t;
qprev ← qcurrent;
qcurrent ← getTarget(qcurrent);
while inCollision(qcurrent) do

qcurrent ← qcurrent + ∇ qcurrent ·∆t;
if isWithin(qcurrent, qprev, εstuck) then

return true;

return false;

of O that is relevant to the current set-point. We do this by
uniformly sampling the configuration space inside the bounds
of the constrained reachable volume for that time step. Once
we have this set of samples, we identify members of O. We
do this by identifying which samples inside the set are in
collision with an obstacle, and then check to see if any of the
free samples is within rmax of the sample in collision. For all
of the samples in O, we check which of these samples is stuck
(which we discuss below), and then use the stuck samples as
a discrete representation of the region of configurations inside
the reachable volume that are stuck.

In order to reduce the amount of simulation necessary, we
determine whether a sample is stuck by projecting the sample
to the contact manifold and then simulating forward one time-
step using f (described previously). If the particle makes
forward progress during this time-step (which we determine by
checking if the distance between the original projected sample
and the resultant configuration from simulating one time-step
forward is greater than εstuck), then the sample is not a stuck
configuration. We use this method as long as the resultant
configurations are still inside the bounds of the current and
next reachable volume. If the resultant configuration is outside
these bounds, then the obstacle must have pushed the robot
out of the reachable volume. There are two options when this
occurs: we could forward simulate until the robot is either
stuck or back inside the reachable volume, or we could simply
assume that the sample is stuck. The second is a conservative
assumption, and reduces the amount of simulation we perform
in calculating the metric. An example of a situation is when
the robot encounters some sort of wedge close to the path. The
wedge would slowly push the robot away from the path, and
then once past the wedge, the robot would be able to reach
the set-point. In this case forward simulation could be used
to more accurately determine whether the sample is stuck or
not. In our experiments we make the conservative assumption
to reduce the computational cost of simulation.

The simulation function f is robot-specific and our metric
does not depend on how the simulation is performed. For
our experiments f was implemented as follows: The robot
moved with the velocity commanded by the controller for
one time step. If the robot ended in collision, we simulated

Fig. 3. Two different starting configurations of the robot (are shown as well
as the configurations that result from forward simulation.

sliding contact by using gradient descent to project the desired
configuration onto the obstacle manifold. The loss function in
this case is the signed distance between the robot and the
obstacle manifold. We compute this gradient much like [1],
which uses a discretization of the workspace to calculate the
gradient of the signed distance field in the workspace, and
then computes the Jacobian of the robot to transform the cost
gradient from workspace to configuration space. Our gradient
is given as:

∇q =

n∑
i=1

J(q, xi)
ᵀ∇xᵀi (12)

The algorithm for computing whether a sample is stuck is
given in Algorithm 2. An illustration of how this algorithm
determine whether a members of O is stuck or not is shown
in Figure 3. Note that this implementation does not consider
the effects of friction, which would require more sophisticated
simulation methods.

D. A metric for path robustness

We can now approximate the probability given in Equation
4 using the concepts discussed above. We do this for each way-
point πi by starting a trajectory-linkage at the previous way-
point and iteratively increasing the length of the trajectory-
linkage until it contains Bε(πi). For each iteration, we identify
stuck samples as described in Section IV-C. For all of these
stuck samples we set the last configuration of the trajectory-
linkage to each of the stuck configurations and calculate the
subset of the previous reachable volume that could possibly
result in the stuck configuration (See Figure 2 for a depiction
of these subsets), which we call pre-images of the configura-
tion. We can bound a pre-image of a stuck configuration using
Equations 8 and 9. For a given configuration qi, the bounds
of the corresponding pre-image Pi for each dimension are

minPi =
qi + minω − α

1−Kp∆t

maxPi =
qi + maxω − α

1−Kp∆t

(13)

We then clip these bounds to the previous reachable volume
(i.e. there may exist some control inputs that could result in qi
that are not inside the previous reachable volume), as shown in
Figure 2. These bounds for the pre-image Pi approximate the

7

true set of configurations from the previous reachable volume
that could result in the stuck configuration qi. We use these
pre-images to determine the likelihood of being stuck in the
current reachable volume. Explicitly, we want the probability
that a trajectory-linkage could result in a stuck configuration,
i.e. the probability over the union of all Pi. This is given (for
n pre-images) as:

n∑
i=1

∫
Pi

P(X(q, t))

+

n∑
j=1

∑
1≤i1...<ij≤n

∫
Pi1 ···∩Pij

P(X(q, t))(−1)j
(14)

which is intractable to compute except for very small n.
To approximate this union we first construct a bounding

box of all the pre-images. Then, for each free sample of the
previous reachable volume, we first check to see if the sample
is inside the bounding box of all the pre-images. If so, we
check to see if the sample is a member of any of the pre-
images. The approximation to Equation 14 is then the number
of free samples that are inside a pre-image divided by the total
number of samples taken.

We then approximate the probability that a trajectory will
fail in the current reachable volume by weighting the probabil-
ity that the trajectories in that volume will reach a stuck config-
uration (our approximation to Equation 14) by the likelihood
of stuck particles occurring in the current reachable volume.
The algorithm to compute this likelihood for a given reachable
volume is shown in Algorithm 3 and the full algorithm to
compute our robustness metric is given in Algorithm 4.

Algorithm 3: Likelihood Computation
input : A set of pre-images P and set of samples S
returns: Likelihood of stuck samples occurring

B ← computeBoundingBox(P);
n← 0;
m← 0;
for s ∈ S do

if ¬ inCollision(s) ∧s ∈ B then
for Pi ∈ P do

if s ∈ Pi then
n← n+ 1;
break;

if isStuck(s) then
m← m+ 1;

return n·m
|S|2 ;

E. Design of Simulation Environment
To demonstrate the efficieny of our method, we first needed

to create a simulation environment to compare the predicted
robustness of the metric with the true robustness of the path.
This simulation environmnet ideally would accomplish the
following:

Algorithm 4: Robustness Metric Computation
input : Kp,Kd,∆t,Π, ε
returns: Probability trajectories will succeed in reaching

target

psuccess ← 1;
for πi ∈ Π do

while goalRegionOutside(CRV (li), πi, ε) do
CRV (li) ← computeBounds(πi, l);
S ← sampleVolume(CRV (li));
pi ← 1;
for s ∈ S ∩ O do

P ← ∅;
if isStuck(s) then

Pi ← computePreimage(s);
P ← {Pi} ∪ P ;

pi ← (1− likelihood(P , S)) · pi;
psuccess ← psuccess · (1− pi);

return psuccess;

1) Allow the simulation of a variety of different robots
2) Allow visualization of a single run or a batch of runs
3) Have a flexible and modular design
4) Allow the user to easily configure simualation parame-

ters

In order to construct this simulation environent, we explored
several different options; this happened in parrallel with the
exploration of different approaches to calculate our desired
metric. Initially, we wrote a simple python script with little
structure that allowed us to quickly compare the latest ap-
proach to simulation results in two dimensional code. From
this approach, we discerned that a good way to pass in
simulation parameters was to maintain a configuration file,
and that this configuration file needed to have a relatively
flexible format, as different approaches required different kinds
of parameters. To visualize result, the simulator saved images
of each timestep, and then ffmpeg was used to convert the
image sequence into a movie. However, this made it hard to
easily maintain records of results.

From this simple two dimensional simulation environment,
we developed a simulation environment capable of simulating
three and six dimensional rigid bodies. There were two compo-
nents to this simulator: the actual simulator, and the front-end
responsible for visualizing the simulation results, configuring
the simulator, and saving the results in a persistent manner. For
the actual simulator, we explored two options: using FleX (a
defomrable object simulator developed by NVidia) and custom
written code or using a collision simulation method developed
by the ARC lab and custom written code. We chose the
latter, as the results FleX produced were too dependent on
the parameters for FleX itself.

For the frontend, we explored two options to visualize the
simulation results. The first was a custom written OpenGL vi-
sualizer. The development time necessary to make the custom
written visualizer flexible enough was too great, so instead

8

Fig. 4. Two views of our 6DoF simulation environment. The given path is shown in blue (along with the position of the robot at each way-point) and the
obstacle is shown in purple. The path of the center of the robot during trajectory execution is shown as the green line, and sample orientations of the robot
for different time-steps are also shown in green.

we used RViz and markers to display simualtion results. We
explored using MongoDB to keep track of simulation runs and
other information, but due to the lack of a good C++ driver
for MongoDB, the fact that the simulator was being developed
on several different computers, and time constraints, we never
incorporated saving results to MongoDB in the final simualtor.

Finally, for the configuration of the simulation environment,
we briefly explored using the CMake file responsible for
compiling the simulator to pass in parameters. This was
not a viable option, because we wanted to maintain sets of
parameters for each robot and trial we ran. We developed a
configuration file format based on XML, and a configuration
file system that leverages the C++ Boost Libraries.

Together, our final simulation environment consists of a
back-end simulator that is a C++ library using voxel grid and
signed distance field code developed by the ARC lab and cus-
tom written code to create a robot given certain parameters and
actuate the robot through the modeled environment. Our final
simulation environment also contains a front-end system that
uses a Boost Library to parse a XML structured configuration
file, run various simulations, and display the results to RViZ.
As a link between the back-end simulator and the front-end
visualizer and configuration file, we used ROS.

V. EXPERIMENTS

To demonstrate the efficiency of our method, we performed
two comparisons of our robustness metric and the probability
of success based on forward-simulation for a small 3DoF robot
and a larger 6DoF free-flying rigid body. Both experiments
were run in the same workspace: a 10 × 10 × 10 unit cube
with a wall containing a narrow passage in the center between
z = 4 and z = 6 (see Figure IV-D). We specified the path for
the robot manually. The 3DoF robot was a unit cube with a
side length of 0.3 units that could only translate. The 6DoF
rigid body was a box with width 0.6 units and height and
length 0.15 units that could translate and rotate. The path for
each robot originates in the lower left of the coordinate space
and finishes on the other side of the narrow passage in the
upper right portion of the workspace (see IV-D). The planned

TABLE I
COMPARISON OF ROBUSTNESS METRIC AND SIMULATION: 3DOF

EXPERIMENT

Metric (100 Runs)
Samples Probability µ(σ) Time (s) µ(σ)

300 0.864(0.021) 2.74(0.195)

400 0.825(0.021) 3.884(0.280)

500 0.797(0.023) 5.045(0.381)

Simulation
Particles Probability Time (s)

1000 0.800 17.67
10000 0.816 179.4

100000 0.817 1735

path for the 6DoF experiment was made so that the robot
must re-orient to align itself with the narrow passage before
proceeding through.

We ran our experiments on a computer with an Intel i7-
3770 processor. All code was written in C++. We used a
uniform voxel-grid representation of the workspace with a
voxel resolution of 0.25 units. The narrow passage had side
length 0.5 units in the x and y dimension. We used a truncated
normal distribution to approximate the actuation noise of the
robot during simulation and a uniform normal distribution to
approximate the probability distribution inside a constrained
reachable volume; variances and bounds are reported for each
experiment separately. Our trajectory controller had a Kp of
10.0, Kd of 0.05 and each time-step lasted for a duration of
0.01 seconds. Our choice of ε for Bε(πt) was 0.1 for both
experiments and simulations were run for 250 time-steps.

For the 3DoF robot, we computed our path robustness
metric for 300, 400 and 500 samples per reachable volume. We
ran forward-simulation with 1000, 10000 and 100000 particles.
We used an εstuck of 0.2 for these experiments. The simulated
noise had a variance of 8.0 units and we used a uniform
distribution with bounds of ±15 units in each dimension for
the path robustness metric. For our path metric, we ran 100
consecutive trials with different random seeds, and report the

9

TABLE II
COMPARISON OF ROBUSTNESS METRIC AND SIMULATION: 6DOF

EXPERIMENT

Metric (100 Runs)
Samples Probability µ(σ) Time(s) µ(σ)

300 0.765(0.023) 2.11(0.111)

400 0.747(0.022) 2.91(0.131)

500 0.729(0.023) 3.752(0.181)

Simulation
Particles Probability Time(s)

1000 0.747 26.75
10000 0.7737 277.3
100000 0.763 2767

mean and variance of these trials in Table I. We also list the
results from the simulation. From these results, it is clear that
given enough samples, our metric approximates the simulated
probability in a significantly smaller amount of time.

For the 6DoF robot, we again ran our path metric for
300, 400 and 500 samples. We used the same noise param-
eters for these experiments as the 3Dof experiment, with
the exception of the variance and bounds of the rotational
degree of freedom of the robot of the robot (1.0 and 2.0 units
respectively). However, our initial sampling-based approach
to approximating the union of pre-images failed to generate
enough samples inside the pre-images of the stuck samples.
This is not surprising, as the 6D space will be more sparse than
the 3D one in terms of pre-images. Instead, we simply check
how many free samples are inside the bounding box of the
pre-images, yielding a more conservative approximation that
does not require as many samples (this method is also faster).
The 6DoF results are reported in Table II. We also ran sim-
ulations with 1000, 10000 and 100000 samples per reachable
volume using the less conservative method, which generated
the probabilities 0.994, 0.953 and 0.833, which shows that
even though our original method to compute likelihood is
sensitive to dimensionality, increasing the sampling resolution
reduces the error. We also show the simulation results for
1000, 10000 and 100000 particles in II. Again, our metric
produces comparable results in significantly less time than
forward-simulation.

VI. CONCLUSION

We have presented a path robustness metric that approx-
imates the probability of successfully executing a path for
a compliant robot. The metric generates comparable predic-
tions to forward-simulation but does so significantly more
efficiently. The key to our approach is to reason geometrically
about the probability of arriving at stuck configurations, where
the robot cannot progress further toward its next way-point.
Our approach constructs a set of reachable C-space volumes
between the way-points of a path that bound the set of config-
urations the robot could achieve given the actuation noise. We
can then identify stuck configurations within these volumes
and approximate their joint pre-image, which we then use to
compute the probability of successfully reaching a way-point
and subsequently the probability of reaching the path’s goal.

Our future work will investigate using the presented metric
inside a motion planning algorithm for compliant robots,
where its efficiency would allow us to evaluate the quality
of a path much faster than existing methods.

REFERENCES

[1] Dmitry Berenson, Thierry Siméon, and Siddhartha S
Srinivasa. Addressing cost-space chasms in manipulation
planning. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 4561–4568.
IEEE, 2011.

[2] A. Bry and N. Roy. Rapidly-exploring random belief
trees for motion planning under uncertainty. In IEEE
International Conference on Robotics and Automation
(ICRA), May 2011.

[3] J. Canny. On computability of fine motion plans. In
Proc. IEEE International Conference on Robotics and
Automation (ICRA), 1989.

[4] M. Erdmann. Using Backprojections for Fine Motion
Planning with Uncertainty. The International Journal
of Robotics Research, 5(1):19–45, March 1986. ISSN
0278-3649. doi: 10.1177/027836498600500102.

[5] Yifeng Huang and K. Gupta. Rrt-slam for motion
planning with motion and map uncertainty for robot
exploration. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sept 2008.

[6] Hanna Kurniawati, D Hsu, and WS Lee. SARSOP: Ef-
ficient Point-Based POMDP Planning by Approximating
Optimally Reachable Belief Spaces. In Robotics: Science
and Systems, 2008.

[7] Alex Lee, Y Duan, S Patil, John Schulman, Zoe Mc-
Carthy, Jur Van Den Berg, Ken Goldberg, and Pieter
Abbeel. Sigma Hulls for Gaussian Belief Space Planning
for Imprecise Articulated Robots amid Obstacles. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2013.

[8] Z. Littlefield, D. Klimenko, H. Kurniawati, and K. E.
Bekris. The importance of a suitable distance function
in belief-space planning. In International Symposium on
Robotic Research (ISRR), September 2015.

[9] Tomas Lozano-Perez, Matthew Mason, and Russell H.
Taylor. Automatic synthesis of fine-motion strategies for
robots. International Journal of Robotics Research, 3(1),
1984.

[10] Brandon D. Luders, Sertac Karaman, and Jonathan P.
How. Robust sampling-based motion planning with
asymptotic optimality guarantees. In AIAA Guidance,
Navigation, and Control (GNC) Conference, 2013.

[11] Andrew D Marchese, Robert K Katzschmann, and
Daniela Rus. Whole arm planning for a soft and highly
compliant 2d robotic manipulator. In Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pages 554–560. IEEE, 2014.

[12] Troy McMahon, Stephan Thomas, and Nancy M Am-
ato. Sampling-based motion planning with reachable
volumes: Theoretical foundations. In Robotics and Au-
tomation (ICRA), 2014 IEEE International Conference
on, pages 6514–6521. IEEE, 2014.

10

[13] N. A. Melchior and R. Simmons. Particle rrt for
path planning with uncertainty. In IEEE International
Conference on Robotics and Automation (ICRA), pages
1617–1624, 2007. doi: 10.1109/ROBOT.2007.363555.

[14] Danial Nakhaeinia, Pascal Laferriere, Pierre Payeur, and
Robert Laganiere. Safe close-proximity and physical
human-robot interaction using industrial robots. In Com-
puter and Robot Vision (CRV), 2015 12th Conference on,
pages 237–244. IEEE, 2015.

[15] S.C.W. Ong, S.W. Png, D. Hsu, and W.S. Lee. POMDPs
for Robotic Tasks with Mixed Observability. In Robotics:
Science and Systems (RSS), 2009.

[16] Sachin Patil, J van den Berg, and Ron Alterovitz. Motion
planning under uncertainty in highly deformable environ-
ments. In Robotics: Science and Systems, 2011.

[17] Robert Platt, Russ Tedrake, Leslie Kaelbling, and Tomas
Lozano-Perez. Belief space planning assuming maximum
likelihood observations. In Robotics Science and Systems
(RSS), 2010.

[18] G.A. Pratt and M.M. Williamson. Series elastic actua-
tors. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 399–406, Aug 1995.

[19] Robert F. Shepherd, Filip Ilievski, Wonjae Choi,
Stephen A. Morin, Adam A. Stokes, Aaron D. Mazzeo,
Xin Chen, Michael Wang, and George M. Whitesides.
Multigait soft robot. Proceedings of the National
Academy of Sciences, 108(51):20400–20403, 2011.

[20] Wen Sun, S. Patil, and R. Alterovitz. High-frequency
replanning under uncertainty using parallel sampling-
based motion planning. IEEE Transactions on Robotics
(T-RO), 31(1):104–116, Feb 2015.

[21] R. Tedrake. LQR-trees: Feedback motion planning on
sparse randomized trees. In Proceedings of Robotics:
Science and Systems, Seattle, USA, June 2009.

[22] N.G. Tsagarakis, S. Morfey, G.M. Cerda, Li Zhibin, and
D.G. Caldwell. Compliant humanoid coman: Optimal
joint stiffness tuning for modal frequency control. In
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 673–678, May 2013.

[23] Jur van den Berg, Sachin Patil, and Ron Alterovitz.
Motion planning under uncertainty using iterative local
optimization in belief space. The International Journal of
Robotics Research, 31(11):1263–1278, September 2012.
ISSN 0278-3649.

[24] Jing Xiong, Xia Li, Yangzhou Gan, and Zeyang Xia.
Path planning for flexible needle insertion system based
on improved rapidly-exploring random tree algorithm. In
Information and Automation, 2015 IEEE International
Conference on, pages 1545–1550. IEEE, 2015.

[25] Taizo Yoshikawa and Oussama Khatib. Compliant mo-
tion control for a humanoid robot in contact with the
environment and humans. In Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Con-
ference on, pages 211–218. IEEE, 2008.

	Introduction
	Related Work
	Problem Statement
	Computing Path Robustness
	Modeling the Trajectory Controller as a Random Process
	Reachable Volumes of Random Processes
	Computing Stuck Configurations
	A metric for path robustness
	Design of Simulation Environment

	Experiments
	Conclusion

