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Abstract

For the evaluation of European options with constant local volatil-

ity, a general closed-form analytical solution was given by the classic

Black-Scholes formula. In practice, such local volatility may vary, and

in those situations, the Black-Scholes formula does not work e�ciently.

A common way to deal with such problem is to apply numerical meth-

ods, particularly the Finite Element Method (FEM). Furthermore, the

extensive use of Galerkin Least Square (GLS) stabilization method

combined with adaptive mesh re�nements is explored for bad scenar-

ios having large local volatility. Such local volatility was described by

the Constant Elasticity of Variance (CEV) model. We implement our

numerical schemes in Matlab and observe the accurracy of our numer-

ical solutions. Finally, we take advantage of better ways to discretize

our domain with geometric partition to achieve high accuracy despite

of large local volatility.

Keywords: Option, Black-Scholes equation, Finite Element Method,

Hat function, Hilbert space.
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1 Introduction

In our �nancial world nowadays, option is a very important �nancial in-

strument used for hedging, arbitrage-free investing and highly speculative

trading by giving the buyer the right to buy (call) or sell (put) a security

or other �nancial asset at an agreed-upon price (the strike price) during a

certain period of time or on a specic date (exercise date). The three most

popular types of options are European, American, and Asian options. For

this project, we only concern about the pricing of European option. Pricing

this type of option requires the use of Black-Scholes model, which assumes

the price of a risky asset (underlying asset) is a solution to the stochastic

di�erential equation:

ds = s(r̃t̃dt̃+ σ̃t̃Wt̃) (1)

where Wt̃ is a standard Brownian motion, σ̃t̃ is a volatility, r̃t̃ is an instanta-

neous interest rate, and s is a price of a risky asset at time t̃.

1.1 European Option

When σ̃t̃ = σ̃t(s, t̃) and r̃t̃ = r̃(t̃) (0 ≤ t̃ ≤ T ) are continuous functions such
that s 7→ sσ̃(s, t̃) is a Lipschitz regular function of s with a Lipschitz constant
independent of t̃, and is bounded from above and away from 0 uniformly in
t̃, the Black-scholes formula for an European call and put option at time t̃
are following (note that Ft is the �ltration and sT (t̃) = s er̃t̃(T−t̃)):

C(s, t̃) = E∗(e−
∫ T
t̃ r̃(τ)dτ (sT (t̃)−K)+ | Ft)

P (s, t̃) = E∗(e−
∫ T
t̃ r̃(τ)dτ (K − sT (t̃))+ | Ft)

(2)

We can also rewrite equation (1) in the form of a partial di�erential equation
(PDE) as follows

∂P (s, t̃)

∂t̃
+
s2σ̃2(s, t̃)

2

∂2P (s, t̃)

∂s2
+ r̃(t̃) s

∂P (s, t̃)

∂s
− r̃(t̃)P (s, t̃) = 0 (3)
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with the boundary conditions P (s, T ) =

{
K − s if s < K

0 if s > K
and P (0, t) =

Ke−r(T−t).

1.2 Black-Scholes Formula

When σ̃(s, t̃) = σ and r̃(t̃) = r are constants, by using the transformation
t = T − t̃, x = log s, and φ(x, t) = P (ex, T − t), equation (3) becomes the
Black-Scholes equation

∂φ

∂t
− 1

2
σ2∂

2φ

∂x2
− (r − σ2

2
)
∂φ

∂x
+ rφ = 0 as (x,t)∈ R×[0,T] (4)

φ(x, 0) = (K − ex)+ (5)

φ(x, t) ∼ Ke−rt as x→-∞ (6)

φ(x, t) = 0 as x→∞ (7)

The advantage of equation (4) is that it has constant coe�cients, and by set-

ting φ(x, t) = Ψ(x, t) e−(r+σ2

2
b2)t+( 1

2
− r
σ2

)x, we obtain a following one-dimensional
heat equation

∂Ψ

∂t
− σ2

2

∂2
Ψ

∂x2
= 0 as (x, t) ∈ R× [0, T ]

Ψ(x, 0) = (K e(−1
2

+ r
σ2

)x − e( 1
2

+ r
σ2

)x)+

Ψ(x, t) = 0 as x→∞

Solving the heat equation above with the given boundary conditions, we

obtain the explicit Black-Scholes formula for the price of vanilla European

put (or call option by using the same transformation but with some

modi�cations to the boundary conditions (5)− (7))

8



C(s, t̃) = sN(d1)−Ke−r(T−t̃)N(d2)

P (s, t̃) = −sN(−d1) +Ke−r(T−t̃)N(−d2)
(8)

where N(d) = 1√
2π

∫ d
−∞ e

−y2
2 dy, K is the exercise price or strike price of a call

or put option, d1 =
log( s

K
)+(r+σ2

2
)(T−t̃)

σ
√
T−t̃

and d2 = d1 − σ
√
T − t̃.

Remark 1.2. If r̃(t̃) is not a constant, d1 =
log( s

K
)+

∫ T
t̃ r̃(τ)dτ+(r̃+σ2

2
)(T−t̃)

σ
√
T−t̃

and

d2 is the same as above

1.3 Constant Elasticity of Variance (CEV) Model

Although pricing derivatives under the assumption of constant volatility, as
in the Black-Scholes model (equation (3) with constant σ and r) for an Eu-
ropean put option pricing, is well-known to give results which cannot be
reconciled with market observations, such problem did not widely manifest
themselves until the 1987 market crash. After this event, many stochastic
volatility models, such as Heston model, Stochastic Alpha-Beta- Rho model,
were introduced as ideal approaches to resolve a shortcoming of the Black-
Scholes model. In particular, since the Black-Scholes model assumes that the
underlying volatility is constant over the life of the derivative, and una�ected
by changes in the price level of the underlying security, such model cannot
explain long-observed features of the volatility smile and skew, which indi-
cate that implied, or local, volatility does tend to vary with respect to the
strike price and expiry time. By assuming that the volatility of the underly-
ing price is a stochastic process rather than a constant, it becomes possible
to model prices of the derivatives more accurately.

One of the most popular stochastic volatility models, which is widely used
in practice, is the Constant Elasticity of Variance (CEV) model. It was
�rst proposed by Cox & Ross (see [4]) as an alternative to the Black-Scholes
model of underlying asset price movements. The CEV model describes the
following relationship between the volatility and price,

ds = µs dt̃ + σ0s
γdWt̃

where σ0, γ are constant parameters satisfying σ0 ≥ 0 and γ > −1, Wt̃ is a
standard Brownian motion, s is the price of an underlying asset at time t̃ and
µ is the expected return. The term σ0s

γ denotes an instantaneous, or local,
volatility of our option. We use the Finite Element method introduced in

9



Section (2) to solve numerically the following PDE, given the two boundary
conditions, of an European put option whose local volatility is σ̃(s, t) = σ0s

γ,

∂u(s, t)

∂t
− σ2

0s
2+2γ

2

∂2u (s, t)

∂s2
− rs∂u (s, t)

∂s
+ ru (s, t) = 0 (9)

u (0, t) = Ke−rt (10)

u(s, 0) =

{
K − s if s < K

0 if s > K
(11)

1.4 Remarks about the Black-Scholes equation

On the other hand, when σ̃(s, t̃) and r̃(t̃) are not constants, since t = T − t̃,
we let u(s, t) = P (s, T − t), σ(s, t) = σ̃(s, T − t) and r(t) = r̃(T − t).
Assume that for each time t, de�ne q(t) = q̃(T − t) as the dividend yield,

and the underlying asset pays out a dividend q(t)s dt in dt, equation (3)

becomes (note that s > 0 and t ∈ [0, T ])

∂u(s, t)

∂t
− σ2(s, t) s2

2

∂2u(s, t)

∂s2
− (r(t)− q(t))s ∂u(s, t)

∂s

+r(t)u(s, t) = 0 (12)

with the Cauchy data u(s, 0) = u0(s) where s ∈ R+ and u0 is the payo�
function.

If q is su�cently well-behaved, then equation (12) does not have any addi-
tional mathematical di�culties compared to equation (3). Thus, we assume
that q(t) = 0, which implies there are no discretely paid dividends. This
means the equation of an American vanilla call option is exactly the same as
that of an European one, which is equation (3).

The Cauchy problem (12) can then be proved, with additional conditions:

• The function (s, t) 7 −→ sσ(s, t) is Holder regular on R+ × [0, T ].
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• The function σ(s, t) is bounded on R+×[0, T ] and bounded below by
a positive constant.

• The function t 7→ r(t) is bounded and Lipschitz continuous.

• The Cauchy data P0 satis�es 0 ≤ u0(s) ≤ C(1 + s) for a given
constantC.

then there exists an unique function u ∈ C0(R+× [0, T ]), C1-regular with re-
spect to t and C2-regular with respect to s, which is solution to the boundary-
value problem (12) and satis�es 0 ≤ u(s, t) ≤ C ′(1 + s) for a given constant
C ′.

1.5 Variational Formulation

Since our underlying asset does not pay any dividends, by letting g(s, t) =
C(s, T − t), we introduce the well-known put-call parity as follows

g (s, t)− u (s, t) = s−Ke−rt (13)

We would like to solve the following equation to determine the

approximated price of an European vanilla put option with one underlying

asset for which the annual interest rate r(t) = r is constant and the local

volatility σ(s, t) is variable, with the boundary conditions derived from the

put-call parity, equation (13), given the time to maturity t = 1, and

g (0, t) = 0 when s = 0.

∂u(s, t)

∂t
− σ2 (s, t) s2

2

∂2u (s, t)

∂s2
− rs∂u (s, t)

∂s
+ ru (s, t) = 0 (14)

u (0, t) = Ke−rt (15)

u(s, 0) =

{
K − s if s < K

0 if s > K
(16)
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By de�ning the space V = {v ∈ L2(R+) : v dv
ds
∈ L2(R+)},

C0([0, 1]; L2(R+)) as the space of continuous function on[0, 1] with values in

L2(R+), and L2(0, 1;V ) as the space of square integrable functions on(0, 1)

with values in V , we can write the variational formulation of the

Boundary-Value Problem(14)− (16) as follows

Weak Variational Problem. Find u ∈ C0([0, 1]; L2(R+)) ∩ L2(0, 1;V )

such that ∂u
∂t
∈ L2(0, 1; V ′), where V ′ is a topological dual space of V ,

satisfying

∀v ∈ V, at(u, v) +

∫
R+

v
∂u

∂t
ds = 0 (17)

u (0, t) = Ke−rt

u(s, 0) =

{
K − s if s < K

0 if s > K

where at(u, v) is called the bilinear form,

at(u, v) =
∫
R+

σ2(s, t)s2

2
∂u
∂s

∂v
∂s
ds

+r
∫
R+
uv ds

+
∫
R+

(
−r + σ2 (s, t) + sσ (s, t) ∂σ

∂s
(s, t)

)
s∂u
∂s
v ds

We now introduce the Finite Element Method (FEM) and apply this

method using Ritz-Galerkin approach, together with Crank-Nicolson

implicit scheme for di�erent discretizations in the S-T directions (i.e,

di�erent S-T-lattices) to �nd the approximated prices of an European put

option with constant or variable local volatility. Such problem is equivalent

to �nd the numerical solution to the weak variational problem (equation

(17)). We then compare our numerical solutions to the exact solutions
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given by the classic Black-scholes formula to measure the errors of our

numerical scheme in L2- norm and L∞- norm. We compare the errors to see

which mesh re�nement gives the most accurate numerical solutions (that is,

the closest one to the exact solution). Finally, for an European put option

with variable local volatility in which the Black-Scholes formula is not a

reliable tool, we use FEM combining with the most e�cient mesh

re�nements determined from previous experiments to obtain the

approximated prices for each time t and to understand the behavior of the

solution when we consider di�erent values of σ.

2 The Finite Element Method

Compared to the Finite Di�erences Method (FDM) whose lattice is basically

rectangular and adaption to non-trivial geometric domain is di�cult, the

FEM is far more �exible due to the following typical properties:

• Division of the domain into simple geometric subdomains, such as rect-

angles (for 1D domain), triangles and/or quadrilaterals (for 2D do-

main), or cubes (for 3D domain)

• Setup of test-functions (continuous piecewise polynomials) on subdo-

mains

• Global assembling of test functions

FEM can be applied to the variational formulation of a PDE, such as equa-

tion (17), or the variational inequality, which is often derived from the free-

boundary conditions of American option.
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2.1 Subdivision of the Domain

Let Ω ⊂ R denote the domain. We want to �nd a partition P of Ω, which

consists of dividing the two intervals in S and T directions,[0, Sb] and [0, T ],

into Ns and Nt subintervals Γi = [si−1, si] and Tk = [tk−1, tk] such that

hi = si − si−1 and 4tk = tk − tk−1, respectively (i = 1, 2, ..., Ns and k =

1, 2, ..., Nt). We can either use an equidistant or nonequidistant partition for

the S and T direction. Figure 1 gives an example for a S − T -lattice with

uniform partitions in both S and T directions.

Figure 1: Partition of Ω into rectangle S − T -lattice

We introduce the following de�nition for an uniform and geometric parition

on the interval [0, Sb], also de�ned as the S-direction.

• Partition of the interval [0, Sb] into subintervals Γi = [si−1, si], 1 ≤
i ≤ Ns such that 0 = s0 < s1 < · · · < sNs = Sb and h1 = h2 =

... = hNs . Let Γq = maxi=1,...,NsΓi, and the mesh Γ of [0, Sb] be the set

{Γ1,Γ2, ...,ΓNs}. Realistically, we will assume that the strike price K

of our put option coincides with some nodes of Γ, which means there

exists z such that sz = K. This partition is de�ned as the �uniform

partition� in the s-direction.
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• Partition of the interval [0, Sb] into two intervals [0, K] and [K, Sb].
Each of these intervals is partitioned as follows: we divide the intervals
[0, K] and [K, Sb] into N1 and N2 subintervals, Γi = [si−1, si] and
Γj = [sj−1, sj] (1 ≤ i ≤ N1, N1 + 1 ≤ j ≤ N1 + N2), such that

0 = s0 < s1 < · · · < sN1 = K < · · · < sN2 = Sb, hN1 = rN1−1
1 h1= h

4
3
1

and hN1+1 = rN2−1
2 hN1+N2 = h

4
3
N1+N2

for 0 ≤ r1, r2 ≤ 1 (the reason for

the choice h
4
3
1 and h

4
3
N1+N2

is because when taking a small step in the
S-direction, and plotting the L2-norm errors with respect to di�erent
number of timesteps in the T-direction, the convergence order is less

than 2, and in fact, the errors decay slower than h
3
4
1 and h

3
4
N1+N2

) for
0 ≤ r1, r2 ≤ 1.

We now show that if h1 is given, the values of r1 and N1 are uniquely
determined (same arguments for �nding r2 and N2 in the interval [K, Sb]).
Notice that since hi=1,2,...,N1 follows a geometric series in the interval

[0, K], h1 + h1r1 + ... + h1r1
N1−1 =

h1(1−rN1
1 )

1−r1 = K. Since rN1−1
1 h1= h

4
3
1 , we

obtain
h1−h

4
3
1 r1

1−r1 = K. Solving for r1, we get r1 = K−h1
K−h

4
3
1

. Furthermore, since

rN1−1
1 = h

1
3
1 , solving for N1 gives N1 = 1

3
log h1
log r1

+ 1. Therefore, given the
value of h1, there exists an unique pair

(r1, N1) = (
K − h1

K − h
4
3
1

,
1

3

log h1

log r1

+ 1)

satisfying all the given restriction. Similarly, an unique pair

(r2, N2) = (
Sb −K − hN1+N2

Sb −K − h
4
3
N1+N2

,
1

3

log hN1+N2

log r2

+ 1)

exists for the interval [K, Sb].

Finally, let Γq = maxi=1,...,N1+N2Γi, and the mesh Γ of [0, Sb] as the set
{Γ1,Γ2, ...,ΓN1+N2}. Realistically, we will assume that the strike price K of
our put option coincides with some nodes of Γ, which means there exists N1

such that sN1 = K. This partition is de�ned as a �geometric partition� in the
s-direction. Our main purpose for discretizing the s-direction in this way is
to increase signi�cantly the number of points si near K where the singularity
occurs, so that the accuracy of our numerical solutions is increased.

For the accuracy conditions of our numerical schemes, the similar partitions

are used for the interval [0, T ]. Speci�cally, we will choose (4t1)
8
3 for the

same reasons used to choose h
4
3
1 .
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2.2 The Ritz - Galerkin Approach

For numerical computation, Ritz and Galerkin suggested to treat the vari-

ational problem on a �nitely-dimensional Hilbert subspace V b
h ⊆ H1

0 (the

Hilbert space of functions with square-integrable value and derivatives in Ω

with zero value on the boundary ∂Ω). V b
h is called trial space. Therefore,

we consider the discrete variational problem to �nd uh ∈ V b
h , which is the

solution of

a (uh(s), vh(s)) =

∫
Ω

f(s)vh(s)ds for all vh ∈ V b
h (18)

where
∫

Ω
f(s)vh(s)ds = (f, vh) and a (uh(s), vh(s)) is a bilinear form stated

in the weak variational problem. Let ϕ1, ϕ2, ..., ϕk be a basis of V b
h , with

k = dim
(
V b
h

)
. Then the uh in (18) can be interpolated by the basis

elements with corresponding weights ϕj ∈ R in the following way:

uh =
k∑
j=1

uh, jϕj (19)

By means of the Finite Element method, the ϕj are call basis or test

functions, which we will use later on as piecewise well-de�nied polynomials.

The representation of uh as a �nite sum of weighted test functions, in fact,

gives the name �Finite Element Method.� Using (19), we can rewrite the

discrete variational problem (18) as:

Find a uh ∈ V b
h with

a(uh, vh) = (f, vh) ∀ vh ∈ V b
h ⇐⇒

a(uh, ϕi) = (f, ϕi) ∀ i = 1, ..., k ⇐⇒

a(
∑k

j=1 uh, jϕjϕi) = (f, ϕi) ∀ i = 1, ..., k ⇐⇒∑k
j=1 a(ϕj, ϕi)uh, j = (f, ϕi) ∀ i = 1, ..., k ⇐⇒

Auh = B (20)
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with A := (a (ϕj, ϕi))i,,j ∈ R
k×k, uh := (uh, 1, ..., uh, k))

T and

B := (f, ϕi)i , i = 1, ..., k.

Hence, the Ritz-Galerkin approach is equivalent to a linear system of

equations, and the computation of vector uh, applied to equation (20),

gives an approximation for u. Due to its application to mechanics, A is

called the sti�ness matrix. It is positive de�nite and symmetric for an

arbitrary basis ϕ1, ..., ϕk, which implies A is invertible. Note that for

certain choices of the basis, the matrix A is sparse, which means that only a

few elements (A)i, j are non-zero. This would reduce the cost for the

computation of (20) signi�cantly.

2.3 Finite Element Method applied to European Vanilla
Option

We now de�ne the discrete space V b
h as follows to ensure that the boundary

condition u (s, 0) = 0 for s > K belongs to V b
h ,

V b
h =

{
ϕ(s) ∈ C0 [0, Sb] , ϕ (Sb) = 0 ∀ s ∈ Γ, ϕ|s is a�ne

}
In the real world, the option value is dependent mainly on the underlying

asset price s whose local volatility varies based on the changes in the values

of s. Therefore, we consider the general case when the local volatility σ,

which is a function of s and t, is described through the CEV model

σ(s, t) = σ0s
γ for constant parameters σ0 ≥ 0, γ > −1 and s is the price of

an underlying asset at time t. We rewrite equation (14) in the following

form where α =
s2(1+γ)σ2

0

2
, β = (1 + γ)σ2

0s
2γ+1 − rs,

∂u

∂t
− ∂

∂s
(α
∂u

∂s
) + β

∂u

∂s
+ ru = 0 (21)

17



Multiplying both sides by the test function ϕ(s) ∈ V b
h , and by using inte-

gration by parts for the term
∫ Sb

0
ϕ(s) ∂

∂s
(α∂u

∂s
) ds = −

∫ Sb
0
α∂u
∂s

∂ϕ(s)
∂s

ds (since
ϕ(Sb) = 0) , equation (21) becomes

(
∂u

∂t
, ϕ) + (α

∂u

∂s
,
∂ϕ

∂s
) + (β

∂u

∂s
, ϕ) + (ru, ϕ) = 0 (22)

where (·, ·) is a broken L2 inner product with respect to all partitions Γi of
the interval [0, Sb].

Let ut denote
∂u
∂t
, and ukh denote uh(·, tk). After discretizing equation (22) in

space and time (dividing the interval [0, 1] into Nt subintervals [tk, tk−1], k =

1, . . . , Nt with lengths 4tk = tk − tk−1) and rewriting uh(s, tk) =∑2
i=1 uh, i(tk)ϕi(s), where ϕi is the nodal basis of V b

h , we obtain the fully
discrete variational problem with two boundary conditions:

Find uh(s, tk) ∈ V b
h such that

u0
h = max(K − s, 0) for s is the price of the underlying asset

at time t = 0 (23)

uh(0, tk) = Ke−rtk (24)

and for 1 ≤ k ≤ Nt,

M(uh(s, tk), ϕ) + A(uh(s, tk), ϕ) = 0 ∀ϕ ∈ V b
h and tk ∈ [0, 1] (25)

where m
(
ukh, ϕ

)
is the inertial form of the mass matrix M ,

m(uh(s, tk), ϕ) = (uh(s, tk), ϕ) (26)

and a(ukh, ϕ) is the Galerkin form of the sti�ness matrix A,

a(uh(s, tk), ϕ) = (α
∂ukh
∂s

,
∂ϕ

∂s
) + (β

∂ukh
∂s

, ϕ) + (rukh, ϕ) (27)

Let (α
∂ukh
∂s
, ∂ϕ
∂s

) = a1, k, (β
∂ukh
∂s
, ϕ) = a2, k, (rukh, ϕ) = a3, k, the equation (27)

can be rewritten as follows
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a(uh(s, tk), ϕ) = a1, k + a2, k + a3, k (28)

Given u0
h = max(K − s, 0), we can use either the Euler explicit/implicit

scheme or the second-order stable Crank-Nicolson scheme corresponding to

the values of θ = 0, 1
2
, 1, respectively, to �nd ukh for k = 1, 2, . . . , Nt from the

equation

1

4tk
m(ukh − uk−1

h , ϕ) + a(θukh + (1− θ)uk−1
h , ϕ) = 0 ∀ ϕ ∈ V b

h (29)

In order to obtain the most accurate and stable numerical solutions for large
local volatility, we choose the second-order stable Crank-Nicolson scheme
(that is, θ = 1

2
). Now, for each �nite element de�ned over the nodes (si, sj),

the mass matrix M has its entries mi, j = (ϕj, ϕi), and let A be the sti�ness
matrix de�ned by

ai, ,j = a (ϕj, ϕi) = a1
i, j + a2

i, j + a3
i, j, 0 ≤ i, j ≤ Ns

By letting ukh =
(
ukh (s0) , ..., ukh (sN)

)T
and u0

h = (u0
h (s0) , ..., u0

h (sN))
T
,

which is the boundary condition, we can rewrite equation (29) as follows

M
(
ukh − uk−1

h

)
+
4tk

2

(
Aukh + Auk−1

h

)
= 0

⇐⇒ (M +
4tk

2
A)ukh = (M − 4tk

2
A)uk−1

h

We now choose the nodal basis ϕi to be the hat functions, which were de�ned
below over two consecutive nodes si,si−1 and si, si+1 .

De�nition 1.2 (Hat Functions) With i = 0, 1, . . . , Ns, the hat functions
are

ϕi (s) =
s− si−1

hi
∀ s∈(si−1, si)

ϕi (s) =
si+1 − s
hi+1

∀ s ∈ (si, si+1)
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Figure 2: Setup of the hat functions

Note that the �rst and last element ϕ0 and ϕNs need to be cut o� to �t into

the discretized domain, as shown in Figure 2. These hat functions ϕi

correspond to the nodes si and are supported in [si−1, si+1]. When

|i− j|> 1, the intersection of the support ϕi and ϕj has measure 0. This

implies the matrices M and A are tridiagonal. We now compute the actual

assembling of matrix M as follows: by de�nition, mi, ,j =(ϕj, ϕi)i, j=0,..., Ns

with (ϕj, ϕi) =
∫ Sb

0
ϕiϕj ds.

The �rst element of M , m0, 0 and mNs, Ns just contains one of the two
summands of the equation (34), since it is de�ned by the cut boundary
�nite element ϕ0 and ϕNs . The calculations for m0, 0 and mNs, Ns are follows,

m0, 0 =

∫ Sb

0

ϕ0ϕ0ds =

∫ s1

s0

(ϕ0)2ds =

∫ s1

s0

1

h2
1

(s1 − s)2 ds

= − 1

3h2
1

(−s1 + s0)3 =
h1

3
(30)

mNs, Ns =

∫ Sb

0

ϕNsϕNsds =

∫ sNs

sNs−1

(ϕNs)
2ds

=

∫ sNs

sNs−1

1

h2
Ns

(sNs − sNs−1)2 ds

= − 1

3h2
Ns

(−sNs + sNs−1)3 =
hNs
3

(31)
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The matrix M is symmetric, since both subdiagonals mi, i−1 and mi, i+1

have the following formulas for its entries

mi, i+1 =

∫ Sb

0

ϕi+1ϕi ds =

∫ si+1

si

1

h2
i+1

(s− si) (si+1 − s) ds

=
1

h2
i+1

(
si+1s

2

2
− si+1sis−

s3

3
+
sis

2

2
)|si+1
si

=
1

h2
i+1

(
s3
i+1

6
−
s2
i+1si
2

+
si+1s

2
i

2
− s3

i

6

)

=
1

6h2
i+1

(si+1 − si)3 =
hi+1

6
for i = 0, . . . , Ns − 1 (32)

mi, i−1 =

∫ Sb

0

ϕi−1ϕids =

∫ si

si−1

1

h2
i

(s− si−1) (si − s) ds

=
1

h2
i

(
sis

2

2
− si−1sis−

s3

3
+
si−1s

2

2
)|sisi−1

=
1

h2
i

(
s3
i

6
− s2

i si−1

2
+
sis

2
i−1

2
−
s3
i−1

6

)

=
1

6h2
i

(si − si−1)3 =
hi
6

for i = 1, . . . , Ns (33)

On the diagonal of M, the elements mi, i are

mi, i =

∫ Sb

0

ϕiϕi ds =

∫ si

si−1

(
1

hi
(s− si−1)

)2

ds

+

∫ si+1

si

(
1

hi+1

(si+1 − s)
)2

ds

=
1

3h2
i

(si − si−1)3 − 1

3h2
i+1

(−(si+1 − si)3)
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=
hi + hi+1

3
= 2(m1

i+1 +m1
i−1) for i = 1, . . . , Ns − 1 (34)

Now, for assembling matrix A, we need to compute the sum a1
i, j + a2

i, j + a3
i, j

for j ∈ {0, i− 1, i, i+ 1, Ns}. For example, similar to m0, 0 and mNs, Ns , a0, 0

and aNs, Ns needs special treatment and requires the following computations

a1
0, 0 =

σ2
0

2

∫ Sb

0

s2(1+γ)(
∂ϕ0

∂s
)2 ds =

σ2
0

2

∫ s1

0

s2(1+γ)

h2
1

ds

=
σ2

0s
1+2γ
1

2(3 + 2γ)
(35)

a2
0, 0 = (1 + γ)σ2

0

∫ Sb

0

s2γ+1ϕ0
∂ϕ0

∂s
ds− r

∫ Sb

0

sϕ0
∂ϕ0

∂s

= −(1 + γ)σ2
0

h2
1

(
s3+2γ

1

2 + 2γ
− s3+2γ

1

3 + 2γ
) +

rs3
1

6h2
1

= − σ2
0s

1+2γ
1

2(3 + 2γ)
+
rs1

6
, since s0 = 0 and h1 = s1 (36)

a3
0, 0 = r

∫ Sb

0

(ϕ0)2 ds = r

∫ s1

0

(s1 − s)2

h2
1

ds =
rh1

3
(37)

a1
Ns, Ns =

σ2
0

2

∫ Sb

0

s2(1+γ)(
∂ϕNs
∂s

)2 ds

=
σ2

0

2

∫ sNs

sNs−1

s2(1+γ)

h2
Ns

ds

=
σ2

0

2h2
Ns

(
s3+2γ
Ns
− s3+2γ

Ns−1

3 + 2γ
)

a2
Ns, Ns = (1 + γ)σ2

0

∫ Sb

0

s2γ+1ϕNs
∂ϕNs
∂s

ds

−r
∫ Sb

0

sϕNs
∂ϕNs
∂s
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=
(1 + γ)σ2

0

h2
Ns

(
s2γ+3
Ns

2γ + 3
−
s2γ+2
Ns

sNs−1

2γ + 2
)

+
σ2

0s
2γ+3
Ns−1

2h2
Ns

(2γ + 3)
− r

h2
Ns

(
s3
Ns

3
+
s3
Ns−1

6
)

+
rs2

Ns
sNs−1

2h2
Ns

=
(1 + γ)σ2

0

h2
Ns

(
s2γ+3
Ns

2γ + 3
) −

σ2
0s

2γ+2
Ns

sNs−1

2h2
Ns

+
σ2

0

h2
Ns

s2γ+3
Ns−1

2(2γ + 3)
− r (2sNs + sNs−1)

6
(38)

a3
Ns, Ns = r

∫ Sb

0

(ϕNs)
2 ds = r

∫ sNs

SNs−1

(s− sNs−1)2

h2
Ns

ds

=
rhNs

3
(39)

For the elements ai, i−1, we need to calculate the following elements

a1
i, i−1 =

σ2
0

2

∫ Sb

0

s2(γ+1)∂ϕi
∂s

∂ϕi−1

∂s
ds

= − σ
2
0

2

∫ si

si−1

s2(γ+1)

h2
i

ds

= − σ2

2h2
i

(
s2γ+3
i − s2γ+3

i−1

2γ + 3
) (40)

a2
i, i−1 = (1 + γ)σ2

0

∫ Sb

0

s2γ+1ϕi
∂ϕi−1

∂s
ds − r

∫ Sb

0

sϕi
∂ϕi−1

∂s
ds

= − (1 + γ)σ2
0

h2
i

(
s2γ+3
i

2γ + 3
− s2γ+2

i si−1

2γ + 2
)

+
r

h2
i

(
s3
i

3
− s2

i si−1

2
+
s3
i−1

6
)
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−
σ2

0s
2γ+3
i−1

2h2
i (2γ + 3)

=
−(1 + γ)σ2

0

h2
i

s2γ+3
i

2γ + 3
− σ2

0s
2γ+2
i si−1

2h2
i

− σ
2
0

h2
i

s2γ+3
i−1

2(2γ + 3)
+
r(2si + si−1)

6
(41)

a3
i, i−1 = rm1

i, i−1 = r
hi
6

(42)

For the elements ai, i+1, we need to calculate the elements

a1
i, i+1 =

σ2
0

2

∫ Sb

0

s2γ+2∂ϕi
∂s

∂ϕi+1

∂s
ds

= − σ
2
0

2

∫ si+1

si

s2γ+2

h2
i+1

ds

= − σ2

2h2
i+1

(
s2γ+3
i+1 − s

2γ+3
i

2γ + 3
) (43)

a2
i, i+1 = (1 + γ)σ2

0

∫ Sb

0

sϕi
∂ϕi+1

∂s
ds − r

∫ Sb

0

sϕi+1
∂ϕi
∂s

ds

=
(1 + γ)σ2

0

h2
i+1

(− s
2γ+2
i si+1

2γ + 2
+

s2γ+3
i

2γ + 3
)

− r

h2
i+1

(
s3
i+1

6
− s2

i si+1

2
+
s3
i

3
)

+
σ2

0

h2
i+1

s2γ+3
i+1

2(2γ + 3)

=
(1 + γ)σ2

0

h2
i+1

s2γ+3
i

2γ + 3
− σ2

0s
2γ+2
i si+1

2h2
i+1

+
σ2

0

h2
i+1

s2γ+3
i+1

2(2γ + 3)
− r(si+1 + 2si)

6
(44)
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a3
i, i+1 = rm1

i+1 =
rhi+1

6
(45)

Its diagonal elements ai, i will contain the following integrals (note that ∂ϕi
∂s

=
1
hi
∀ s∈ (si−1, si) and

∂ϕi
∂s

= − 1
hi+1
∀ s ∈ (si, si+1))

a1
i, i =

σ2
0

2

∫ Sb

0

s2γ+2(
∂ϕi
∂s

)2ds =
σ2

0

2
(

∫ si

si−1

s2γ+2

h2
i

ds)

+
σ2

0

2

∫ si+1

si

s2γ+2

h2
i+1

ds

=
σ2

0

2h2
i

(
s2γ+3
i − s2γ+3

i−1

2γ + 3
) +

σ2
0

2h2
i+1

(
s2γ+3
i+1 − s

2γ+3
i

2γ + 3
) (46)

a2
i, i = (1 + γ)σ2

0

∫ Sb

0

s2γ+1ϕi
∂ϕi
∂s

ds − r
∫ Sb

0

sϕi
∂ϕi
∂s

ds

=
(1 + γ)σ2

0

h2
i

(
s2γ+3
i

2γ + 3
− s2γ+2

i si−1

2γ + 2
+

s2γ+3
i−1

(2γ + 2)(2γ + 3)
)

− (1 + γ)σ2
0

h2
i+1

(
s2γ+3
i+1

(2γ + 3)(2γ + 2)
− s2γ+2

i si+1

2γ + 2
+

s2γ+3
i

2γ + 3
)

− r

h2
i

(
s3
i

3
− s2

i si−1

2
+
s3
i−1

6
) +

r

h2
i+1

(
s3
i+1

6
− s2

i si+1

2
+
s3
i

3
)

=
(1 + γ)σ2

0

h2
i

(
s2γ+3
i

2γ + 3
− s2γ+2

i si−1

2γ + 2
) +

σ2
0

h2
i

s2γ+3
i−1

2(2γ + 3)

− (1 + γ)σ2
0

h2
i+1

(−s
2γ+2
i si+1

2γ + 2
+

s2γ+3
i

2γ + 3
)

− σ2
0

h2
i+1

s2γ+3
i+1

2(2γ + 3)
+
r(hi + hi+1)

6
(47)

a3
i, i = rmi,i = r(

hi + hi+1

3
) (48)

From equations (32) − (46), we can calculate the entries of A as follows
(remember that A is a tridiagonal matrix)
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ai, i−1 = a1
i, i−1 + a2

i, i−1 + a3
i, i−1 = − σ2

0

2h2
i

(
s2γ+3
i − s2γ+3

i−1

2γ + 3
)

− (1 + γ)σ2
0

h2
i

s2γ+3
i

2γ + 3
+
σ2

0

h2
i

s2γ+2
i si−1

2

−
σ2

0s
2γ+3
i−1

2h2
i (2γ + 3)

+
r(2si + si−1)

6
+ r

hi
6

=
−σ2

0s
2(γ+1)
i

2hi
+
rsi
2
∀ 1 ≤ i ≤ Ns (49)

ai, i+1 = a1
i, i+1 + a2

i, i+1 + a3
i, i+1 =

−σ2
0

2h2
i+1

(
s2γ+3
i+1 − s

2γ+3
i

2γ + 3
)

+
σ2

0

h2
i+1

s2γ+3
i+1

2(2γ + 3)
− σ2

0s
2γ+2
i si+1

2h2
i+1

+
(1 + γ)σ2

0s
2γ+3
i

h2
i+1(2γ + 3)

− r(si+1 + 2si)

6
+ r

hi+1

6

=
−s2(γ+1)

i σ2
0

2hi+1

− rsi
2
∀ 0 ≤ i ≤ Ns − 1 (50)

a0,0 = a1
0, 0 + a2

0, 0 + a3
0, 0 =

σ2
0s

1+2γ
1

2(3 + 2γ)

− σ2
0s

1+2γ
1

2(3 + 2γ)
+
rs1

6
+
rh1

3
=
rs1

2
(51)

aNs, Ns = a1
Ns, Ns + a2

Ns, Ns + a3
Ns, Ns

=
(1 + γ)σ2

0

h2
Ns

(
s2γ+3
Ns

2γ + 3
−
s2γ+2
Ns

sNs−1

2γ + 2
)

+
σ2

0

2h2
Ns

(
s3+2γ
Ns
− s3+2γ

Ns−1

3 + 2γ
) +

rhNs
3
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+
σ2

0s
2γ+3
Ns−1

2h2
Ns

(2γ + 3)
− r(2sNs + sNs−1)

6

=
s

2(γ+1)
Ns

σ2
0

2hNs
− rsNs−1

2
(52)

ai, i = a1
i, i + a2

i, i + a3
i, i =

σ2
0

2h2
i

(
s2γ+3
i − s2γ+3

i−1

2γ + 3
)

+
(1 + γ)σ2

0

h2
i

(
s2γ+3
i

2γ + 3
− s2γ+2

i si−1

2γ + 2
)

+
σ2

0

2h2
i+1

(
s2γ+3
i+1 − s

2γ+3
i

2γ + 3
) +

σ2
0s

2γ+3
i−1

2h2
i (2γ + 3)

− (1 + γ)σ2
0

h2
i+1

(−s
2γ+2
i si+1

2γ + 2
+

s2γ+3
i

2γ + 3
)

+
r(hi + hi+1)

6
+
r(hi + hi+1)

3
+

σ2
0s

2γ+3
i+1

2h2
i+1(2γ + 3)

=
s

2(γ+1)
i σ2

0

2
(

1

hi
+

1

hi+1

)

+
r(hi + hi+1)

2
∀ 1 ≤ i ≤ Ns − 1 (53)

In summary, we get the form of the sti�ness and mass matrices, A and M ,
rspectively (note that the entries of matricesA and M don't depend on time,
which is k, in this case) :

A :=


a0,0 a0, 1 0 ... 0
a1, 0 ... ... ... 0

0 ... ... ... ...
... ... ... ... aNs−1, Ns

0 0 ... aNs, Ns−1 aNs, Ns


where a0,0, a0, 1, aNs−1, Ns , a1, 0, aNs, Ns−1 and aNs, Ns are given by the formulas
(49)− (53) with i = 1 and Ns − 1
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M :=


h1
3

h1
6

0 0 0
h1
6

h1+h2
3

h2
6

... ...
0 h2

6
... ... 0

... ... ...
hNs−1+hNs

3

hNs
6

0 0 ...
hNs

6

hNs
3


For an equidistant grid in the S-direction (that is, uniform partition),

implying h := h1 = . . . = hNs , the matrices can be simpli�ed further, which

further on will reduce the cost of calculation. On the non-equidistant grid,

with A and M de�ned as in (23) and (24), the required time of calculation

increases proportionally for higher �neness of the mesh (larger k). Thus

when a non-equidistant lattice is used, it should be designed in a manner

that good accuracy will be achieve for a relatively small amount of grid

points.

Note that matrix M + 4tk
2
A can be further reduced by omitting the �rst row

and �rst column due to the two boundary conditions u0
h = max(K−s, 0) and

uh(0, tk) = Ke−rtk . These boundary values are each interpolated by one hat

function with the corresponding coe�cients uk=0,1,..., Nt
h, 0 and u0

h, i=1,..., Ns
. This

means these coe�cients are known and we only have Ns unknown coe�cients

left. Hence, we may cancel the �rst column and row of matrixM+ 4tk
2
A, the

�rst row of matrix (M − 4tk
2
A)uk−1

h and the �rst element of vectors ukh. The

matrix (M + 4tk
2
A) now has size Ns ×Ns, (M − 4tk

2
A)uk−1

h has size Ns × 1

and vector ukh now has size Ns × 1. The boundary terms that were dropped

during this reduction process are put into a vector ck with size Ns × 1, and

the �nal system of equations will have the following form:

(M +
4tk

2
A)ukh = (M − 4tk

2
A)uk−1

h − ck (54)

in which ck =


(h1

6
+ 4tk

2
a1, 0)ukh, 0

0

. . .

0

0

 and ukh =


ukh, 1
ukh, 2
. . .

ukh,Ns−1

ukh,Ns

.
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The linear system of equations (54) is equivalent to one with homogeneous
boundary conditions where the function vanishes on the boundary. We can
rewrite the linear of system of equations (54) in the form

Eukh = Fuk−1
h − ck, and the entries of matrices E and F are below, respec-

tively

ei,i−1 =
4tk

2
(
−σ2

0s
2(γ+1)
i

2hi
+
rsi
2

) +
hi
6
, 2 ≤ i ≤ Ns

ei,i =
4tk

2
(
s

2(γ+1)
i σ2

0

2
(

1

hi
+

1

hi+1

) +
r(hi + hi+1)

2
)

+
hi + hi+1

3
, 1 ≤ i ≤ Ns − 1

ei,i+1 =
4tk

2
(
−s2(γ+1)

i σ2
0

2hi+1

− rsi
2

) +
hi+1

6
, 1 ≤ i ≤ Ns − 1

eNs, Ns =
4tk

2
(
s

2(γ+1)
Ns

σ2
0

2hNs
− rsNs−1

2
) +

hNs
3

fi,i−1 =
−4tk

2
(
−σ2

0s
2(γ+1)
i

2hi
+
rsi
2

) +
hi
6
, 2 ≤ i ≤ Ns

fi,i =
−4tk

2
(
s

2(γ+1)
i σ2

0

2
(

1

hi
+

1

hi+1

) +
r(hi + hi+1)

2
)

+
hi + hi+1

3
, 1 ≤ i ≤ Ns − 1

fi,i+1 =
−4tk

2
(
−s2(γ+1)

i σ2
0

2hi+1

− rsi
2

) +
hi+1

6
, 1 ≤ i ≤ Ns − 1

eNs, Ns =
−4tk

2
(
s

2(γ+1)
Ns

σ2
0

2hNs
− rsNs−1

2
) +

hNs
3

With those formulas and the given value of u0
h = max(K−s, 0), we can com-

pute iteratively the unknown variables ukh, i for i = 1, 2, . . . , Ns, and k =
1, 2, . . . , Nt , and obtain the prices of our put option for any given values of
both time t ∈ [0, 1] and the underlying asset s ∈ [0, Sb].
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Note that although we choose geometric partition in the S-direction, we

decide to employ two ways of partition for the time interval [0, 1] into Nt

subintervals with 4tk = tk − tk−1 for k = 1, . . . , Nt: uniform or geometric

partition, in order to see which partition gives a higher accuracy. Both

partitions are exactly the same as those used in the S-direction, which

means for the geometric partition, the number of points ti around t = 0

increase signi�cantly. However, although the geometric partition increases

the cost of computation, the errors of our numerical solutions in this case

are much larger than those obtained in the case of uniform partition.

Therefore, for discretizing our mesh in the T-direction, it is best to choose

the uniform partition to increase the accurracy of our numerical solutions

while reducing the computation time required, especially for cases when σ0

and γ are su�ciently small (for example, σ0 = 0.3 and γ = −0.03)

2.4 Galerkin Least squares stabilization Method

Theoretically, the local volatility σ can be any positive values, but in

practice, the local volatility of an option may be abnormally large due to

some unexpectedly horrible news or events that occur (for example, in

2008, after Lehman Brothers and Bear Sterns collapsed, the Down Jones

closed down just over 500 points at the time the largest drop by points in a

single day since the days following the attacks on September 11, 2001, or in

Japan, banks and insurers announced a combined 249 billion yen ($2.4

billion) in losses due to this collapse). The impacts of such events will

increase volatility of option prices signi�cantly, and such cases correspond

to su�ciently large vales of σ0 and γ (for example, σ0 = 0.7 and γ = 0.05).

We realize that the presented Galerkin FEM does not work well for large

local volatility due to its high sensitivity to the large values of σ0. One way

to �x this problem is to apply the Least Square Regression (LSR) method,

but it has one major drawback: the solution is much harder to compute by

iterative methods and more sensitive to roundo� errors since the number of

30



matrices in the equation (22) scales as the square of the number of the

matrix in the Ritz - Galerkin method. The LSR method is also less

accurate in the regions where the solution is smooth. Thus, we decide to

combine the Least Square and Ritz- Galerkin methods together, called the

Galerkin Least Square (GLS) method, by adding an additional �Least

Square� term to the LHS of equation (22), which is equivalent to one of the

two options belows:

1. (∂u
∂t
, ϕ)+(α∂u

∂s
, ∂ϕ
∂s

)+(β ∂u
∂s
, ϕ)+(ru, ϕ)+

∑
τ∈Th(∂u

∂t
− ∂

∂s
(α∂u

∂s
)+β ∂u

∂s
+

ru, ρi(− ∂
∂s

(α∂ϕ
∂s

) + β ∂ϕ
∂s

+ rϕ)) = 0

2. (∂u
∂t
, ϕ)+(α∂u

∂s
, ∂ϕ
∂s

)+(β ∂u
∂s
, ϕ)+(ru, ϕ)+

∑
τ∈Th(∂u

∂t
− ∂

∂s
(α∂u

∂s
)+β ∂u

∂s
+

ru, ρi(− ∂
∂s

(α∂ϕ
∂s

) + β ∂ϕ
∂s

)) = 0

in which the stability parameter ρi is de�ned locally based on the Peclet

number Pei(
si+si+1

2
) =

hTh |b(
si+si+1

2
)|p

24ε
on each partition τ as follows,

ρi(s, Pei(
si + si+1

2
)) =


h2Ti
48ε
, 0 ≤ Pei(

si+si+1

2
) < 1

hTi

2|b( si+si+1
2

)|p
, P ei(

si + si+1

2
)≥1

(55)

|b(si + si+1

2
)|p=

{
(
∑N

i=1|bi(
si+si+1

2
)|p)

1
p , 1 ≤ p <∞

maxi=1,..,N |bi( si+si+1

2
)|, p = ∞

(56)

After discretizing the equation (22) in space, time (dividing the interval

[0, 1] into Nt subintervals [tk, tk−1], k = 1, . . . , Nt with lengths

4tk = tk − tk−1) and rewriting uh(s, tk) =
∑2

i=1 uh, i(tk)ϕi(s), where ϕi is

again the linear test function of V b
h , we again obtain the stabilized fully

discrete variational problem:

Find uh(s, tk) ∈ V b
h such that

MLQ(ukh, ϕ) + ALQ(ukh, ϕ) = 0 ∀ϕ ∈ V b
h and tk ∈ [0, 1], (57)
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where

mLQ(ukh, ϕ) = (ukh, ϕ) +
∑
τ∈Th

(
∂ukh
∂t

, ρi(−ε
∂

∂s
(α
∂ϕ

∂s
) + β

∂ϕ

∂s
+ rϕ)) (58)

is an augmented inertial form of the mass matrix MLQ, and

aLQ(ukh, ϕ) = (α
∂ukh
∂s

,
∂ϕ

∂s
) + (β

∂ukh
∂s

, ϕ) + (rukh, ϕ)

+
∑
τ∈Th

(− ∂

∂s
(α
∂ukh
∂s

) + β
∂ukh
∂s

+ rukh, ρi(−ε
∂

∂s
(α
∂ϕ

∂s
) + β

∂ϕ

∂s
+ rϕ)) (59)

is a stabilized Galerkin form of the sti�nex matrix ALQ. In this formula, ε

are either 0,1 or −1, which corresponds to the SUPG, GLS and MS method,

respectively. We will fully solve the problem using option 1's formulation

(ε = 1), which is the most intense computational case. Without repetition,

we only present the general formula to form matrices MLQ and ALQ in the

case of option (2).

Given u0
h = max(K−s, 0), by using the Crank-Nicolson scheme correspond-

ing to the values of θ = 1
2
, we can �nd uk+1

h for k = 0, 1, . . . , Nt − 1 from the

following equation

1

4tk
mLQ(ukh − uk−1

h , ϕ) + aLQ(θukh + (1− θ)uk−1
h , ϕ) = 0 ∀ ϕ ∈ V b

h (60)

Let (ϕi)i=0,...,Ns be the basis, or hat functions in Vh, and letMLQ be the mass
matrix whose entries are de�ned by

mLQ
i, j = (ϕj, ϕi) +

∑
τ∈Th

ρi[(ϕj, rϕi)− (ϕj, rs
∂ϕi
∂s

)] (61)

since ϕ is the hat functions and α∂
2ϕ
∂s2

= 0, ∂
∂s

(α∂ϕ
∂s

) + β ∂ϕ
∂s

= −rs. Futher-

more, let
∑

τ∈Th ρi(ϕj, rϕi) = mLQ, 1
i, j and

∑
τ∈Th ρi(ϕj, rs

∂ϕi

∂s
) = mLQ, 2

i, j , we
can rewrite equation (59) as
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mLQ
i, j = (ϕj, ϕi) +mLQ, 1

i, j −mLQ, 2
i, j (62)

Since a (ϕj, ϕi) = (α
∂ϕj
∂s
, ∂ϕi
∂s

) + (β
∂ϕj
∂s
, ϕi) + (rϕj, ϕi) as de�ned in equation

(22), the entries of the sti�ness matrix ALQ are given as

aLQi, ,j = a (ϕj, ϕi) +
∑
τ∈Th

ρi[(rϕj, rϕi)− (rs
∂ϕj
∂s

, rϕi) + (rs
∂ϕj
∂s

, rs
∂ϕi
∂s

)]

−
∑
τ∈Th

ρi(rϕj, rs
∂ϕi
∂s

), ∀ 0 ≤ i, j ≤ Ns. (63)

From the following identities,∑
τ∈Th

ρi(rϕj, rϕi) = rmLQ, 1
i, j

, ∑
τ∈Th

ρi(rs
∂ϕj
∂s

, rs
∂ϕi
∂s

) =
∑
τ∈Th

ρi
r2aLQ, 1i, j

σ2

∑
τ∈Th

ρi(rs
∂ϕj
∂s

, rϕi) =
∑
τ∈Th

ρi
r2aLQ, 2i, j

−r + σ2

∑
τ∈Th

ρi(rϕj, rs
∂ϕi
∂s

) = rmLQ, 2
i, j .

the equation (59) is equivalent to

aLQi, j = a (ϕj, ϕi) + rmLQ, 1
i, j +

∑
τ∈Th

ρi[−
r2aLQ, 2i, j

−r + σ2
+
r2aLQ, 1i, j

σ2

2

]− rmLQ, 2
i, j

By letting ukh =
(
ukh (s0) , . . . , ukh (sN)

)T
and u0

h = (u0
h (s0) , . . . , u0

h (sN))
T
which

is the boundary condition, the fully discrete problem (60) can be rewritten
as a system of linear equations

(MLQ +
4tk

2
ALQ)ukh = (MLQ − 4tk

2
ALQ)uk−1

h (64)
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We now compute the following general formula for the sti�ness matrix MLQ.

By using equation (62), we need to compute the following elements

mLQ, 2
i, i−1 = r

∫ Sb

0

sϕi−1
∂ϕi
∂s

ds = ρi−1r(
si
6

+
si−1

3
)

mLQ, 2
i, i+1 = r

∫ Sb

0

sϕi+1
∂ϕi
∂s

ds = − ρi−1r(
si+1

3
+
si
6

)

mLQ, 2
0, 0 = r

∫ Sb

0

sϕ0
∂ϕ0

∂s
ds = − ρ0rh1

6

mLQ, 2
Ns, NS

= r

∫ Sb

0

sϕNs
∂ϕNs
∂s

ds

= ρNs−1r(
sNs−1

6
+
sNs
3

)

mLQ, 2
i, i = r

∫ Sb

0

sϕi
∂ϕi
∂s

ds = r(
ρi−1(2si + si−1)

6
)

− rρi(2si + si+1)

6

Together with the formulas (30)− (34), the entries ofM are given as follows

mLQ
i, i−1 = (ϕi−1, ϕi) +mLQ, 1

i, i−1 −m
LQ, 2
i, i−1 =

hi
6

+ ρi−1r
hi
6

− ρi−1r(
si
6

+
si−1

3
)

=
hi
6
− ρi−1si−1r

2
, ∀ 1 ≤ i ≤ Ns

mLQ
i, i+1 = (ϕi+1, ϕi) +mLQ, 1

i, i+1 −m
LQ, 2
i, i+1 =

hi+1

6
+ ρir

hi+1

6

− ρir(−
si+1

3
− si

6
)
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=
hi+1

6
+
ρisi+1r

2
, 0 ≤ i ≤ Ns − 1

mLQ
0, 0 = (ϕ0, ϕ0) +mLQ, 1

0, 0 −mLQ, 2
0, 0 =

h1

3
+ ρ0r

h1

3

+
ρ0rh1

6
=
h1

3
+
ρ0h1r

2
(65)

mLQ
Ns, Ns

= (ϕNs , ϕNs) +mLQ, 1
Ns, Ns

−mLQ, 2
Ns, Ns

=
hNs
3

+ ρNs−1r
hNs
3

− ρNs−1r(
sNs−1

6
+
sNs
3

)

=
hNs
3
− ρNs−1rsNs−1

2
(66)

mLQ
i, i = (ϕi, ϕi) +mLQ, 1

i, i −mLQ, 2
i, i =

hi + hi+1

3
+ r

ρi−1hi + ρihi+1

3

− rρi−1(2si + si−1)

6
− r

ρi−1(2si + si−1)

6

+ r
ρi(2si + si+1)

6

= (
−rsi−1ρi−1

2
+
hi
3

)+(
rsi+1ρi

2
+
hi+1

3
), 1 ≤ i ≤ Ns−1 (67)

Similarly, the entries of A are given as

aLQi, i−1 = a (ϕi−1, ϕi) + rmLQ, 1
i, i−1 +

∑
τ∈Th

ρi[−
r2aLQ, 2i, i−1

−r + σ2
+
r2aLQ, 1i, i−1

σ2

2

]

− rmLQ, 2
i, i−1 =

−σ2
0s

2(γ+1)
i

2hi
+
rsi
2
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+ r2ρi−1
hi
6

+ ρi−1r
2 si−1

6
+ ρi−1r

2 si
3

− ρi−1r
2(
si − si−1

3
+
sisi−1

hi
) − ρi−1r

2(
si
6

+
si−1

3
)

=
−ρi−1r

2sisi−1

hi
− σ2

0s
2(γ+1)
i

2hi
+
rsi
2
, 1 ≤ i ≤ Ns (68)

aLQi, i+1 = a (ϕi+1, ϕi) + rmLQ, 1
i, i+1 +

∑
τ∈Th

ρi[−
r2aLQ, 2i, i+1

−r + σ2
+
r2aLQ, 1i, i+1

σ2

2

]

− rmLQ, 2
i, i+1 =

−s2(γ+1)
i σ2

0

2hi+1

− rsi
2

+ r2ρi
hi+1

6
− r2ρi(

si+1

6
+
si
3

)

− r2ρi(
si+1 − si

3
+
sisi+1

hi+1

) + r2ρi(
si+1

3
+
si
6

)

=
−ρir2sisi+1

hi+1

− s
2(γ+1)
i σ2

0

2hi+1

− rsi
2
, 0 ≤ i ≤ Ns − 1

aLQ0, 0 = a (ϕ0, ϕ0) + rmLQ, 1
0, 0 +

∑
τ∈Th

ρi[−
r2aLQ, 20, 0

−r + σ2
+
r2aLQ, 10, 0

σ2

2

]

−rmLQ, 2
0, 0 =

rs1

2
+ r2ρ0

h1

3
+ r2ρ0

h1

6

+ r2ρ0
h1

3
+ r2ρ0

h1

6
= p0h1r

2 +
rs1

2
(69)

aLQNs, Ns =
∑
τ∈Th

ρi[−
r2aLQ, 2Ns, Ns

−r + σ2
+
r2aLQ, 1Ns, Ns

σ2

2

]

+rmLQ, 1
Ns, Ns

− rmLQ, 2
Ns, Ns
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+a (ϕNs , ϕNs)

=
s

2(γ+1)
Ns

σ2
0

2hNs
− rsNs−1

2
+ r2ρNs−1

hNs
3

− r2ρNs−1(
sNs−1

6
+
sNs
3

)

+ r2ρNs−1(
hNs
3

+
sNssNs−1

hNs
)

− ρNs−1r
2(
sNs−1

6
+
sNs
3

) =
ρNs−1r

2sNssNs−1

hNs

+
s

2(γ+1)
Ns

σ2
0

2hNs
− rsNs−1

2
− r2ρNs−1sNs−1 (70)

aLQi, i = a (ϕi, ϕi) +
∑
τ∈Th

ρi[−
r2aLQ, 2i, i

−r + σ2
+
r2aLQ, 1i, i

σ2

2

]

+rmLQ, 1
i, i − rmLQ, 2

i, i

=
s

2(γ+1)
i σ2

0

2
(

1

hi
+

1

hi+1

) +
r(hi + hi+1)

2

+ r2(
ρi−1hi + ρihi+1

3
) − r2ρi−1(2si + si−1)

6

+ r2ρi(2si + si+1)

6
+ r2ρi−1(

hi
3

+
sisi−1

hi
)

+ r2ρi(
hi+1

3
+
sisi+1

hi+1

) − r2(
ρi−1(2si + si−1)

6
)

+ r2ρi(2si + si+1)

6

= (si+1ρir
2 + sir

2ρisi+1

hi+1

) + (sir
2ρi−1si−1

hi
− r2si−1ρi−1)
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+
s

2(γ+1)
i σ2

0

2
(

1

hi
+

1

hi+1

)

+
r(hi + hi+1)

2
, 1 ≤ i ≤ Ns − 1 (71)

Note that matrixMLQ+ 4tk
2
ALQ can be further reduced by omitting the �rst

row and �rst column due to the two boundary conditions u0
h = max(K−s, 0)

and uh(0, tk) = Ke−rtk . These boundary values are each interpolated by one

hat function with the corresponding coe�cients uk=0,1,..., Nt
h, 0 and u0

h, i=1,..., Ns
.

This means these coe�cients are known and we only have Ns unknown co-

e�cients left. Hence, we may cancel the �rst column and row of matrix

MLQ + 4tk
2
ALQ, the �rst row of matrix (MLQ − 4tk

2
ALQ)uk−1

h and the �rst

element of vectors ukh. The matrix (MLQ + 4tk
2
ALQ) then has size Ns × Ns

and (MLQ− 4tk
2
ALQ)uk−1

h then has dimension Ns× 1 and vector ukh now has

size Ns × 1. The boundary terms that were dropped during this reduction

process are put into a vector ck with sizes Ns × 1, and the �nal system of

equations will have the following form:

(MLQ +
4tk

2
ALQ)ukh = (MLQ − 4tk

2
ALQ)uk−1

h − ck (72)

in which ck =


(mLQ

1,0 + 4tk
2
aLQ1,0 )ukh, 0

0
...
0
0

 and ukh =


ukh, 1
ukh, 2
...

ukh,Ns−1

ukh,Ns

 .

The linear system of equations (72) is equivalent to one with homogeneous

boundary conditions, where the function vanishes on the boundary. We can

rewrite the linear system of equations (72) in the form

ELQukh = FLQuk−1
h − ck, and the entries of matrices ELQ and FLQ are below,

respectively

eLQi, i = (
−rsi−1ρi−1

2
+
hi
3

) + (
rsi+1ρi

2
+
hi+1

3
)

+
4tk

2
(si+1ρir

2 + sir
2ρisi+1

hi+1

)
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+
4tk

2
(sir

2ρi−1si−1

hi
− r2si−1ρi−1)

+
4tk

2

s
2(γ+1)
i σ2

0

2
(

1

hi
+

1

hi+1

)

+
4tk

2

r(hi + hi+1)

2
, 1 ≤ i ≤ Ns − 1

eLQi, i−1 =
hi
6
− ρi−1si−1r

2
− 4tk

2

ρi−1r
2sisi−1

hi

+
4tk

2
(−σ

2
0s

2(γ+1)
i

2hi
+
rsi
2

), 2 ≤ i ≤ Ns

eLQi, i+1 =
hi+1

6
+
ρisi+1r

2
+
4tk

2

ρir
2sisi+1

hi+1

+
4tk

2
(
s

2(γ+1)
i σ2

0

2hi+1

+
rsi
2

), 1 ≤ i ≤ Ns − 1

eLQNs, Ns =
4tk

2

ρNs−1r
2sNssNs−1

hNs

+
4tk

2
(
s

2(γ+1)
Ns

σ2
0

2hNs
− rsNs−1

2
)

− 4tk
2
r2ρNs−1sNs−1

+
hNs
3
− ρNs−1rsNs−1

2

fLQi, i = (
−rsi−1ρi−1

2
+
hi
3

) + (
rsi+1ρi

2
+
hi+1

3
)

− 4tk
2

(si+1ρir
2 + sir

2ρisi+1

hi+1

)
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− 4tk
2

(sir
2ρi−1si−1

hi
− r2si−1ρi−1)

− 4tk
2

s
2(γ+1)
i σ2

0

2
(

1

hi
+

1

hi+1

)

− 4tk
2

r(hi + hi+1)

2
, 1 ≤ i ≤ Ns − 1

fLQi, i−1 =
hi
6
− ρi−1si−1r

2
− 4tkrsi

4
+
4tk

2

ρi−1r
2sisi−1

hi

− 4tk
2

(−σ
2
0s

2(γ+1)
i

2hi
), 2 ≤ i ≤ Ns

fLQi, i+1 =
hi+1

6
+
ρisi+1r

2
− 4tk

2

ρir
2sisi+1

hi+1

+
4tkrsi

4
− 4tks

2(γ+1)
i σ2

0

4hi+1

, 1 ≤ i ≤ Ns − 1

fLQNs, Ns =
−4tk

2

ρNs−1r
2sNssNs−1

hNs

− 4tk
2

(
s

2(γ+1)
Ns

σ2
0

2hNs
− rsNs−1

2
)

+
4tk

2
r2ρNs−1sNs−1

+
hNs
3
− ρNs−1rsNs−1

2

With these formulas and the given value of u0
h = max(K − s, 0), we com-

pute iteratively the unknown variables ukh, i for i = 1, 2, . . . , Ns, and k =
1, 2, . . . , Nt, and obtain the prices of our put option for any given values of
both time t ∈ [0, 1] and the underlying asset s ∈ [0, Sb].

For option 2's formulation with Crank-Nicolson scheme, using exactly the
same calculations as in option 1, the entries for the mass and sti�ness matrix
M and A are

40



mLQ
i, i−1 =

hi
6
− pi−1r

6
(si + 2si−1), 1 ≤ i ≤ Ns

mLQ
i, i = (

−rsi−1ρi−1

2
+
hi
3

) +
rsi+1ρi

2

+
hi+1

3
, 1 ≤ i ≤ Ns − 1

mLQ
0, 0 =

h1

3
− ρ0rh1

6

mLQ
Ns, Ns

=
hNs
3

+ ρNs−1r(
sNs−1

6
+
sNs
3

)

mLQ
i, i+1 =

hi+1

6
+
ρir

6
(si + 2si+1), 0 ≤ i ≤ Ns − 1

aLQi, i−1 = − σ
2
0s

2(γ+1)
i

2hi
+
rsi
2
, 1 ≤ i ≤ Ns

aLQi, i+1 = − s
2(γ+1)
i σ2

0

2hi+1

− rsi
2
, 0 ≤ i ≤ Ns − 1

aLQ0,0 =
rs1

2

aLQNs, Ns =
s

2(γ+1)
Ns

σ2
0

2hNs
− rsNs−1

2

aLQi, i =
s

2(γ+1)
i σ2

0

2
(

1

hi
+

1

hi+1

) +
r(hi + hi+1)

2
, 1 ≤ i ≤ Ns − 1
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2.5 Mesh Re�nements

For improving the accuracy of our numerical solutions to the equation (14)

with boundary conditions (15)− (16), especially when s is near the strike

price K = 50 and Sb, we extend the mesh in the S-direction (that is, add

another interval [Sb, S∞], where S∞ is a very large number, 30K) and

divide the new interval [0, S∞] into three subintervals [0, K], [K, Sb] and

[Sb, S∞]. Then we discretize each of the subintervals as follows: First, we

use either the same uniform partition or geometric partition, which was

described at the beginning of Section (3.4), with N1 and N2 subintervals for

[0, K] and [K, Sb], respectively. Second, we decide to employ the geometric

partition for the interval [Sb, S∞] with N3 subintervals hN2+N1+1,

hN2+N1+2,..., hN3+N2+N1 followed by the similar geometric partition used for

[K, Sb] but now the geometric ratio r3 is determined by the equation

hN2+N1+1 = r3
N3−1hN3+N2+N1 = h

1+γ
2

N3+N2+N1
. Our discrete space

V b
h ∈ H1

0 ([0, Sb]) now becomes V ∞h ∈ H1
0 ([0, S∞]).

The reason we choose h
max( 1

2
, 1+γ

2
)

N3+N2+N1
can be explained as follows: we pick u in

equation (22) as a function that will decay quickly when s →∞, such as
u = 1

sc
for some parameters c. Let ϕ = u, we want to �nd the best constant

c such that each of the following integral in equation (22) converges:

(α
∂ϕ

∂s
,
∂ϕ

∂s
) =
−c(c+ 1)

2

∫ ∞
0

s2γ−2cds =
−c(c+ 1)

2

s2γ−2c+1

2γ − 2c
|∞0

converges only when c ≥ 1 + γ

2

(β
∂ϕ

∂s
, ϕ) =

∫ ∞
0

[(1 + γ)σ2
0s

2γ+1 − rs]
s2c+1

ds

= (1 + γ)σ2
0s

2(γ−c)+1 − rs−2c+1

−2c+ 1
|∞0

converges only when c ≥ max(
1

2
,

1 + γ

2
)
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(rϕ, ϕ) = r

∫ ∞
0

1

s2c
ds =

rs−2c+1

−2c+ 1
|∞0 ds converges only when c ≥ 1

2

Therefore, since γ > −1, we need to choose c = max(1+γ
2
, 1

2
) since the

convergence rate of our error will decay slower than h
max( 1

2
, 1+γ

2
)

N3+N2+N1
. Now we can

�nd the unique pair (r3, N3) in the same way used to �nd the pair (r1, N1),
and the formula is

(r3, N3) =

(
S∞ − Sb − hN3+N2+N1

S∞ − Sb − (hN3+N2+N1)
max( 1

2
, 1+γ

2
)
, (max(

1

2
,
1 + γ

2
)− 1)

log hN3+N2+N1

log r3

+ 1)

Combining the new geometric partition for [Sb, S∞] with the uniform parti-
tion or geometric partition for each of the subinterval [0, K] and [K, Sb], we
have four options to choose for discretizations in the S-direction.

We employ a non-equidistant partition only in the S-direction, since having
a mesh with an uniform parition in the T-direction gives the most accurate
numerical solutions, especially when the local volatility is su�ciently large
(≥ 0.7). Our purpose for discretizing the S-direction nonuniformly is to
increase the number of points near the point u(K, 0) and u(Sb, 1). This
method helps eliminate the errors when the underlying asset price is near
Sb. Therefore, this non-equidistant mesh gives a much better accuracy, even
for the cases when the local volatility is very high (that is, when σ ≥ 0.8).
However, the trade-o� is that this mesh requires a large number of points, and
the required time of calculation increases proportionally for higher �neness
of the mesh (increase value of either N1,N2 or N3).

3 Numerical results

A feature of the FEM method when applying it to solve the PDE representa-
tion of option pricing is the knowledge about the development of the option
value function for each time step, which is de�nied as the complete term
structure of the option. We can easily visualize the whole term structure of
the European put option as in Figure 3 below. At the present time, t = 0,
which is the �front edge� of the surface, one can clearly see the shape of the
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non-smooth payo� function u(s, 0) = (K − s)+. By solving the functions
u(s, t) for each s over the life-time of the option (that is, for each t runs
from 0 to 1), the complete term structure is obtained. Towards the matu-
rity time, t = 1, after Nt time steps, we approach the function u(s, 1). Of
the whole option surface, the special points of interest are near the points
u(K, 0) and u(Sb, 1) in which the errors of our numerical solutions were
mainly distributed.

Figure 3: Values of a put option with Sb = 100, K = 50, σ = 0.5, r = 0.03,
Nt = 200, Ns = 1000, S∞ = 1500, N3 = 1000, geometric partition in S and
uniform partition in T

We set our parameters as follows: K = 50, γ = 0, Sb = 2K, r = 0.03,
Nt = 200, Ns = 1000,T = 1, S∞ = 30K, N3 = 1000. We will run our
numerical schemes in two cases with σ = 0.4 and σ = 0.8. For each of these
cases, we use either the uniform partitions for the interval [0, Sb] or extend
the mesh by adding another interval [Sb, S∞] and for the new interval [0, S∞],
the geometric partition described in Section 4.5 is applied for [Sb, S∞] and
the same uniform partition for [0, Sb]. In addition, for the T-direction, we
employ the uniform partition in [0, T ]. For the two mesh re�nements, de�ne
a domain D = [0, T ] × [0, Sb] and compute the L2(D)- norm and L∞(D)-
norm errors (see Table 1) when comparing our numerical solutions to the
exact solutions f(s, t) given the Black-Scholes formula, and compute the
reduction factors of our errors in each case. The formulas for the L2(D)-
norm and L∞(D)- norm errrors are,

L2(D)-norm error =

[

i=Ns−1, j=Nt−1∑
i, j=0

(
f(si, tj) + f(si+1, tj) + f(si, tj+1) + f(si+1, tj+1)

4

44



−u(si, tj) + u(si+1, tj) + u(si, tj+1) + u(si+1, tj+1)

4
)2

×(tj+1 − tj)(si+1 − si)]
1
2 (73)

L∞(D)-norm error = max1≤i≤Ns, 1≤j≤Nt |u(si, tj)− f(si, tj)| (74)

Based on the errors, we determine if adding the new interval [Sb, S∞] with
geometric partition improves the accuracy of our numerical solutions. Figures
4 - 7 are the graphs of the errors for each mesh re�nement when σ = 0.4 and
σ = 0.8. The exact solutions f(s, t) for these two cases given by the Black-
Scholes formula are also shown in Figures 8 - 9. Since the investor mainly
concerns about the errors of our numerical solutions at time t = 1, de�ne a
domain Ω = [T ]× [0, Sb], the L

2(Ω)- norm and L∞(Ω)- norm of those errors
and the reduction factors are also shown in Table 2 for cases when σ = 0.4.
The formulas for the errors in L2(Ω)- norm and L∞(Ω)- norm at time t = 1
are:

L2(Ω)-norm error at time 1 =

[
i=Ns−1∑
i=0

(
f(si+1, tNt) + f(si, tNt)− u(si+1, tNt)− u(si, tNt)

2
)2

×(si+1 − si)]
1
2 (75)

L∞(Ω)-norm error at time 1 = max1≤i≤Ns|u(si, tNt)− f(si, tNt)| (76)
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Figure 4: Errors by uniform
partition in [0, 100] and in T
with K = 50, γ = 0, Sb =
100, r = 0.03, Nt = 200, Ns =
1000, T = 1, S∞ = 1500,
N3 = 1000, σ = 0.4

Figure 5: Errors by uniform parti-
tion in [0, 100] and geometric parti-
tion in [100, 1500], uniform partition
in T with K = 50, γ = 0, Sb = 100,
r = 0.03, Nt = 200, Ns = 1000,
T = 1, S∞ = 1500, N3 = 1000,
σ = 0.4

Figure 6: Errors by uniform
partition in [0, 100] and in T
with K = 50, γ = 0, Sb =
100, r = 0.03, Nt = 200,
Ns = 1000, T = 1, S∞ = 1500,
N3 = 1000, σ = 0.8

Figure 7: Errors by uniform parti-
tion in [0, 100] and geometric parti-
tion in [100, 1500], uniform partition
in T with K = 50, γ = 0, Sb = 100,
r = 0.03, Nt = 200, Ns = 1000,
T = 1, S∞ = 1500, N3 = 1000,
σ = 0.8
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Figure 8: Solutions by Black-
Scholes formula with K = 50,
γ = 0, r = 0.03, T = 1,
σ = 0.4, Nt = 200, Ns = 1000,
S∞ = 1500, N3 = 1000

Figure 9: Solutions by Black-Scholes
formula with K = 50, γ = 0, r =
0.03, T = 1, σ = 0.8, Nt = 200, Ns =
1000,S∞ = 1500, N3 = 1000

Type of partition L2(D)-norm error (σ = 0.4) L2(D)-norm error (σ = 0.8) L∞(D)-norm error (σ = 0.4) L∞(D)-norm error (σ = 0.8)
Uniform partition in [0,100] 0.2182 0.2725 0.4091 0.8259

Geometric partition in [100,1500] 0.0515 0.0537 0.2016 0.2826

Reduction Factor 4.24 5.07 2.03 3.02

Table 1: L2(D)- norm and L∞(D)- norm errors when σ = 0.4 and σ = 0.8
with K = 50, γ = 0, Sb = 100, r = 0.03, Nt = 200, Ns = 1000, T = 1,
S∞ = 30K, N3 = 1000

Type of partition L2(Ω)-norm error (σ = 0.4) L2(Ω)-norm error (σ = 0.8) L∞(Ω)-norm error (σ = 0.4) L∞(Ω)-norm error (σ = 0.8)
Uniform partition in [0,100] 0.1455 0.1696 0.3942 0.7827

Geometric partition in [100,1500] 0.0078 0.0051 0.028 0.0474

Reduction Factor 18.65 33.25 14.08 16.51

Table 2: L2(Ω)- norm and L∞(Ω)- norm errors when σ = 0.4 and σ = 0.8
with K = 50, γ = 0, Sb = 100, r = 0.03, Nt = 200, Ns = 1000, S∞ = 30K,
N3 = 1000

Looking at Figures 4− 7 and Table 1 above, we see that by adding the new
interval [Sb, S∞] with geometric partition in the S- direction, the major errors
near the point u(Sb, 1) are eliminated, although the errors near the point
u(K, 0) slightly increase. However, by using an extended mesh re�nement
on [0, S∞], the errors in L2(D)- norm and L∞(D)- norm are reduced by a
factor larger than 2 compared to the errors obtained when using only the
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mesh [0, Sb]. The reduction factors of those errors at time t = 1 are quite
signi�cant (greater than 14, see Table 2), which shows the advantage of an
extended mesh re�nement by eliminating most of the errors at that time. In
general, this extended mesh re�nement indeed helps improve the accuracy of
our numerical solutons. Therefore, from this point, we will always include
the new interval [Sb, S∞] with geometric partition when doing the re�nement
in the S- direction.

We also run our numerical schemes when Sb = 1.2K (that is, using less
number of points in the S-direction), but the result is not su�ciently good.

With the same set of parameters K = 50, γ = 0, Sb = 2K, r = 0.03,
σ = 0.4, S∞ = 30K, N3 = 1000, we now compare the errors in L2(D)-
norm and L∞(D)- norm (formulas (73) and (74)) when using di�erent parti-
tions for the intervals [0, Sb] and [0, T ] with di�erent number of subintervals
Ns and Nt to determine which partition best improves the accuracy of our
numerical solutions. Note that we always use the geometric partition for
[Sb, S∞] because it helps eliminate the major errors near the points u(Sb, 1).
There are exactly four possibilities of partitions in [0, Sb] × [0, T ]: geomet-
ric partition for [0, Sb] and uniform partition for [0, T ], uniform partition
for [0, Sb] and geometric partition for [0, T ], uniform partition for [0, Sb]
and uniform partition for [0, t], geometric partition for [0, Sb] and geometric
partition for [0, T ]. However, we tried our numerical schemes using uniform
partition for [0, Sb] and geometric partition for [0, T ] and got bad results. We
also computed the reduction factor of our errors in L2(D)- norm and L∞(D)-
norm for each of the other three re�nements to determine the approximated
convergence rate of our reduction factor. The complete details are shown in
Tables 3 - 5 below. Since the investor mainly concerns about the errors of
our numerical solutions at time t = 1, the L2(Ω)- norm and L∞(Ω)- norm of
our errors and the reduction factors are also shown in Tables 6 - 8 for cases
when σ = 0.4.

(Ns, Nt) Max hi=1,...,Ns , max 4tj=1,...,Nt Min hi=1,...,Ns , min 4tj=1,...,Nt L2(D)-norm error (σ = 0.4) L∞(D)-norm error (σ = 0.4) Reduction Factor in L2(D)-norm Reduction Factor in L∞(D)-norm
(2000,400) 0.05, 0.0025 0.05, 0.0025 0.028 0.1376
(1000,200) 0.1, 0.005 0.1, 0.005 0.0515 0.2106 1.84 1.53

(500,100) 0.2, 0.01 0.2, 0.01 0.0901 0.3053 1.75 1.45
(250,50) 0.4, 0.02 0.4, 0.02 0.1462 0.4030 1.62 1.32

Table 3: L2(D)- norm and L∞(D)- norm errors for uniform partitions in both
S − T directions with K = 50, γ = 0, Sb = 100, r = 0.03, σ = 0.4, T = 1,
S∞ = 1500, N3 = 1000
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(Ns, Nt) Max hi=1,...,Ns , max 4tj=1,...,Nt Min hi=1,...,Ns , min 4tj=1,...,Nt L2(D)-norm error (σ = 0.4) L∞(D)-norm error (σ = 0.4) Reduction Factor in L2(D)-norm Reduction Factor in L∞(D)-norm
(2000,400) 0.1090, 0.0025 0.0094, 0.0025 0.0016 0.0688
(1000,200) 0.1830, 0.005 0.0231, 0.005 0.0058 0.1397 3.63 2.03

(500,100) 0.35, 0.01 0.0515, 0.01 0.0149 0.1948 2.57 1.39
(250,50) 0.4527, 0.02 0.1544, 0.02 0.0185 0.2632 1.24 1.35

Table 4: L2(D)- norm and L∞(D)- norm errors for geometric partition in S,
uniform partition in T with K = 50, γ = 0, Sb = 100, r = 0.03, σ = 0.4,
T = 1, S∞ = 1500, N3 = 1000

(Ns, Nt) Max hi=1,...,Ns , max 4tj=1,...,Nt Min hi=1,...,Ns , min 4tj=1,...,Nt L2(D)-norm error (σ = 0.4) L∞(D)-norm error (σ = 0.4) Reduction Factor in L2(D)-norm Reduction Factor in L∞(D)-norm
(2000,400) 0.1090, 0.0106 0.0094, 0.0000038 0.0029 0.0856
(1000,200) 0.2230, 0.0144 0.0231, 0.00009 0.0076 0.1413 2.62 1.65

(500,100) 0.35, 0.0228 0.0515, 0.00005 0.0172 0.1983 2.26 1.40
(250,50) 0.4527, 0.0416 0.1544, 0.0006 0.0289 0.2747 1.68 1.39

Table 5: L2(D)- norm and L∞(D)- norm errors for geometric partition in
both S-T directions with K = 50, γ = 0, Sb = 100, r = 0.03, σ = 0.4,
T = 1, S∞ = 1500, N3 = 1000

(Ns, Nt) L2(Ω)-norm error (σ = 0.4) L∞(Ω)-norm error (σ = 0.4) Reduction Factor in L2(Ω)-norm Reduction Factor in L∞(Ω)-norm
(2000,400) 0.0033 0.0195
(1000,200) 0.0078 0.028 2.36 1.43

(500,100) 0.0174 0.039 2.23 1.39
(250,50) 0.0341 0.048 1.96 1.33

Table 6: L2(Ω)- norm and L∞(Ω)- norm errors for uniform partition in both
S − T directions with K = 50, γ = 0, Sb = 100, r = 0.03, σ = 0.4, T = 1,
S∞ = 1500, N3 = 1000

(Ns, Nt) L2(Ω)-norm error (σ = 0.4) L∞(Ω)-norm error at t = 1 (σ = 0.4) Reduction Factor in L2(Ω)-norm Reduction Factor in L∞(Ω)-norm
(2000,400) 0.00038 0.0014
(1000,200) 0.0012 0.0031 3.16 2.24

(500,100) 0.0043 0.0045 3.07 1.45
(250,50) 0.0127 0.0067 2.95 1.49

Table 7: L2(Ω)- norm and L∞(Ω)- norm errors for geometric partition in S,
uniform partition in T with K = 50, γ = 0, Sb = 100, r = 0.03, σ = 0.4,
S∞ = 1500, N3 = 1000
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(Ns, Nt) L2(Ω)-norm error (σ = 0.4) L∞(Ω)-norm error (σ = 0.4) Reduction Factor in L2(Ω)-norm Reduction Factor in L∞(Ω)-norm
(2000,400) 0.00067 0.0018
(1000,200) 0.0019 0.0052 2.83 2.89

(500,100) 0.0052 0.0145 2.88 2.79
(250,50) 0.0143 0.0288 2.76 1.81

Table 8: L2(Ω)- norm and L∞(Ω)- norm errors for geometric partition in
both S-T directions with K = 50, γ = 0, Sb = 100, r = 0.03, σ = 0.4,
S∞ = 1500, N3 = 1000

From Tables 3 - 8, we �nd that for su�ciently large values of Ns and Nt,
the geometric partition in S and uniform partition in T for the intervals
[0, Sb] and [0, T ] gives the smallest L2(D)- norm and L∞(D)- norm errors
and the highest reduction factors in both L2(D)-norm and L∞(D)-norm.
The approximated rate of convergence for each type of partition, in the order
above, is: 1.84, 3.63, 2.62 in L2(D)-norm and 1.53, 2.53, 1.65 in L∞(D)-norm.
At time t = 1, such rate of convergence in the same order is: 2.36, 3.16, 2.83
in L2(Ω)-norm and 1.43, 2.24, 2.89 in L∞(Ω)-norm. Due to these results, we
determine to use the geometric partition in S and uniform partition in T for
the interval [0, Sb] for all the following tests, since out of the four partitions,
that partition improves the accuracy of our solutions the most.

Although the geometric partition in S, uniform partition in T for the interval
[0, Sb]×[0, T ] and geometric partition for [Sb, S∞] is a good choice, we realize
that for su�ciently large σ (that is, σ ≥ 0.7), our numerical schemes can
reduce the errors near the point u(K, 0) by applying the Galerkin Least
Square (GLS) stabilization method presented in Section 4.4. With the same
set of parameters K = 50,γ = 0, Sb = 2K, r = 0.03,Nt = 200, Ns = 1000,
S∞ = 30K, N3 = 1000, we run our numerical schemes with GLS and the
classical FEM for wo cases when σ = 0.4 (su�ciently small value) and σ =
0.8 (su�ciently large value). The errors of our numerical solutions are shown
in Figure 10 - 14. We also compute the L2(D)- norm and L∞(D)- norm errors
using formulas (73) and (74) to see the advantage of applying the GLS (see
Table 9). The errors in L2(Ω)-norm and L∞(Ω)-norm at time t = 1, which
was the main concern of investors, are also shown in Table 10 for two cases
of σ = 0.4 and 0.8.
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Figure 10: Errors with GLS
when K = 50, γ = 0, Sb =
100, r = 0.03, Nt = 200, Ns =
1000, S∞ = 1500, N3 = 1000,
σ = 0.4, geometric partition in
S and uniform partition in T

Figure 11: Errors with classical FEM
when K = 50, γ = 0, Sb = 100,
r = 0.03, Nt = 200, Ns = 1000,
S∞ = 1500, N3 = 1000, σ = 0.4, geo-
metric partition in S and uniform par-
tition in T

Figure 12: Errors with GLS
when K = 50, γ = 0, Sb =
100, r = 0.03, Nt = 200, Ns =
1000, S∞ = 1500, N3 = 1000,
σ = 0.8, geometric partition in
S and uniform partition in T

Figure 13: Errors with classical FEM
when K = 50, γ = 0, Sb = 100,
r = 0.03, Nt = 200, Ns = 1000,
S∞ = 1500, N3 = 1000, σ = 0.8, geo-
metric partition in S and uniform par-
tition in T

Numerical scheme L2(D)-norm error (σ = 0.4) L∞(D)-norm error (σ = 0.4) L2(D)-norm error (σ = 0.8) L∞(D)-norm error (σ = 0.8)
Classical FEM 0.0058 0.1197 0.0162 0.2634

GLS 0.0021 0.0644 0.0083 0.1488

Reduction factor 2.76 1.86 1.95 1.77

Table 9: L2(D)- norm and L∞(D)- norm errors for σ = 0.4 and σ = 0.8
with K = 50, γ = 0, Sb = 100, r = 0.03, Nt = 200, Ns = 1000, T = 1,
S∞ = 1500, N3 = 1000, geometric partition in S and uniform partition in T
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Numerical scheme L2(Ω)-norm error(σ = 0.4) L∞(Ω)-norm error (σ = 0.4) L2(Ω)-norm error (σ = 0.8) L∞(Ω)-norm error (σ = 0.8)
Classical FEM 0.0012 0.0031 0.0085 0.0157

GLS 0.0005 0.0017 0.0044 0.0096

Reduction factor 2.4 1.82 1.92 1.64

Table 10: L2(Ω)- norm and L∞(Ω)- norm errors for σ = 0.4 and σ = 0.8
with K = 50, γ = 0, Sb = 100, r = 0.03, Nt = 200, Ns = 1000, S∞ = 1500,
N3 = 1000, geometric partition in S and uniform partition in T

As we can see from Table 9 and 10, the GLS did a great job in reducing the
errors near the singular point u(K, 0). The reduction factors of our L2(D)-
norm and L∞(D)- norm errors are almost as large as 2 and 1.8 even when
σ is su�cient large (0.8), which is demonstrated in the real-world situations
in which the option prices are highly volatile. At time t = 1, the reduction
factors in L2(Ω)- norm and L∞(Ω)- norm are a little bit smaller, 1.92 and
1.64. The feature of improving the accuracy of our numerical solutions even
when σ is large is exactly the advantage of adding the GLS into our numerical
schemes.

Finally, we consider applying the GLS on the same mesh re�nements used
in Figures 10 and 12 with the set of parameters σ0 = 0.3, K = 50, Sb = 2K,
Nt = 200, Ns = 1000, r = 0.03, S∞ = 30K, N3 = 1000 to run our numerical
schemes in three scenarios: γ is negative (γ = −0.03), γ is positive (γ = 0.07)
and γ = 0. We then obtain the numerical solutions for these three cases.
Since there are no formulas to compute the exact solutions for γ 6= 0, we
expect that our numerical solutions are approximately close to the correct
solution, thus we compare our numerical solutions to those given by the
Black-Scholes formula when γ = 0.
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Figure 14: Numerical solutions
in the case γ = −0.03, S∞ =
1500, N3 = 1000, σ0 = 0.3,
K = 50, Sb = 100, Nt = 200,
Ns = 1000, r = 0.03, T = 1,
geometric partition in S and
uniform partition in T

Figure 15: Solutions by Black-Scholes
in the case γ = 0, σ = 0.3, r = 0.03,
T = 1, K = 50, Sb = 100, Nt = 200,
Ns = 1000, S∞ = 1500, N3 = 1000

Figure 16: Numerical solutions
in the case γ = 0.07, S∞ =
1500, N3 = 1000, σ0 = 0.3,
K = 50, Sb = 2K, Nt = 200,
Ns = 1000, r = 0.03, T = 1,
geometric partition in S and
uniform partition in T

Figure 17: Solutions by Black-Scholes
in the case γ = 0, σ = 0.3, r = 0.03,
T = 1, K = 50, Sb = 100, Nt = 200,
Ns = 1000, S∞ = 1500, N3 = 1000
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Figure 18: Numerical solutions
in the case γ = 0, S∞ = 1500,
N3 = 1000, σ0 = 0.3, K = 50,
Sb = 2K, Nt = 200, Ns =
1000, r = 0.03, T = 1, geo-
metric partition in S and uni-
form partition in T

Figure 19: Solutions by Black-Scholes
in the case γ = 0, σ = 0.3, r = 0.03,
T = 1, K = 50, Sb = 100, Nt = 200,
Ns = 1000, S∞ = 1500, N3 = 1000

Figure 20: Numerical solutions
in the case γ = 0.07, S∞ =
1500, N3 = 2500, σ0 = 0.3,
K = 50, Sb = 100, Nt = 200,
Ns = 1000, r = 0.03, T = 1,
geometric partition in S and
uniform partition in T

Figure 21: Solutions by Black-Scholes
in the case γ = 0, σ = 0.3, r = 0.03,
T = 1, K = 50, Sb = 100, Nt = 200,
Ns = 1000, S∞ = 1500, N3 = 1000

Comparing the two pairs of �gures side by side (Figures 14 -15 and Figures
18-19), we �nd that for the case when γ= −0.3 or γ = 0, the graph of
our numerical solutions are very much similar to that of the exact solutions
given by Black-Scholes formula. The L2(D)- norm and L∞(D)- norm errors,
which were computed using formulas (73) - (74), when γ = −0.3, 0, 0.07
are 0.075, 0.0035, 1.4915 and 0.1461, 0.0019,1.2392, respectively. However,
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when γ = 0.07, the graph of our numerical solutions are not similar to that
of the exact solutions given by the Black-Scholes formula (see Figures 16
- 17), especially at the points near (100, 1), and the errors in L2(D)-norm
and L∞(D)-norm are large (greater than 1). In such case, we improve the
accuracy of our solutions by choosing N3 to be a large number, such as
N3 = 2500, and obtain the graph of our numerical solutions very similar
to that of the exact solutions (see Figures 20-21). Therefore, our numerical
scheme may give a good approximation of the exact solutions for cases when
−0.3 ≤ γ ≤ 0. Unfortunately, when γ is su�ciently positive (γ ≥ 0.07), we
need to increse signi�cantly the number of subintervals (N3) in the extended
interval [Sb, S∞] to achieve a su�ciently good approximation.

4 Conclusions

In this paper, we showed how to use the FEM to compute the numerical
solutions of the PDE representation of an European put option pricing, in-
cluding cases when the local volatility σ is not constant. We described such
local volatility through the classic CEV model presented in Section 3. We
also employ di�erent mesh re�nements, which help improve the accuracy of
our numerical solutions. The most successful mesh re�nement is an extended
mesh [0, S∞]× [0, T ] (S∞is chosen to be a very large number, 30K) with ge-
ometric partition in the S direction and uniform partition in the T-direction.
We computed the errors in L2(D)- norm and L∞(D)- norm and showed the
high reduction factor of our errors when using such mesh re�nement with
large number of points in both S-T directions. Since the investor mainly
concerns about the errors at time t = 1, we also computed our errors in
L2(Ω)- norm and L∞(Ω)- norm and obtained very good results. In addition,
for cases when the option prices are highly volatile, which results in a large
value of the local volatility σ(≥ 0.7), we apply the GLS stabilization method
on the same mesh re�nement and achieve a su�ciently good approximation
to the exact solutions. For the cases with variable volatility σ (that is, γ 6= 0),
which implies there are no formulas to compute the exact solutions, the GLS
stabilization method is applied to compute the approximated prices of an
European put option. Finally, though di�erent experiments, we �nd the
GLS combined together with our numerical scheme gives an good numerical
solutions without using very large values of N3 when −0.3 ≤ γ ≤ 0, while
when γ is highly positive, a similar result is achieved only by choosing the
number of subintervals in [Sb, S∞] to be su�ciently large (for example, we
choose N3 = 2500 to obtain a good result).

For future developments, we would like to improve our numerical scheme
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to obtain a more accurate numerical solutions for the cases when γ is su�-
ciently large without increasing the number of subintervals in [Sb, S∞]. The
fast and precise evaluation for European style option with variable and large
local volatility, where no analytical solutions is known, still bear great op-
portunities for future numerical research.
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