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Abstract

For the evaluation of European options with constant local volatil-
ity, a general closed-form analytical solution was given by the classic
Black-Scholes formula. In practice, such local volatility may vary, and
in those situations, the Black-Scholes formula does not work efficiently.
A common way to deal with such problem is to apply numerical meth-
ods, particularly the Finite Element Method (FEM). Furthermore, the
extensive use of Galerkin Least Square (GLS) stabilization method
combined with adaptive mesh refinements is explored for bad scenar-
ios having large local volatility. Such local volatility was described by
the Constant Elasticity of Variance (CEV) model. We implement our
numerical schemes in Matlab and observe the accurracy of our numer-
ical solutions. Finally, we take advantage of better ways to discretize
our domain with geometric partition to achieve high accuracy despite
of large local volatility.

Keywords: Option, Black-Scholes equation, Finite Element Method,
Hat function, Hilbert space.
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1 Introduction

In our financial world nowadays, option is a very important financial in-
strument used for hedging, arbitrage-free investing and highly speculative
trading by giving the buyer the right to buy (call) or sell (put) a security
or other financial asset at an agreed-upon price (the strike price) during a
certain period of time or on a specic date (exercise date). The three most
popular types of options are FEuropean, American, and Asian options. For
this project, we only concern about the pricing of European option. Pricing
this type of option requires the use of Black-Scholes model, which assumes
the price of a risky asset (underlying asset) is a solution to the stochastic

differential equation:
ds = S(f{dl?—i— aiWs) (1)

where W; is a standard Brownian motion, o7 is a volatility, 7; is an instanta-

neous interest rate, and s is a price of a risky asset at time t.

1.1 European Option

When 6; = 64(s, t) and 7; = 7(¢) (0 < £ < T) are continuous functions such
that s — 55 (s, t) is a Lipschitz regular function of s with a Lipschitz constant
independent of ¢, and is bounded from above and away from 0 uniformly in
t, the Black-scholes formula for an European call and put option at time t
are following (note that Fj is the filtration and sp(f) = se™(T=9):

Cls, £) = E*(e ) " (s0(8) - K), | Fy)

P(s, ) = E*(e 70 (K — sp()), | F) (2)

We can also rewrite equation (1) in the form of a partial differential equation
(PDE) as follows




K —s if K
with the boundary conditions P(s, T') = _S o= and P(0, t) =
0 ifs>K

Ker(T—t),

1.2 Black-Scholes Formula

When (s, t) = o and 7(t) = r are constants, by using the transformation
t =T —t, o =logs, and ¢(x, t) = P (e®, T —t), equation (3) becomes the
Black-Scholes equation

% _ 302% —(r - 0;)% +rg—0as (xt)e Rx[0T] (@)
¢z, 0) = (K — )+ (5)

Oz, 1) ~ Ke™ as o—-o00 (6)

o(z, 1) = 0 as x— o0 (7)

The advantage of equation (4) is that it has constant coefficients, and by set-
0'2 T
ting ¢(x, t) = VU(z, t) e_(r+7b2)t+(%_?)x, we obtain a following one-dimensional
heat equation
ov  o?0*

E_gw:()as(az,t)é R x[0,T]

U(z, 0) = (K7 T52)7 — eatimey
U(z,t) =0 as x— 00

Solving the heat equation above with the given boundary conditions, we
obtain the explicit Black-Scholes formula for the price of vanilla European
put (or call option by using the same transformation but with some

modifications to the boundary conditions (5) — (7))



C(s, i) =  sN(dy) — Ke " TN (dy)

P(s, 1) = —sN(—dy)+ Ke "T-DN(—dy) (8)

2
where N(d) = \/%Tr fio e 2 dy, K is the exercise price or strike price of a call

s a2y =
or put option, d; = log(?”i;;—"ﬂ)(T Y and dy =dy —oVT —1.
o —1

~ og(< T 5 () dr+(F L —
Remark 1.2. If 7(¢) is not a constant, d; = tog (o) i ™ )dTJrE 5T and
o —t

dy is the same as above

1.3 Constant Elasticity of Variance (CEV) Model

Although pricing derivatives under the assumption of constant volatility, as
in the Black-Scholes model (equation (3) with constant o and r) for an Eu-
ropean put option pricing, is well-known to give results which cannot be
reconciled with market observations, such problem did not widely manifest
themselves until the 1987 market crash. After this event, many stochastic
volatility models, such as Heston model, Stochastic Alpha-Beta- Rho model,
were introduced as ideal approaches to resolve a shortcoming of the Black-
Scholes model. In particular, since the Black-Scholes model assumes that the
underlying volatility is constant over the life of the derivative, and unaffected
by changes in the price level of the underlying security, such model cannot
explain long-observed features of the volatility smile and skew, which indi-
cate that implied, or local, volatility does tend to vary with respect to the
strike price and expiry time. By assuming that the volatility of the underly-
ing price is a stochastic process rather than a constant, it becomes possible
to model prices of the derivatives more accurately.

One of the most popular stochastic volatility models, which is widely used
in practice, is the Constant Elasticity of Variance (CEV) model. It was
first proposed by Cox & Ross (see [4]) as an alternative to the Black-Scholes
model of underlying asset price movements. The CEV model describes the
following relationship between the volatility and price,

ds = pusdt + oos"dWs

where 0g, v are constant parameters satisfying op > 0 and v > —1, W; is a
standard Brownian motion, s is the price of an underlying asset at time £ and
1 is the expected return. The term 0(s” denotes an instantaneous, or local,
volatility of our option. We use the Finite Element method introduced in



Section (2) to solve numerically the following PDE, given the two boundary
conditions, of an European put option whose local volatility is (s, t) = 0¢s?,

Ou(s, t)  o2s*T* 9%u (s, t) ou (s, t)

5 T 3 52 5 h +ru(s, t) =0 9)
u(0,t) = Ke " (10)
u(s, 0) = K—'s ifs< K (1)

0 ifs>K

1.4 Remarks about the Black-Scholes equation

On the other hand, when (s, t) and 7(f) are not constants, since t = T — 1,
we let u(s, t) = P(s, T —1t),0(s,t) =a(s, T —t) and r(t) = 7#(T —1).
Assume that for each time ¢, define ¢(t) = ¢(T — t) as the dividend yield,
and the underlying asset pays out a dividend ¢(t)sdt in dt, equation (3)
becomes (note that s > 0 and ¢ € [0, TY)

Ou(s, t)  o?(s, t) s* 0%u(s, t) du(s, t)
ETE— 5~ () —alt)s —-
+r(t)u(s, t) =0 (12)

with the Cauchy data u(s, 0) = u°(s) where s € R, and u° is the payoff
function.

If ¢ is sufficently well-behaved, then equation (12) does not have any addi-
tional mathematical difficulties compared to equation (3). Thus, we assume
that ¢(t) = 0, which implies there are no discretely paid dividends. This
means the equation of an American vanilla call option is exactly the same as
that of an European one, which is equation (3).

The Cauchy problem (12) can then be proved, with additional conditions:

e The function (s, t) +— so(s, t) is Holder regular on R, x [0, T7.

10



e The function o(s, t) is bounded on Ry x[0, 7] and bounded below by
a positive constant.

e The function ¢ — r(¢) is bounded and Lipschitz continuous.

e The Cauchy data Py satisfies 0 < wo(s) < C(1 + s) for a given
constantC'.

then there exists an unique function u € C°(R, x [0, T]), C'-regular with re-
spect to t and C%-regular with respect to s, which is solution to the boundary-
value problem (12) and satisfies 0 < u(s, t) < C’(1+ s) for a given constant
.

1.5 Variational Formulation

Since our underlying asset does not pay any dividends, by letting g(s, t) =
C(s, T —t), we introduce the well-known put-call parity as follows

g(s,t) —u(s, t)=s5— Ke " (13)

We would like to solve the following equation to determine the
approximated price of an European vanilla put option with one underlying
asset for which the annual interest rate r(t) = r is constant and the local
volatility o (s, t) is variable, with the boundary conditions derived from the
put-call parity, equation (13), given the time to maturity ¢ = 1, and

g (0, t) =0 when s = 0.

Ou(s, t) o%(s, t)s?Pu(s,t) Ou (s, t)

_ _ = 14
o 5 s rs Ep +ru(s, t) =0 (14)
u(0,t) = Ke " (15)
K — if K
(s, 0) =4 " T F TS (16)
0 ifs>K

11



By defining the space V = {v € L*(R}): v% € L*(R,)},

C°([0,1]; L*(R,)) as the space of continuous function on[0, 1] with values in
L*(Ry), and L*(0,1;V) as the space of square integrable functions on(0, 1)
with values in V', we can write the variational formulation of the
Boundary-Value Problem(14) — (16) as follows

Weak Variational Problem. Find v € C°([0,1]; L2(R.)) N L?*(0,1;V)
such that % € L*(0,1; V'), where V' is a topological dual space of V/,
satisfying

s,
YoeV,  a(u, v) +/ vl ds = (17)
R, Ot

u(0,t) = Ke™"

(s, 0) K—-—s ifs< K
u(s, 0) = )
0 ifs>K

where a;(u, v) is called the bilinear form,

2 2
an(u, v) = [, TG0 ds

+r fR+ uv ds

+ Jr, (—=r+0%(s, t) + so (s, t) %2 (s, 1)) s2v ds

We now introduce the Finite Element Method (FEM) and apply this
method using Ritz-Galerkin approach, together with Crank-Nicolson
implicit scheme for different discretizations in the S-T directions (i.e,
different S-T-lattices) to find the approximated prices of an European put
option with constant or variable local volatility. Such problem is equivalent
to find the numerical solution to the weak variational problem (equation

(17)). We then compare our numerical solutions to the exact solutions

12



given by the classic Black-scholes formula to measure the errors of our
numerical scheme in L2 norm and L*- norm. We compare the errors to see
which mesh refinement gives the most accurate numerical solutions (that is,
the closest one to the exact solution). Finally, for an European put option
with variable local volatility in which the Black-Scholes formula is not a
reliable tool, we use FEM combining with the most efficient mesh
refinements determined from previous experiments to obtain the
approximated prices for each time ¢ and to understand the behavior of the

solution when we consider different values of o.

2 The Finite Element Method

Compared to the Finite Differences Method (FDM) whose lattice is basically
rectangular and adaption to non-trivial geometric domain is difficult, the

FEM is far more flexible due to the following typical properties:

e Division of the domain into simple geometric subdomains, such as rect-
angles (for 1D domain), triangles and/or quadrilaterals (for 2D do-

main), or cubes (for 3D domain)

e Setup of test-functions (continuous piecewise polynomials) on subdo-

mains

e Global assembling of test functions

FEM can be applied to the variational formulation of a PDE, such as equa-
tion (17), or the variational inequality, which is often derived from the free-

boundary conditions of American option.

13



2.1 Subdivision of the Domain

Let €2 C R denote the domain. We want to find a partition P of €2, which
consists of dividing the two intervals in S and T directions,[0, S| and [0, T,
into Ny and N; subintervals I'; = [s;_1, s;] and T = [tx_1, tx] such that
hi = s; — s;_1 and Aty = ty — ty_1, respectively (i = 1,2,..., N, and k =
1,2,...,N;). We can either use an equidistant or nonequidistant partition for
the S and T direction. Figure 1 gives an example for a S — T-lattice with

uniform partitions in both S and T" directions.

L |

-1

Si—1 5 Si+1

Figure 1: Partition of (2 into rectangle S — T-lattice

We introduce the following definition for an uniform and geometric parition

on the interval [0, Sy, also defined as the S-direction.

e Partition of the interval [0, S;] into subintervals I'; = [s;_1, s;], 1 <
t < Ngsuch that 0 = sp < 517 < -+ < sy, = Sp and hy = hy =
... = hy,. Let I'y = max;—; . n,I';, and the mesh I" of [0, S;] be the set
{I'1,Tq,...,T'n.}. Realistically, we will assume that the strike price K
of our put option coincides with some nodes of I', which means there
exists z such that s, = K. This partition is defined as the “uniform

partition” in the s-direction.

14



e Partition of the interval [0, Sy] into two intervals [0, K] and [K, Sp).
Each of these intervals is partitioned as follows: we divide the intervals
[0, K] and [K, Sp] into N; and N, subintervals, I'; = [s;_1, s;] and
Fj = [Sj—la Sj] (1 S 1 S Nl, N1 +1 S ] S N1 +N2>, such that

4

O=5<s <---< SNy = K< - < SNy = Sb, th :T{Vl_lhlz hf
4

and hy,+1 = réVQ_thHNQ = hi,on, for 0 <rp,m <1 (the reason for

4 4
the choice h{ and hj; , 5, is because when taking a small step in the
S-direction, and plotting the Lo-norm errors with respect to different
number of timesteps in the T-direction, the convergence order is less

3 3
than 2, and in fact, the errors decay slower than h{ and hy 5, ) for
0 S T1, T2 S 1.

We now show that if h; is given, the values of r; and N; are uniquely
determined (same arguments for finding ro and N» in the interval [K, Sy)).

Notice that since h;—;o . n, follows a geometric series in the interval
_.MN 4
0, K|, hy + hyry + .. + hyr M7 = % = K. Since " "'hy= h}, we

4
hl—hf 1
1—71

= K. Solving for ry, we get r; = L= Furthermore, since

K—h3

obtain

1loghy
3 logry

1
rmt =3 solving for N gives Ny = + 1. Therefore, given the

value of hq, there exists an unique pair

K —hy llogh
(r, Ny) = (—, 572 +1)
K —h3 2'09n

satisfying all the given restriction. Similarly, an unique pair
Sy — K — hnyin, 1loghyiin,

1% "3 logrsy
Sb K hN1+N2

(ra, N2) = ( +1)

exists for the interval [K, Sp].

Finally, let I'y = maxz;—1__n,+n,1i, and the mesh I" of [0, Sp] as the set
{T'1,Ts, ...,y i, }- Realistically, we will assume that the strike price K of
our put option coincides with some nodes of I', which means there exists Ny
such that sy, = K. This partition is defined as a “geometric partition” in the
s-direction. Our main purpose for discretizing the s-direction in this way is
to increase significantly the number of points s; near K where the singularity

occurs, so that the accuracy of our numerical solutions is increased.
For the accuracy conditions of our numerical schemes, the similar partitions
8

are used for the interval [0, 7. Specifically, we will choose (At;)s for the

same reasons used to choose h.

15



2.2 The Ritz - Galerkin Approach

For numerical computation, Ritz and Galerkin suggested to treat the vari-
ational problem on a finitely-dimensional Hilbert subspace V? C H}(the
Hilbert space of functions with square-integrable value and derivatives in 2
with zero value on the boundary 9Q). V) is called trial space. Therefore,
we consider the discrete variational problem to find u, € V), which is the

solution of

a(up(s), vy(s)) = /Qf(s)vh(s)ds for all v, € V¥ (18)

where [, f(s)un(s)ds = (f, va) and a (un(s), vy(s)) is a bilinear form stated
in the weak variational problem. Let ¢1, 2, ..., ¢} be a basis of V), with
k = dim (V}?). Then the u, in (18) can be interpolated by the basis

elements with corresponding weights ¢; € R in the following way:

k
un =Y unp; (19)
j=1

By means of the Finite Element method, the ¢; are call basis or test
functions, which we will use later on as piecewise well-definied polynomials.
The representation of u; as a finite sum of weighted test functions, in fact,
gives the name “Finite Element Method.” Using (19), we can rewrite the

discrete variational problem (18) as:

Find a u, € V}? with

a(un, vp) = (fio) Yo eV) =
a(un, ¢;) = (f, ) Vi=1,. k
a(zﬁzluw%%) = (f,e)Vi =1,k <

Zle ale;, pi)un; = (f,pi)) Vi =1,k <=

16



with A := (a (¢, %‘))m € R™k wy, = (up 1, ..., un )’ and
B = (f, ng)Z, 1= 1, ,k

Hence, the Ritz-Galerkin approach is equivalent to a linear system of
equations, and the computation of vector uy,, applied to equation (20),
gives an approximation for u. Due to its application to mechanics, A is
called the stiffness matrix. It is positive definite and symmetric for an
arbitrary basis ¢1, ..., ¢, which implies A is invertible. Note that for
certain choices of the basis, the matrix A is sparse, which means that only a
few elements (A); ; are non-zero. This would reduce the cost for the

computation of (20) significantly.

2.3 Finite Element Method applied to European Vanilla
Option

We now define the discrete space V) as follows to ensure that the boundary
condition u (s, 0) = 0 for s > K belongs to V),

Vi = {‘P(S) € C’0, S], ¢(Sy) =0 VseT, Q|5 18 aﬂine}

In the real world, the option value is dependent mainly on the underlying
asset price s whose local volatility varies based on the changes in the values
of s. Therefore, we consider the general case when the local volatility o,
which is a function of s and t, is described through the CEV model

o(s, t) = 0ps? for constant parameters oy > 0, v > —1 and s is the price of
an underlying asset at time ¢. We rewrite equation (14) in the following

2(147) 42
) N B=(1+7)oas® ™ —rs,

form where o« = 5

ou 0, Ou ou

17



Multiplying both sides by the test function o(s) € V), and by using inte-
gration by parts for the term fosb o(s) & (adh)ds = — OSb ag—zagf)ds (since
©(Sp) = 0) , equation (21) becomes

0 ou 0 0
(G @) + (@50, 500+ (852, @) + (ru. ) =0 (22)

where (-,-) is a broken L? inner product with respect to all partitions T; of
the interval [0, S)].

u
ot ’

space and time (dividing the interval [0, 1] into N; subintervals [tx, t;x_1], k =

Let u; denote 2%, and uf denote uy(+, t;). After discretizing equation (22) in

1,..., Ny with lengths Aty =t — tx—1) and rewriting up(s, tx) =

Zle up,i(t1)pi(s), where ¢; is the nodal basis of V¥, we obtain the fully
discrete variational problem with two boundary conditions:

Find uy(s, t) € V¥ such that

uy) = max(K — s, 0) for s is the price of the underlying asset
at time ¢t =0 (23)

uh(O, tk) == Keirtk (24)
and for 1 < k < N,

M (up(s, tr), @) + A(un(s, t), ) =0 Yo € VP and ¢, €[0,1]  (25)

where m (uﬁ, <p) is the inertial form of the mass matrix M,

m(un(s, tr), ©) = (un(s, t), ) (26)

and a(uf, ¢) is the Galerkin form of the stiffness matrix A,

B 81/2 Op 8ui &
a(un(s, te), ) = (0457 g) + ( s ©) + (ruy, ¢) (27)

Let (ozaalf, g—i) =abk, ( %Lf, o) = a>*, (ruf, p) = a>*, the equation (27)

can be rewritten as follows

18



a(un(s, ty), ¢) = abF 4+ a®F 4 o>k (28)

Given u) = maz(K — s,0), we can use either the Euler explicit/implicit

scheme or the second-order stable Crank-Nicolson scheme corresponding to

the values of 6 = 0, %, 1, respectively, to find uf for k = 1,2,..., N; from the

equation

Aitkm(uﬁ —ub o)+ a(fup + (1= 0)ui™t ) =0V pe VP (29)
In order to obtain the most accurate and stable numerical solutions for large
local volatility, we choose the second-order stable Crank-Nicolson scheme
(that is, & = 3). Now, for each finite element defined over the nodes (s;, s;),
the mass matrix M has its entries m; ; = (¢, ¢;), and let A be the stiffness
matrix defined by

ai,j=a(p;, o) =a; ;+a;;+a;, 0 <i, j <N,

E
By letting uf = (uf (so),...,uf (SN))T and u) = (49 (so),...,ud (sn))",
which is the boundary condition, we can rewrite equation (29) as follows

M (uf — ™)+ S (A A = 0

At At
= (M + T’“A)uz = (M - TkA)ui’l

We now choose the nodal basis ¢; to be the hat functions, which were defined
below over two consecutive nodes s;,s;_1 and s;, s;y1 .

Definition 1.2 (Hat Functions) With ¢ = 0,1,..., Ny, the hat functions
are

S — Si—1

%2J} (S) = h— Vs G(Sifl, Si)
pils) == Vs € (s, si1)
hita
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[P.j )] Pz Pa i e IP’:\'; i [F'-\'l

Figure 2: Setup of the hat functions

Note that the first and last element ¢y and ¢y, need to be cut off to fit into
the discretized domain, as shown in Figure 2. These hat functions ;
correspond to the nodes s; and are supported in [s;_1, s;+1]. When

i — j|> 1, the intersection of the support ¢; and ¢, has measure 0. This
implies the matrices M and A are tridiagonal. We now compute the actual

assembling of matrix M as follows: by definition, m; ; =(p;, ¢i), =0, N,

. S
with (@5, @) = [, @i ds.

The first element of M, mg o and my, n, just contains one of the two
summands of the equation (34), since it is defined by the cut boundary
finite element ¢y and ¢y,. The calculations for mg o and my,, v, are follows,

Sp 51 ) 51 )
mo, o :/ Popods :/ (0)°ds :/ 7 (s1—s)"ds
0 1

S0 S0
1 . I
= _S_h% (—81 -+ 30) = ? (30)

Sp SN )
My, N, = / YN, PN, ds = / (¢n,)ds
0 SNg—1

SNS 1 2
= 5 (sy, — Sn.—1)" ds
SNg—1

N5

1 h
= g (—sw, Fsw,)’ = (31)
N

20



The matrix M is symmetric, since both subdiagonals m; ;—; and m; ;41
have the following formulas for its entries

Sh Si+1 ]
My, i+1 = / Pir1pi ds = / 2 (S - si) (Si+1 - S) ds
0 Si

i+l
L sins® s sista
- hz?Jrl( 2 Si+18iS 3 5 )Si
— L (sin _ 571151 " Si157 B s_f’
hi \ 6 2 2 6
1 hi .
= o (501 — )% = 1 for i — 0,..., N,—1 (32)
il

1 s;8° s S;_18° s
B A e T N
1 (s sisia sisty s)
2\6 2 2 6
1 h; .
:6—h?(3i—si_1)3:E fori=1,..., Ny (33)

On the diagonal of M, the elements m; ; are

Sh S; 1 2
m; ; Z/ ©ip; ds Z/ <— (8—S¢—1)> ds
0 Si—1 hl
Sit1 1 2
+/ ( (SZ'+1 — S)) ds
s hiya

1 1
—(Sz' - Si—1)3 - —(—(Si 1 Si)?’)
3h2 3h%,, -

%
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~ hit+hig

3 =2(mj, +mj_,) fori=1,..., N,—1

(34)

Now, for assembling matrix A, we need to compute the sum aij + a%,j + af”j
for j € {0,i—1,4,i+1, N,}. For example, similar to mg o and mny, n., ao.o
and ay,, n, needs special treatment and requires the following computations

S s
o 0_3 b52(1+v)(%)2 e 0_(2) 1 g2(1+7) s
0.0 9 [, s 2 Jo R}
025t
2(3+2v)
Sp o S o
a, =1 +7)‘7§/ 327+1800£d3—7“/ 5@0%
0 0
_ _(1 "”Y)Ug( si _ s )+ T_S?
h? 242y 3+2y  6h3
2 142y
=+ — =0and h =
23+ 27) + 5 since Sg an 1 =51
Sb 51 (51 — 5)? rh
aoo—T/ (800)2618:7"/ (lhg)d—?l
0 0 1
2
1 _ % 2(147) dpn, 2
aN,, N, 2, ( Os )

=3 48
SNg—1 N
2 3+2y 342y
00 (SNS SNS—l)

S 2h3 0 342y

(35)

(36)

(37)



| e P e

h?\,s 2v+3 B 27y + 2
2y+3
N LA o (5:1%\/ 5?\7571)
202, (2y+3) %3 6
SN SN,-1
2h3%.
e —1-7)03( S?\?:?’ = USS?VZ+25NS_1
Wy, 20 +3 213,
N o2 sy 1 (2sn, + sn,-1) (38)
h3, 2(27 +3) 6
S on B ,
ail))\fs Ny — T/ (QDNS)Q ds = 7“/ st
7o 0 SNS—I h/]\[5
ThNS
B (39)

For the elements a; ;—1, we need to calculate the following elements

s
_% [7 S%H)%a@iq s

a; . 4 =
i, 1—1 9 o (95 as
O'g Si 32('Y+1)
=% 5— ds
2 Si—1 hz

02 S?’Y+3 o 8?11#3
=T ) (40)

Sy a . Sp a -
a?,z'—l =(1 ""Y)Ug/o 327“%% ds — T/o S$©; g; Lds

29+3 27+2
5 S; Si—1 )

__ (L5, ~
hi 2y+3 2y +2

3 2 3
i SiSi-1 5z-1)

(3 9 6



2 2v+3

905i-1
2h2(27y + 3)
_ = 4yeg 577 ags i
- h 2743 2h?
a9 s N r(2s; + si-1) (41)
h?2(2v + 3) 6
h
a?,i—l = Tmzl,z’—l =Tr—= (42)

6

For the elements a; ;+1, we need to calculate the elements

S
al = 0_3/ ' 32%2%_&0’3“ ds
Ll g, ds Os

03 Sit+1 827-&-2
=—— ds
S

_ 02 (siJrl S;
2h7,, 2y +3

2y+3 293

) (43)

Sp dw: Sp dw:
2 2 Pit+1 Pi
a; .., = (1+ sp,——ds —r S$Wi1——ds
i,i+1 ( ’Y)Uo/o 2 Ds /0 Pit1 Ds
e +'y)<7§( 57 25,10 s+ )
R, 27+ 2 27+ 3
_r (5§+1 _ 575111 5_?)
hfﬂ 6 2 3
s

_ (e s agsi s

R, 2y+3 2h2, |
o st r(siea o+ 2si) (44)
h?., 2(2v + 3) 6



h;
a5 i =T = : 6“ (45)

Its diagonal elements a; ; will contain the following integrals (note that % =
hii‘v’se (Si—la Si) and % = _#-H Vs € (Si, Si—i—l))

al. = J_g /Sb 827+2(%)2d8 _ 0'_(2)(/51' S2’y+2d8)
i, 2 0 88 2 i hZZ

Si+1 2’Y+2
et
z+1
2v+3 2v+3 2v+3 2v+3
2 S v+ S v+ 2 Y+ s Y+

i i Sy i
= e 2v+31 )+ g (5 ) (46)

S D; S Qs
2 2 2v+1 Pi Pi
as .= (1+ s i—ds—r/ SQ; ds
1,1 ( 7)00/0' % 68 0 ® 88

27+3 2v+42 2v+3
_ (A +9)ad 5 Si-1 Si—1

+
h? (27+3 2v+2 (27 4+ 2)(2v + 3)

)

(1+~)o? ( s?jﬁrg s . G273 )
Wiy 2y +3)(2v+2) 2y+2 0 29 +3
r (3? 578i1 3?—1) X r (3?+1 S7Sit1 f)
K23 2 6 h2, 6 > 3
_ 7)‘73( s 512%251'71) n of sy’

h: 2y +3 2742 h22(2v + 3)

2 2742 2v+3
(1+7)og, s s S;

(-2 )

h12+1 27+ 2 2v+3
. 0'(2] S?_’ZY?) T‘(hl + hfL'Jrl) (47)
hii12(2y +3) 6
hi + h;
aii =rm;; = r(%) (48)

From equations (32) — (46), we can calculate the entries of A as follows
(remember that A is a tridiagonal matrix)
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2 2v+3 _ 2v+3
9y (i Si—1

1 2 3 i
Qi -1 = QT T = — (
2h? 2v+3

)

(1+7)ag 57"

2 2v+2
_ 95
h? 2v+3  h? 2

i Si—1

0'(2)3?11r3 7“(28@' -+ Sl'fl) n hl
J— /,”_
2h2(2v + 3) 6 6
2 2(v+1)
—0§s; rSs; ,
= — V 1<i<N;, 49
oh, 2 == (49)
2 2v+3 2v+3
. 2 _ 00 Sit1 TS
i, i1 (R R N Rl PR 2h12+1( 2 + 3 )
+ a3 S?Xﬁ _ atsy Psin
h?ﬂ 2(2'7 + 3) 2h12+1
(L+)0ds;™  r(sin + 2s4) N U
hi1(2y +3) 6 6
2(v+1) 2
—5: o TS; ,
=2 — — — VO0<i<N,—-1 50
2hiyq 2 == (50)
0831#7

_ UgsiJrQ’Y ﬁ rhl _ rs1 (51)
2B3+2y) 6 ' 3 2

_ 1 2 3
an,, N, = Gy, n, T an, N, T AN, N,

2vy+3 242

_ @ +7)03( SN, _ SN, SNy
%, 27+ 3 2y +2
o T
2h3,. 3+ 2y 3
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2 2v+3
TSN, 1 7(25N, + SN,-1)

2h% (2v + 3) 6

S

2 1
o S]\ger )0'(2] _ T'SNy—1 (52)
2hu, 2

2 2v+3 293
90 (S Si—1 )

aii:a..+a2.—|—a3.: L
s 7,17 1, 7,17 2h3( 27_1_3

5 2943 2942
(1 +7)og, s i Si-1

h2 (27+3_ 2y + 2

)

2 2v+3 2 .27+3
oy S cr 04851

i+1 7
o, mas ) T w19

29+3

2 2v+2 29+3
(L+7)og, s "siva |

R, (= 27+2 | 2y+3

)

’f’(hz + hi+1> 4 T(hz + hz‘+1) 088?1?3

_l’_
6 3 2h2, (27 + 3)

s0tg2 1

- 2 (h_z * hi+1)

hi + h;
+7"( + hit1)

5 V1<i<N,—1 (53)

In summary, we get the form of the stiffness and mass matrices, A and M,
rspectively (note that the entries of matricesA and M don’t depend on time,
which is k, in this case) :

Qp,0 Go,1 0 0
ai,0 0
A= 0
AN,—1, N,
0 0 <. AN, N,—1 anN,, N,

where ag, ao,1, an,~1,N,, @1,0, On,, N,—1 and an,, n, are given by the formulas
(49) — (53) with ¢ =1 and Ny — 1
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hy hy

T 0

hi  hiths ho
6 }? 6
M:=| 0 L 0
hng—1+hn, hn
. . o TET—E 5
hn,g hn,
0 O cee T 3

For an equidistant grid in the S-direction (that is, uniform partition),
implying h := hy = ... = hy,, the matrices can be simplified further, which
further on will reduce the cost of calculation. On the non-equidistant grid,
with A and M defined as in (23) and (24), the required time of calculation
increases proportionally for higher fineness of the mesh (larger k). Thus
when a non-equidistant lattice is used, it should be designed in a manner
that good accuracy will be achieve for a relatively small amount of grid

points.

Note that matrix M + %A can be further reduced by omitting the first row
and first column due to the two boundary conditions u) = maz(K —s, 0) and
upn(0, t) = Ke " . These boundary values are each interpolated by one hat
function with the corresponding coefficients uffoo’l """ Nt and up ;. n, - This
means these coefficients are known and we only have N, unknown coefficients
left. Hence, we may cancel the first column and row of matrix M + %A, the
first row of matrix (M — %A) uf~! and the first element of vectors uf. The
matrix (M + 25 A) now has size Ny x Ny, (M — & A) uf ™! has size N, x 1
and vector uf now has size N, x 1. The boundary terms that were dropped
during this reduction process are put into a vector c® with size N, x 1, and

the final system of equations will have the following form:

At At
(M + TkA)U’Z = (M - TkA)U’Z_l —c (54)
(% + %GLO) Ui o up
0 uf;’z
in which ¢ = L and uz —
0 Uﬁ,stl
0 ufl N,
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The linear system of equations (54) is equivalent to one with homogeneous
boundary conditions where the function vanishes on the boundary. We can
rewrite the linear of system of equations (54) in the form

Euf = Fuf™" — c*, and the entries of matrices £ and F are below, respec-
tively

Aty —aésfwﬂ) rs;.  h

ii—1 = )+ =, 2<i<N;
G = 5 (g T )t 2sis
Atk (55(74‘1)0—8( 1 + 1 ) + T(hz + hi+1))
eii = —(——%—(+
’ 2 2 hi  hig 2
hi + h; :
e E e A
Aty —32(7+1)a§ rs; hiyq
il = J - ,1<i<N,—1
Ciit1 = = (o — )+ ='=
Atk (S%ZH)US T$N5_1> hNS
e = —
Noo e ™ 0 Y 9k, 2 3
—Aty =028 ps by .
ii—1 = z - )+ =, 2<1<N;
Jim= (g ) g 2sis
f . —Atk(S?(’H—l)US( 1 4 1 ) i T(hz + hi—i—l))
Y9 2 hi  hisq 2
hi + h; ‘
+ A i< N, -1
—Atk —82(7+1)03 rs; hi—l—l
1 = ¢ - , 1 <i<N,—1
fun = == (=5 )t Isis
—Atk(S%:H)Ug TSstl) hNS
e = —
N, s 2 2hn. 2 3
With those formulas and the given value of ) = maz(K —s, 0), we can com-
pute iteratively the unknown variables uf” for: =1,2,..., N,, and k =
1,2,..., N; , and obtain the prices of our put option for any given values of

both time ¢ € [0, 1] and the underlying asset s € [0, Sp].
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Note that although we choose geometric partition in the S-direction, we
decide to employ two ways of partition for the time interval [0, 1] into N;
subintervals with At =t —t,_; for k=1,..., Ny uniform or geometric
partition, in order to see which partition gives a higher accuracy. Both
partitions are exactly the same as those used in the S-direction, which
means for the geometric partition, the number of points ¢; around ¢t = 0
increase significantly. However, although the geometric partition increases
the cost of computation, the errors of our numerical solutions in this case
are much larger than those obtained in the case of uniform partition.
Therefore, for discretizing our mesh in the T-direction, it is best to choose
the uniform partition to increase the accurracy of our numerical solutions
while reducing the computation time required, especially for cases when o

and ~ are sufficiently small (for example, oy = 0.3 and v = —0.03)

2.4 Galerkin Least squares stabilization Method

Theoretically, the local volatility o can be any positive values, but in
practice, the local volatility of an option may be abnormally large due to
some unexpectedly horrible news or events that occur (for example, in
2008, after Lehman Brothers and Bear Sterns collapsed, the Down Jones
closed down just over 500 points at the time the largest drop by points in a
single day since the days following the attacks on September 11, 2001, or in
Japan, banks and insurers announced a combined 249 billion yen ($2.4
billion) in losses due to this collapse). The impacts of such events will
increase volatility of option prices significantly, and such cases correspond
to sufficiently large vales of o and ~ (for example, oo = 0.7 and ~ = 0.05).
We realize that the presented Galerkin FEM does not work well for large
local volatility due to its high sensitivity to the large values of g5. One way
to fix this problem is to apply the Least Square Regression (LSR) method,
but it has one major drawback: the solution is much harder to compute by

iterative methods and more sensitive to roundoff errors since the number of
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matrices in the equation (22) scales as the square of the number of the
matrix in the Ritz - Galerkin method. The LSR method is also less
accurate in the regions where the solution is smooth. Thus, we decide to
combine the Least Square and Ritz- Galerkin methods together, called the
Galerkin Least Square (GLS) method, by adding an additional “Least
Square” term to the LHS of equation (22), which is equivalent to one of the

two options belows:

L (5 ¢)+(a‘3§, )+ (682, )+ (ru, )+ 3 er, (5 — 5o(age) + B3+
ru, pi(—2£(a58) + 552 + ) =0

2 (55 @)+ (agy, 5+ 2Z7s0)+<ru, )+ Xrer, (Gt — 5 aGy) + 85 +
ru, pi( =55 (agE) + BEE)) =

in which the stability parameter p; is defined locally based on the Peclet

Sitsitl
number Pei(s"Jr;"“) — i i o on each partition 7 as follows,
h% 51+51+1
5i + Sit1 T 0< Pe(=5) <1
pi(s, Pei(TJr)) = h, Pe‘(sz + Sit1)5 (55)
b T2 T

S; + 8; 1|0 sﬁs”l %, 1<p<oo
BT sy {(Z i (1)) (56)

2 maxi:lw.,N’bz(w%)L p =

After discretizing the equation (22) in space, time (dividing the interval
[0,1] into N, subintervals [ty, tx_1], & = 1,..., N; with lengths

Aty =ty — tr_1) and rewriting uy (s, tx) = Zle un,i(te)pi(s), where ¢; is
again the linear test function of V2, we again obtain the stabilized fully

discrete variational problem:

Find uy(s, tx) € V¥ such that

MM (uy, ) + AR (uf, 0) =0 Yo € V? and t; € [0, 1], (57)
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where

8u 8 oy
mLQ(ufn (P) uh7 + Z h S( ) + B_ + 7“(,0)) (58)
is an augmented inertial form of the mass matrix M*?, and

oul Op ouk
aLQ(ufm 90) - (O[ Os i as) +( 8_;7 90) + (TUZ7 (p)

'U,k k
F Y (a0 1 g2 ik (e (a9E) + 69 +10))  (59)

is a stabilized Galerkin form of the stiffnex matrix A*?. In this formula,
are either 0,1 or —1, which corresponds to the SUPG, GLS and MS method,
respectively. We will fully solve the problem using option 1’s formulation
(¢ = 1), which is the most intense computational case. Without repetition,
we only present the general formula to form matrices M*? and A9 in the

case of option (2).

Given u) = maz(K —s, 0) by using the Crank-Nicolson scheme correspond-
ing to the values of = 2, we can find uZ“ for k=0,1,..., N, — 1 from the

following equation

1

e — @)+ " (0uy + (1= 0)u ) =0V e e Vi (60)
k

Let (¢;)i=o....n, be the basis, or hat functions in V},, and let M@ be the mass
matrix whose entries are defined by

0p;

L )

m 3 = (5, i) + Z pil(¢j, roi) — (¥, ng)] (61)
TETh

since ¢ is the hat functions and a—f =0, 2(a%2) + 3% = —rs. Futher-

more, let >° ., pi(p), rei) = mLQ ! and > cq, pi(9), TS&P ) = mLQ 2, we

can rewrite equation (59) as
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L LQ, L@,

mz? = (ija ©i) + m¢? b mz]Q ? (62)

Since a (p;, @;) = (a%, %ﬁi) +( %, ;) + (re;, pi) as defined in equation
(22), the entries of the stiffness matrix AX? are given as

Iy, Op;  Opi
a; =a(pj, 0)+ Y pil(res, ro) — (rs—2, roi) + (rs—==, rs—=—))
0s 0s 0s
TETY
a%‘ .
_ Z pi(re;, 7’38—), V0 <4, j <N (63)
TET o
From the following identities,
> pilreg, rer) = rmi !
TETh
) Q71
dp;  Opi rai;
dopilrso s = pi—s
TETh TGTh
2., LQ,2
Pi _ "
D_pilrsotire) =) p—
TETh TET]—L
dpi LQ,2
Z pi(re;, 7’3%) = Tmi,?’
TET)
the equation (59) is equivalent to
T’QCLZ-LQ’ 2 TQGZLQ, 1
0 =ales p) +rmS + ) plom g+ ] = rmi R
—-r+o
TET}, 2
By letting uf = (uf (so),..., u} (sN))T and u? = (19 (s0), ..., ud (sy))" which

is the boundary condition, the fully discrete problem (60) can be rewritten
as a system of linear equations
At At
(M@ 4+ T’“ALQ)UQ = (M*@ — TkALQ)uﬁ‘l (64)
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We now compute the following general formula for the stiffness matrix M*%.

By using equation (62), we need to compute the following elements

Si—1

Sh a . S
mzL?_? = 7”/ 3%71&&9 = pimir(= +
0

O0s 6 3)

Sp Ov: . .
LQ,2 Pi Si+1 Si
m; 5] =71 SPip1——ds = — p;_1r + =
i, i1 /0 Pi+1 Ds Pi—1 ( 3 6>

19,2 & a@od ~ porhy
Moo =T 3@0@ §=— 6
0

0s 6

B rﬂz‘(28¢ + Si41)
6

Together with the formulas (30) — (34), the entries of M are given as follows

S Qs (25 + s
mie? :r/ 5; %ds:r('g%l( Sl—i_s%l))
0

h; h;
LQ,2 ) 7
mﬁ?fl = (Spi—lv (101) + mzl:?;i - mi,?il = E + pi_lrg
Si Si—1
—piT(—= +
pieir(G + 757
hi i—15i— )
= — — M) vl S 1 S NS
6 2
LQ LQ,1 LQ.2 _ hit1 Pi1
m; 5 = (Pir1, @i) + my i1 — My 41 = 6 + pir 5
Si+1 S;
pir(=—5= =)
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_ 6“+p32“7", 0<i<N,—1

o h
g = (g0, po) +mod " —mpG® = 2+ por

rh h hir
+P0 1 1+Po1

6 3 2
L LQ,1 LQ,2
miys v, = (P o) My, — ML,
hy N
= S _|_ _ T_S
3 pNs 1 3
SN,—l SN.
- r(——+ =
PN—1 ( 6 ) )
— th i PNs—1TSN,—1
3 2
mz'[:?:(902'> %)—i—mf?’l_mf?? - +1+rﬂ 1 3/) 41

B Tﬂi71(281 + 5i-1) B rﬂi—l(QSi + Si-1)
6 6
pi(2s; + Si41)

+r 6

—TrSi1pi-1 | i rSiv1Pi . hiv .
=(——+—= e 1<i<N,—1

Similarly, the entries of A are given as

2 LQ ? T'QCLLQ i
L LQ,1 z i— i, 1—
a’z?l (901'—17901 +Tm Q +Zpl 2+ o2 ]
7T _T—I_O— 2
2 2(v+1)
LQ,2 —O—OS< rs;
—rm; 2y = 2;% +
7



n h; i
r2p;_ -
Pictg 6 3
S; — Si—1 S$iSi—1 S; Si—1
— pi_1r?( 3 5 ) — pi 17”2(€+ 3 )
—pi_1T?8i8i 1 ‘705 Jo+ + ST 1<i<N (68)
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hi ~ hip )

+T(h”;—’““),1gigzvs—1 (71)
Note that matrix ML+ 2% ALQ can be further reduced by omitting the first
row and first column due to the two boundary conditions u) = maz(K—s, 0)
and uy (0, ty) = Ke ™. These boundary values are each interpolated by one
hat function with the corresponding coefficients u’,fbj)o’l""’Nt and up ;_y  n.-
This means these coefficients are known and we only have N, unknown co-
efficients left. Hence, we may cancel the first column and row of matrix
MLQ 4 21k ALQ the first row of matrix (MLQ — £ ALQ) =1 and the first
element of vectors uf. The matrix (M@ + 2% AL?) then has size N, x N,
and (MLQ — &1 ALQ)yf =1 then has dimension N, x 1 and vector uf now has
size Ny x 1. The boundary terms that were dropped during this reduction
process are put into a vector ¢* with sizes N, x 1, and the final system of

equations will have the following form:

At At
(M*Q 4 =R ARy = (MP0 — =2 ARt — (72)
(mf%? + %aig) Ui,o ui 1
0 Up, o
in which ¢* = and uz —
0 Ufz No—1
0 uﬁ N,

The linear system of equations (72) is equivalent to one with homogeneous
boundary conditions, where the function vanishes on the boundary. We can
rewrite the linear system of equations (72) in the form

ERQuk = FEQyuf~1 — ¢k and the entries of matrices EX? and F'“? are below,
respectively

e

LQ _ (—7“51'71/%71 n &) i (T5i+1/3i 4 hi+1)

2 3 2 3
At i Sq
2 hita
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With these formulas and the given value of u) = max(K — s, 0), we com-
pute iteratively the unknown variables uf” fori =1,2,..., Ny, and k =
1,2,..., N;, and obtain the prices of our put option for any given values of

both time ¢ € [0, 1] and the underlying asset s € [0, S].

For option 2’s formulation with Crank-Nicolson scheme, using exactly the

same calculations as in option 1, the entries for the mass and stiffness matrix
M and A are
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2.5 Mesh Refinements

For improving the accuracy of our numerical solutions to the equation (14)
with boundary conditions (15) — (16), especially when s is near the strike
price K = 50 and S;, we extend the mesh in the S-direction (that is, add
another interval [Sy, S|, where S, is a very large number, 30K) and
divide the new interval [0, S| into three subintervals [0, K], [K, S;| and
[Sh, Seo]. Then we discretize each of the subintervals as follows: First, we
use either the same uniform partition or geometric partition, which was
described at the beginning of Section (3.4), with N; and N, subintervals for
[0, K] and [K, Sy, respectively. Second, we decide to employ the geometric
partition for the interval [Sy, Soo] with N3 subintervals Ay, n,+1,

RNyt Ny 4255 PNs+N,+n, followed by the similar geometric partition used for
[K, Sp] but now the geometric ratlio r3 is determined by the equation
Py vy +1 = 3™ T Ny Nyt Ny, = hﬁzvﬁm' Our discrete space

Vb € H([0, Sp]) now becomes V> € H([0, Su))-

The reason we choose h N5 L N.+n, can be explained as follows: we pick u in

equation (22) as a function that will decay quickly when s — oo, such as
u = Si for some parameters c. Let ¢ = u, we want to find the best constant
¢ such that each of the following integral in equation (22) converges:

0 0 1 e8] 1 2y—2c+1
(@28, 9%y _ —c(c+ )/ P2y _ —c(c+1)s I
ds’ Os 2 0 2 2v —2c

1
converges only when ¢ > %

) ® (1 +74)o2s® T —rg]
( s’ %) :/0 g2c+1 ds

7"8_20+1

1 2 2(7 o+l _ 2
= (1470 2+ 1

o

11
converges only when ¢ > max(2 ;7

)

42



N | —

* 1 rs—ett
(ro, @) =r ﬁds = T—i—l’o ds converges only when ¢ >
0

14+~

2
f il decay slower than A2 3. N
convergence rate of our error will decay slower than fy, , n, . n, - Now we can

find the unique pair (73, N3) in the same way used to find the pair (r;, Ny),
and the formula is

Therefore, since v > —1, we need to choose ¢ = maz( 1) since the

(r3, N3) =

( Soo = Sp — hN3+N2+N1

)max(%,

11 logh
—, (ma:v(— ’ + ’Y) N 1) 09 IUN3+Ny+N, + 1)
Soe — Sy — (ANytNpan, =1) 2 2 logrs

Combining the new geometric partition for [Sy, Sy | with the uniform parti-
tion or geometric partition for each of the subinterval [0, K] and [K, S;], we
have four options to choose for discretizations in the S-direction.

We employ a non-equidistant partition only in the S-direction, since having
a mesh with an uniform parition in the T-direction gives the most accurate
numerical solutions, especially when the local volatility is sufficiently large
(> 0.7). Our purpose for discretizing the S-direction nonuniformly is to
increase the number of points near the point u(K, 0) and u(S, 1). This
method helps eliminate the errors when the underlying asset price is near
Sp. Therefore, this non-equidistant mesh gives a much better accuracy, even
for the cases when the local volatility is very high (that is, when o > 0.8).
However, the trade-off is that this mesh requires a large number of points, and
the required time of calculation increases proportionally for higher fineness
of the mesh (increase value of either Ni,Ny or Nj).

3 Numerical results

A feature of the FEM method when applying it to solve the PDE representa-
tion of option pricing is the knowledge about the development of the option
value function for each time step, which is definied as the complete term
structure of the option. We can easily visualize the whole term structure of
the European put option as in Figure 3 below. At the present time, t = 0,
which is the “front edge” of the surface, one can clearly see the shape of the
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non-smooth payoff function u(s, 0) = (K — s)*. By solving the functions
u(s, t) for each s over the life-time of the option (that is, for each ¢ runs
from 0 to 1), the complete term structure is obtained. Towards the matu-
rity time, ¢ = 1, after N; time steps, we approach the function u(s, 1). Of
the whole option surface, the special points of interest are near the points
u(K, 0) and u(Sp, 1) in which the errors of our numerical solutions were
mainly distributed.

Figure 3: Values of a put option with S, = 100, K =50, ¢ = 0.5, r = 0.03,
N; = 200, N, = 1000, S, = 1500, N3 = 1000, geometric partition in S and
uniform partition in T

We set our parameters as follows: K = 50, v = 0, S, = 2K, r = 0.03,
N; = 200, N, = 1000,7 = 1, Soc = 30K, N3 = 1000. We will run our
numerical schemes in two cases with ¢ = 0.4 and ¢ = 0.8. For each of these
cases, we use either the uniform partitions for the interval [0, Sp] or extend
the mesh by adding another interval [Sy, S| and for the new interval [0, S|,
the geometric partition described in Section 4.5 is applied for [Sy, S| and
the same uniform partition for [0, Sp]. In addition, for the T-direction, we
employ the uniform partition in [0, T']. For the two mesh refinements, define
a domain D = [0, T] x [0, S| and compute the L*(D)- norm and L*(D)-
norm errors (see Table 1) when comparing our numerical solutions to the
exact solutions f(s, t) given the Black-Scholes formula, and compute the
reduction factors of our errors in each case. The formulas for the L?(D)-
norm and L*°(D)- norm errrors are,

L*(D)-norm error =

i=Ng—1, j=N,—1

f(sis t5) + f(sivn, t5) + f(si, tia) + f(si1, tj1)
[ Z ( J ;) J

i, j=0
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ulsi, ) +ulsiv, t) + ulsi, tig) + w(si, ti)

2
1 )
X (41— t5) (s — i) (73)
LOO<D)—HOI'H1 error = mamlgiSNs,lgjgNt’u(Sia tj) — f(5i7 tj)’ (74)

Based on the errors, we determine if adding the new interval [S,, S,] with
geometric partition improves the accuracy of our numerical solutions. Figures
4 - 7 are the graphs of the errors for each mesh refinement when ¢ = 0.4 and
o = 0.8. The exact solutions f(s, t) for these two cases given by the Black-
Scholes formula are also shown in Figures 8 - 9. Since the investor mainly
concerns about the errors of our numerical solutions at time ¢t = 1, define a
domain Q2 = [T] x [0, Sy], the L?(2)- norm and L*(£2)- norm of those errors
and the reduction factors are also shown in Table 2 for cases when o = 0.4.
The formulas for the errors in L?(Q2)- norm and L*°()- norm at time ¢ = 1
are:

L*(Q)-norm error at time 1 =

[ 2 (f(5i+1, tn,) + f(si, tn,) ; u(Sit1, tn,) — u(si, th))z

D=

X (841 — 55)] (75)

L*(Q)-norm error at time 1 = maxi<;<n,

U(Si, tNt) - f(si> tNt)’ (76)
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Figure 4: Errors by uniform
partition in [0, 100] and in T
with K = 50, v =0, S, =
100, » =0.03, N, = 200, Ny =
1000, T = 1, S = 1500,
N3 =1000, 0 =04

Figure 6: Errors by uniform
partition in [0, 100] and in T
with K =50, v =0, 5 =
100, » = 0.03, Ny = 200,
N, =1000,T =1, S, = 1500,
N3 =1000, 0 = 0.8

Figure 5: Errors by uniform parti-
tion in [0, 100] and geometric parti-
tion in [100, 1500], uniform partition
in T with K = 50, v =0, S, = 100,
r = 0.03, N; = 200, N, = 1000,
, Se = 1500, N3 = 1000,

Figure 7: Errors by uniform parti-
tion in [0, 100] and geometric parti-
tion in [100, 1500], uniform partition
in T with K =50, v =0, .S, = 100,
r = 0.03, N, = 200, Ny, = 1000,
T =1, Soo = 1500, N3 = 1000,
o =08
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Figure 8: Solutions by Black- Figure 9: Solutions by Black-Scholes
Scholes formula with K = 50, formula with K = 50, v =0, r =
v =0, 7 =003 T = 1, 0.03, T =1, =08, N, = 200, N, =
o = 0.4, N, = 200, N, = 1000, 1000,5 = 1500, N3 = 1000

Soo = 1500, N3 = 1000

Type of partition T¥{D}rnorm rror (= 0.4] | L*(D}-norm ervor (s = 0] | £(D)-nomm errar g = (.4) | I*(D}-norm error (5 = 0]
Uniform parttion in [0, 100 0.2182 02725 0.4091 0.8259
Geometric partition in {100 150 00315 00331 0.2016 0.2826

| el Btor | 1 | 1l | 203 | 3 |

Table 1: L?(D)- norm and L*(D)- norm errors when ¢ = 0.4 and ¢ = 0.8
with K = 50, v = 0, Sy = 100, r = 0.03, N, = 200, N, = 1000, T = 1,
Seo = 30K, N3 = 1000

Type of partition T¥{0)-norm ervor (= 0.4) | Z*(Q)-norm exvor (5= 0] | £(2)-norm exror g = 0.4) | Z*(0)-nom exror (5 = 0]
Uniform partition in [0, 100] 0.1435 0.1696 0.3042 0.1827
Geometric partition in |10, 1500 0.0078 0.0051 0028 0.0474

| RelwimFutr | 1863 | B | 141§ | 163l |

Table 2: L*(Q)- norm and L*({2)- norm errors when 0 = 0.4 and ¢ = 0.8
with K =50, v =0, S, =100, » = 0.03, N; = 200, N, = 1000, S = 30K,
N3 = 1000

Looking at Figures 4 — 7 and Table 1 above, we see that by adding the new
interval Sy, So| with geometric partition in the S- direction, the major errors
near the point u(Sy, 1) are eliminated, although the errors near the point
u(K, 0) slightly increase. However, by using an extended mesh refinement

n [0, Su], the errors in L?*(D)- norm and L*(D)- norm are reduced by a
factor larger than 2 compared to the errors obtained when using only the
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mesh [0, S,]. The reduction factors of those errors at time ¢t = 1 are quite
significant (greater than 14, see Table 2), which shows the advantage of an
extended mesh refinement by eliminating most of the errors at that time. In
general, this extended mesh refinement indeed helps improve the accuracy of
our numerical solutons. Therefore, from this point, we will always include
the new interval [Sy, So] with geometric partition when doing the refinement
in the S- direction.

We also run our numerical schemes when S, = 1.2K (that is, using less
number of points in the S-direction), but the result is not sufficiently good.

With the same set of parameters K = 50, v = 0, S, = 2K, r = 0.03,
o =04, S, = 30K, N3 = 1000, we now compare the errors in L?*(D)-
norm and L>°(D)- norm (formulas (73) and (74)) when using different parti-
tions for the intervals [0, S| and [0, 7' with different number of subintervals
N, and N, to determine which partition best improves the accuracy of our
numerical solutions. Note that we always use the geometric partition for
[Sh, Seo] because it helps eliminate the major errors near the points u (S, 1).
There are exactly four possibilities of partitions in [0, Sp] x [0, T]: geomet-
ric partition for [0, Sp] and uniform partition for [0, 7], uniform partition
for [0, Sp] and geometric partition for [0, 7], uniform partition for [0, S
and uniform partition for [0, ¢], geometric partition for [0, S,| and geometric
partition for [0, T]. However, we tried our numerical schemes using uniform
partition for [0, S| and geometric partition for [0, 7] and got bad results. We
also computed the reduction factor of our errors in L?(D)- norm and L*>(D)-
norm for each of the other three refinements to determine the approximated
convergence rate of our reduction factor. The complete details are shown in
Tables 3 - 5 below. Since the investor mainly concerns about the errors of
our numerical solutions at time ¢ = 1, the L*(2)- norm and L*(£2)- norm of
our errors and the reduction factors are also shown in Tables 6 - 8 for cases
when o = 0.4.

ey .| /Do eror = 04) | 2(0-nom emo o = 04) | Reduction Fctor i /(D norm | Ructio Bt n (D)o
i 008 01376
00 02006 R 133
00 0305 17 14
0l 043 12 13

=

)

Table 3: L*(D)- norm and L>(D)- norm errors for uniform partitions in both
S — T directions with K =50,y =0, S, =100, r =0.03, 0 =0.4,T =1,
Seo = 1500, N3 = 1000
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(N N [Maxheyy, max Mgy | M, min Ay | Do eor (5= 04) | (D)o o =04 Reduction Factot i (Do | RectonFctrin 1¥(0)-omm
0040y 0009, (0025 (L0094, 00023 00016 0068

00200 0.1830, 0005 00231, 0005 0008 0130 303 203

(0100 03,00t 00313, 00t 00149 0108 A 1Y

(50 047002 013, 002 00183 1263 14 13

Table 4: L?(D)- norm and L*(D)- norm errors for geometric partition in S,
uniform partition in T with K = 50, v = 0, S, = 100, » = 0.03, ¢ = 0.4,

T =1, Sy = 1500, N3 = 1000

(Vo N My, max Mgy | M, min Ay | Do eor (5= 04) | (D)o o =04 Reduction Factor i (Do |RectonFctrin 100
00400y 05090, 0106 D094, 0000038 0009 00856

om0y | 0280 00 00231, 000009 00076 0143 262 165

(0100 035, 0028 (00515, 0005 0mn 0198 2 14

(50 04307 00416 0154 D006 008 02m 168 1Y

Table 5: L*(D)- norm and L*°(D)- norm errors for geometric partition in
both S-T directions with K = 50, v = 0, S, = 100, r = 0.03, ¢ = 0.4,

T =1, So = 1500, N3 = 1000

(N, N | L*(Q)-norm error (5 = 0.4) | L(Q)-norm error (¢ = 0.4) | Reduction Factor in L*()-norm | Reduction Factor in *(Q)-norm
(2000,400) 0.0033 0.0195

(1000,200) 0.0078 0.028 2.36 143

(300,100) 00174 0.039 223 1.39

(230,30) 00341 0.048 1.96 1.33

Table 6: L*(Q2)- norm and L*°(£2)- norm errors for uniform partition in both

S — T directions with K =50, v =0, S, =100, r =0.03, c =04,T =1,
Seo = 1500, N3 = 1000

(N, Ny} { Z4(0)-norm ervor (g = 0.4) { £()-norm ervor af t = 1 (5= 0.4] | Reuction Factor in Z*(Q)-norm | Reduction Factor in L*(()}-norm
(2000,400) 0.00038 0.0014

(1000.200) 0.0012 0.0031 3.16 2

(300,100) 0.0043 0.0043 307 145

(2050) 0.0127 0.0067 29 149

Table 7: L?(Q)- norm and L*®(Q)- norm errors for geometric partition in S,
uniform partition in T with K = 50, v = 0, S, = 100, » = 0.03, ¢ = 0.4,

Soo

= 1500, N3 = 1000

49




(N NiJ | Z4(Q)norm exror (g = 0.4) | L(Q)-norm ervor (¢ = 0.4] | Reduction Factor in Z*(()}-norm | Reduction Factor in L(Q)-norm
(2000,400) 0.00067 0.0018

(1000,200) 0.0019 0.0052 28 28

(300,100) 0.0052 0.0145 28 21

(230,30) 0.0143 0.0288 276 181

Table 8: L?(Q)- norm and L*(f2)- norm errors for geometric partition in
both S-T directions with K = 50, v = 0, S, = 100, r = 0.03, ¢ = 04,
Seo = 1500, N3 = 1000

From Tables 3 - 8, we find that for sufficiently large values of N, and N,
the geometric partition in S and uniform partition in T for the intervals
[0, Sp] and [0, T gives the smallest L?(D)- norm and L*(D)- norm errors
and the highest reduction factors in both L?*(D)-norm and L°°(D)-norm.
The approximated rate of convergence for each type of partition, in the order
above, is: 1.84, 3.63, 2.62 in L?*(D)-norm and 1.53, 2.53, 1.65 in L>°(D)-norm.
At time £ = 1, such rate of convergence in the same order is: 2.36, 3.16, 2.83
in L?(Q)-norm and 1.43; 2.24, 2.89 in L>(Q)-norm. Due to these results, we
determine to use the geometric partition in S and uniform partition in T for
the interval [0, S,] for all the following tests, since out of the four partitions,
that partition improves the accuracy of our solutions the most.

Although the geometric partition in S, uniform partition in T for the interval
[0, Sp] x[0, T'] and geometric partition for [Sy, S is a good choice, we realize
that for sufficiently large o (that is, ¢ > 0.7), our numerical schemes can
reduce the errors near the point u(K, 0) by applying the Galerkin Least
Square (GLS) stabilization method presented in Section 4.4. With the same
set of parameters K = 50,y = 0, S, = 2K, r = 0.03,N;, = 200, N, = 1000,
Se = 30K, N3 = 1000, we run our numerical schemes with GLS and the
classical FEM for wo cases when o = 0.4 (sufficiently small value) and 0 =
0.8 (sufficiently large value). The errors of our numerical solutions are shown
in Figure 10 - 14. We also compute the L?*(D)- norm and L>(D)- norm errors
using formulas (73) and (74) to see the advantage of applying the GLS (see
Table 9). The errors in L?(Q)-norm and L>(2)-norm at time ¢ = 1, which
was the main concern of investors, are also shown in Table 10 for two cases
of 0 = 0.4 and 0.8.
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Figure 10: FErrors with GLS
when K = 50, v = 0, S,
100, r = 0.03, Ny = 200, N, =
1000, S, = 1500, N3 = 1000,
o = 0.4, geometric partition in
S and uniform partition in T

ToE

Figure 12: Errors with GLS
when K = 50, v = 0, 5,
100, » = 0.03, Ny = 200, Ny =
1000, Ss = 1500, N3 = 1000,
o = 0.8, geometric partition in
S and uniform partition in T

A prkem n US04

r

(E]

r

when K

0.03, N;

50, v

=0, Sy
0.03, N; = 200, Ny, = 1000,
Seo = 1500, N3 = 1000, ¢ = 0.8, geo-
metric partition in S and uniform par-
tition in T

Figure 11: Errors with classical FEM
50, v = 0, S, = 100,
200, Ny = 1000,
S = 1500, N3 = 1000, 0 = 0.4, geo-
metric partition in S and uniform par-
tition in T

Figure 13: Errors with classical FEM
when K

100,

Numerical scheme

[4(D)-nom emmor (5 = 0.4)

[(D)-norm ernor (¢ = 0.4)

I4(D)-norm error (g = 0.4)

[(D)-norm eror (g = 03]

Classical PEM D038 01197 00162 02634
GLS 00021 00644 0083 01458
| Reduction fctor | 216 | 186 | 1% | LTI |

Table 9: L*(D)- norm and L*(D)- norm errors for 0 = 0.4 and 0 = 0.8

with K = 50, v =0, S, = 100, » = 0.03, N; = 200, N, = 1000, T" = 1,
S, = 1500, N3 = 1000, geometric partition in S and uniform partition in T
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Numerical scheme | L*(€))-norm error(g = 0.4) | L(0)-norm error (g = 0.4] | L*(€))-norm error (¢ = 0.8) | L(()-norm exor (g = 0.)
Classical FEM 0.0012 0.0031 0.0085 0.0157
GLS 0.0005 0.0017 0.0044 0.009

‘ Reduction factor ‘ 24 ‘ 182 ‘ 192 ‘ 164 ‘

Table 10: L*(2)- norm and L>(Q)- norm errors for ¢ = 0.4 and o = 0.8
with K =50, v =0, S, = 100, r = 0.03, N; = 200, N, = 1000, S, = 1500,
N3 = 1000, geometric partition in S and uniform partition in T

As we can see from Table 9 and 10, the GLS did a great job in reducing the
errors near the singular point u(K, 0). The reduction factors of our L?(D)-
norm and L*(D)- norm errors are almost as large as 2 and 1.8 even when
o is sufficient large (0.8), which is demonstrated in the real-world situations
in which the option prices are highly volatile. At time ¢ = 1, the reduction
factors in L?*(Q)- norm and L*(f2)- norm are a little bit smaller, 1.92 and
1.64. The feature of improving the accuracy of our numerical solutions even
when o is large is exactly the advantage of adding the GLS into our numerical
schemes.

Finally, we consider applying the GLS on the same mesh refinements used
in Figures 10 and 12 with the set of parameters oy = 0.3, K = 50, S, = 2K,
N; =200, Ny = 1000, r = 0.03, Soo = 30K, N3 = 1000 to run our numerical
schemes in three scenarios: 7 is negative (y = —0.03), 7 is positive (v = 0.07)
and v = 0. We then obtain the numerical solutions for these three cases.
Since there are no formulas to compute the exact solutions for v # 0, we
expect that our numerical solutions are approximately close to the correct
solution, thus we compare our numerical solutions to those given by the
Black-Scholes formula when v = 0.
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Figure 14: Numerical solutions
in the case v = —0.03, S =
1500, N3 = 1000, oy = 0.3,
K =50, S, =100, N; = 200,
N; = 1000, r = 0.03, T" = 1,
geometric partition in S and
uniform partition in T

Figure 16: Numerical solutions
in the case v = 0.07, S, =
1500, N3 = 1000, oy = 0.3,
K =50, S, = 2K, N; = 200,
N, = 1000, r = 0.03, T" = 1,
geometric partition in S and
uniform partition in T

Figure 15: Solutions by Black-Scholes
in the case v =0, 0 = 0.3, r = 0.03,
T =1, K =50, S, =100, N; = 200,
N, = 1000, So = 1500, N3 = 1000
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Figure 17: Solutions by Black-Scholes
in the case v =0, 0 = 0.3, r = 0.03,
T =1, K =50, 5, =100, N; = 200,
N = 1000, So = 1500, N3 = 1000
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Figure 18: Numerical solutions
in the case v = 0, S, = 1500,
N3 = 1000, 0y = 0.3, K = 50,
Sy, = 2K, N, = 200, N, =
1000, r = 0.03, T" = 1, geo-
metric partition in S and uni-
form partition in T

Figure 20: Numerical solutions
in the case v = 0.07, S =
1500, N3 = 2500, oy = 0.3,
K =50, S, = 100, N; = 200,
N; = 1000, r = 0.03, T" = 1,
geometric partition in S and
uniform partition in T

Figure 19: Solutions by Black-Scholes
in the case v =0, 0 = 0.3, r = 0.03,
T =1, K =50, S, =100, N; = 200,
N, = 1000, So = 1500, N3 = 1000

¥
ms
I
B om-

Fu ‘

g = T
! e TR Tl
mo -

auas e

Vs

# Opll

Figure 21: Solutions by Black-Scholes
in the case v =0, 0 = 0.3, r = 0.03,
T =1, K =50, 5, =100, N; = 200,
Ny = 1000, S, = 1500, N3 = 1000

Comparing the two pairs of figures side by side (Figures 14 -15 and Figures
18-19), we find that for the case when v= —0.3 or v = 0, the graph of
our numerical solutions are very much similar to that of the exact solutions
given by Black-Scholes formula. The L?(D)- norm and L>(D)- norm errors,
which were computed using formulas (73) - (74), when v = —0.3, 0, 0.07
are 0.075, 0.0035, 1.4915 and 0.1461, 0.0019,1.2392, respectively. However,
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when v = 0.07, the graph of our numerical solutions are not similar to that
of the exact solutions given by the Black-Scholes formula (see Figures 16
- 17), especially at the points near (100, 1), and the errors in L?(D)-norm
and L*(D)-norm are large (greater than 1). In such case, we improve the
accuracy of our solutions by choosing N3 to be a large number, such as
N3 = 2500, and obtain the graph of our numerical solutions very similar
to that of the exact solutions (see Figures 20-21). Therefore, our numerical
scheme may give a good approximation of the exact solutions for cases when
—0.3 < v < 0. Unfortunately, when ~ is sufficiently positive (v > 0.07), we
need to increse significantly the number of subintervals (/V3) in the extended
interval [S, So] to achieve a sufficiently good approximation.

4 Conclusions

In this paper, we showed how to use the FEM to compute the numerical
solutions of the PDE representation of an European put option pricing, in-
cluding cases when the local volatility o is not constant. We described such
local volatility through the classic CEV model presented in Section 3. We
also employ different mesh refinements, which help improve the accuracy of
our numerical solutions. The most successful mesh refinement is an extended
mesh [0, Sx] X [0, T| (Sois chosen to be a very large number, 30K) with ge-
ometric partition in the S direction and uniform partition in the T-direction.
We computed the errors in L*(D)- norm and L*°(D)- norm and showed the
high reduction factor of our errors when using such mesh refinement with
large number of points in both S-T directions. Since the investor mainly
concerns about the errors at time ¢ = 1, we also computed our errors in
L?(2)- norm and L*(£2)- norm and obtained very good results. In addition,
for cases when the option prices are highly volatile, which results in a large
value of the local volatility o(> 0.7), we apply the GLS stabilization method
on the same mesh refinement and achieve a sufficiently good approximation
to the exact solutions. For the cases with variable volatility o (that is, v # 0),
which implies there are no formulas to compute the exact solutions, the GLS
stabilization method is applied to compute the approximated prices of an
European put option. Finally, though different experiments, we find the
GLS combined together with our numerical scheme gives an good numerical
solutions without using very large values of N3 when —0.3 < v < 0, while
when v is highly positive, a similar result is achieved only by choosing the
number of subintervals in [S,, S| to be sufficiently large (for example, we
choose N3 = 2500 to obtain a good result).

For future developments, we would like to improve our numerical scheme
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to obtain a more accurate numerical solutions for the cases when + is suffi-
ciently large without increasing the number of subintervals in [S,, S,]. The
fast and precise evaluation for European style option with variable and large
local volatility, where no analytical solutions is known, still bear great op-
portunities for future numerical research.
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