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Abstract

CPS safety, defined as the system state remaining within a desired safe region, is

a critical property in applications including medicine, transportation, and energy.

Sensor faults and attacks may cause safety violations by introducing bias into the

system state estimation, which in turn leads to erroneous control inputs. In this

thesis, we propose a class of Fault-Tolerant Control Barrier Functions (FT-CBFs)

that provide provable guarantees on the safety of stochastic CPS. Our approach

is to maintain a set of state estimators, each of which ignores a subset of sensor

measurements that are affected by a particular fault pattern. We then introduce

a linear constraint for each state estimator that ensures that the estimated state

remains outside the unsafe region, and propose an approach to resolve conflicts be-

tween the constraints that may arise due to faults. We present sufficient conditions

on the geometry of the safe region and the noise characteristics to provide a desired

probability of maintaining safety. We then propose a framework for joint safety

and stability by integrating FT-CBFs with Control Lyapunov Functions. Our ap-

proach is validated through both numerical study and hardware implementation of

an obstacle avoidance case study using a Turtlebot wheeled robot.
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Chapter 1

Introduction

A cyber-physical system (CPS) is safe if it remains within a predetermined safe

region for all time. Safety is a fundamental requirement in critical applications

including medicine, transportation, and energy, in which safety violations can cause

catastrophic economic damage and loss of human life [1]. The need to ensure safety

in systems with dynamic environments, noisy and uncertain dynamics, and potential

human errors or malicious attacks has resulted in a substantial literature on design

and verification of safe CPS1 [2, 3].

Safety is an especially challenging problem when the system dynamics are af-

fected by faults and malicious attacks. Sensor faults occur when one or more sensors

used to measure the system state provide arbitrary, inaccurate readings. Sensor

faults affect safety in two ways. First, they may prevent the system from detecting

and preventing safety violations. Second, they may bias estimates of the system

state, leading to erroneous control signals that drive the true system state to an un-

safe operating point. Both of these cases are especially damaging when sensors are

compromised by malicious adversaries, who may deliberately design sensor signals

1To appear as: Andrew Clark, Zhouchi Li, Hongchao Zhang, Control Barrier Functions for Safe
CPS Under Sensor Faults and Attacks, the 59th IEEE Conference on Decision and Control 2020
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to evade detection while violating safety [4, 5]. There has been research attention

on detecting sensor faults [6] and attacks [7, 8], as well as ensuring stability [9, 10]

in the presence of sensor attacks.

In this thesis, we propose sufficient conditions for a control policy to guarantee

safety under one or more possible sensor faults. We develop our approach within

the framework of Control Barrier Functions (CBF) [11]. A CBF is a function of the

system state that grows infinitely large as the system approaches the unsafe region

so that ensuring safety is equivalent to ensuring that the CBF does not diverge to

infinity. An advantage of CBFs is that they can be readily integrated into existing

control policies by adding linear constraints on the control input.

We propose a class of Fault Tolerant Control Barrier Functions (FT-CBFs) for

CPS with sensor faults, which we construct as follows. When there is one possible

fault pattern, a straightforward approach is to add a CBF constraint on the state

estimate produced by the other, non-faulty sensors. Typically, however, there are

multiple possible fault patterns, each of which may cause a distinct set of sensors

to fail. This shortcoming can be addressed by maintaining a set of state estimators,

each omitting a set of sensors associated with one fault pattern, and then using

CBFs to ensure that each of the estimated states remains within the safe region.

Such an approach, however, may be impossible when faults occur and the state

estimates deviate due to the presence of the fault, making it impossible to satisfy

all CBF constraints using a single control input.

In order to resolve such conflicts, we maintain a second set of estimators, each of

which estimates the state using all sensors that do not belong to a given pair of fault

patterns. Given two constraints that conflict with each other, we compare each state

estimate to the corresponding estimator that excludes all sensors affected by both

fault patterns. If the difference between the baseline exceeds a given threshold, we
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relax the corresponding constraint. We make the following specific contributions:

• We construct FT-CBFs and derive sufficient conditions to ensure that safety

is satisfied with a desired probability.

• We consider half-plane and ellipsoidal safe regions and derive conditions on

the problem geometry that ensure that there no conflicts between CBFs.

• We compose CBFs with Control Lyapunov Functions (CLFs) to provide joint

guarantees on the safety and stability of a desired goal set under faults.

• We evaluate our approach via a numerical study. The proposed control pol-

icy ensured convergence to a desired goal set without violating safety in the

presence of a sensor attack.

The thesis is organized as follows. Section 2 reviews the related work. Section 3

states the problem formulation and gives background on CBFs. Section 4 proposes

a CBF-based control policy and gives sufficient conditions for safety. Section 5

proposes a framework for joint safety and stability via CBF-CLFs. Section 6 presents

simulation results. Section 7 concludes the thesis.
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Chapter 2

Related Work

Fault detection and isolation in control systems has been studied for decades. See

[12] for an in-depth treatment. Standard approaches include statistical hypothesis

testing for stochastic systems [13], unknown input observers for deterministic sys-

tems [14], and sliding-mode control [15, 16]. More recently, data-driven approaches

to fault tolerance have shown promise [17, 18]. Several of these works aim to guar-

antee stability in the presence of faults [19], which is related to but distinct from the

safety criteria we consider. While the approach of using Kalman filter residues to

identify potential faults is related to our conflict resolution approach, fault-tolerant

control via CBFs has not been studied.

Related to fault-tolerant control is resilient control in the presence of sensor

attacks, which differ from faults due to the adversary’s ability to evade detection

and bias the control to a desired operating point. A variety of schemes for detecting

compromised sensors and computing state estimates in the presence of compromised

sensor inputs have been proposed for deterministic and stochastic systems [20, 4,

21, 22, 23, 24, 25, 9, 26, 27, 28].

Safety verification of cyber-physical systems is an area of extensive research, with
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popular methods including finite-state approximations [29], barrier certificates [30],

simulation-driven approaches [31, 32], and counterexample-guided synthesis [33].

Among these methods, CBFs were proposed in [34]. CBFs for stochastic systems

were investigated in [35, 36]. CBFs for high relative degree systems were presented

in [37, 38, 39, 40, 41]. CBFs for safe reinforcement learning were introduced in

[42]. Applications of CBFs to specific domains such as multi-agent systems [43],

autonomous vehicles [44], and UAVs [45] have also been considered. None of these

existing works, however, incorporated the effects of faults and attacks.

5



Chapter 3

Preliminaries and Problem

Statement

This chapter presents the system model and problem statement. We then give

background on the Extended Kalman Filter and control barrier functions.

3.1 System Model and Problem Statement

Notations. For a set S, let int(S) and ∂S denote the interior and boundary of

S, respectively. For any vector v, we let [v]i denote the i-th element of v. We let

λ(A) denote the magnitude of the largest eigenvalue of matrix A, noting that this

is equal to the largest eigenvalue when A is symmetric and positive definite. When

the value of A is clear, we write λ.

We consider a nonlinear control system with state xt ∈ Rn and input ut ∈ Rp at

time t. The state dynamics are described by the stochastic differential equation

dxt = (f(xt) + g(xt)ut) dt+ σt dWt (3.1)
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where f : Rn → Rn and g : Rn → Rn×p are locally Lipschitz, σt ∈ Rn×n, and Wt is

an n-dimensional Brownian motion.

The system output is denoted as yt ∈ Rq. The output may be affected by one of

m faults. The set of possible faults is indexed as {r1, . . . , rm}. Each fault ri maps to

a set of affected observations F(ri) ⊆ {1, . . . , q}. We assume that F(ri)∩F(rj) = ∅

for i 6= j. Let r ∈ {r1, . . . , rm} denote the index of the fault experienced by the

system. The observation vector yt has dynamics

dyt = (cxt + at) dt+ νt dVt (3.2)

where c ∈ Rq×n, at ∈ Rq, νt ∈ Rq×q, and Vt is a q-dimensional Brownian motion. The

vector at represents the impact of the fault and is constrained by supp(at) ⊆ F(r).

Hence, if fault r occurs, then the outputs of any of the sensors indexed in F(ri) can be

arbitrarily modified by the fault. The sets F(r1), . . . ,F(rm) are known, but the value

of r is unknown. In other words, the set of possible faults is known, but the exact

fault that has occurred is unknown to the controller. Define f(x, u) = f(x) + g(x)u.

We assume that the system is controllable.

The detectability property is defined as follows.

Definition 1 The pair [∂f
∂x

(x, u), c] is uniformly detectable if there exists a bounded,

matrix-valued function Θ(x) and a real number η > 0 such that

wT
(
∂f

∂x
(x, u) + Θ(x)c

)
w ≤ −η||w||2

for all w, u, and x.

We make the following assumptions.

Assumption 1 The SDEs (3.1) and (3.2) satisfy the conditions:
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1. There exist constants β1 and β2 such that E(σtσ
T
t ) ≥ β1I and E(νtν

T
t ) ≥ β2I

for all t.

2. The pair [∂f
∂x

(x, u), c] is uniformly detectable.

3. Let φ be defined by

f(x, u)− f(x̂, u) =
∂f

∂x
(x− x̂) + φ(x, x̂, u).

Then there exist real numbers kφ and εφ such that

||φ(x, x̂, u)|| ≤ kφ||x− x̂||22

for all x and x̂ satisfying ||x− x̂|2 ≤ εφ.

We note that for observable linear systems, the conditions of Theorem 1 hold with

δ =∞. We further assume that, for each i, j ∈ {1, . . . ,m}, the pair [∂f
∂x

(x, u), c({1, . . . , q}\

(F(ri)∪F(rj)))] is uniformly detectable. In other words, if we compute an estimate

that does not incorporate data from sensors affected by any pair of faults, then

that estimate satisfies uniform detectability. The safe region of the system is a set

C ⊆ Rn defined by

C = {x : h(x) ≥ 0}, ∂C = {x : h(x) = 0} (3.3)

where h : Rn → R is twice-differentiable on C. We assume throughout the thesis

that x0 ∈ int(C), i.e., the system is initially safe.

Problem Statement: Given a set C defined as above and a parameter ε ∈ (0, 1),

construct a control policy that, at each time t, maps the sequence {yt′ : t′ ∈ [0, t)}

to an input ut and, for any fault r ∈ {r1, . . . , rm}, Pr(xt ∈ C ∀t) ≥ (1 − ε) when
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fault r occurs.

3.2 Background and Preliminary Results

The Extended Kalman Filter (EKF) for the system

dxt = (f(xt) + g(xt)ut) dt+ σt dWt (3.4)

dyt = cxt dt+ νt dVt (3.5)

is defined by

dx̂t = (f(x̂t) + g(x̂t)ut)dt+Kt(dyt − cx̂t),

where Kt = Ptc
TR−1

t and Rt = νtν
T
t . The matrix Pt is the positive-definite solution

to

dP

dt
= AtPt + PtA

T
t +Qt − PtcTR−1

t cPt

where Qt = σtσ
T
t and At = ∂f

∂x
(x̂t, ut). The following result describes the accuracy

of the EKF.

Theorem 1 ([46]) Suppose that the conditions of Assumption 1 hold. Then there

exists δ > 0 such that if σtσ
T
t ≤ δI and νtν

T
t ≤ δI, then for any ε > 0, there exists

γ > 0 such that

Pr

(
sup
t≥0
||xt − x̂t||2 ≤ γ

)
≥ 1− ε.

We next provide background and preliminary results on control barrier functions.

The following theorem provides sufficient conditions for safety of a stochastic system.

Theorem 2 For a system (3.4)–(3.5) with safety region defined by (3.3), define

hγ = sup {h(x) : ||x− x0||2 ≤ γ for some x0 ∈ h−1({0})}
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and ĥγ(x) = h(x) − hγ. Let x̂t denote the EKF estimate of xt, and suppose that

there exists a constant δ > 0 such that whenever ĥ(x̂t) < δ, ut is chosen to satisfy

∂h

∂x
(x̂t)f(x̂t, ut)− γ||

∂h

∂x
(x̂t)Ktc||2 +

1

2
tr

(
νTt K

T
t

∂2h

∂x2
(x̂t)Ktνt

)
≥ −ĥ(x̂t). (3.6)

Then Pr(xt ∈ C ∀t| ||xt − x̂t||2 ≤ γ ∀t) = 1.

The proof of Theorem 2 is very similar to the proof of Theorem 2 from [36] and

is omitted due to space constraints.

We call a function h satisfying (3.6) a Stochastic Control Barrier Function

(SCBF). Intuitively, Eq. (3.6) implies that as the state approaches the bound-

ary, the control input is chosen such that the rate of increase of the barrier function

decreases to zero. Hence Theorem 2 implies that if there exists an SCBF for a sys-

tem, then the safety condition is satisfied with probability (1− ε) when an EKF is

used as an estimator and the control input is chosen at each time t to satisfy (3.6).

10



Chapter 4

Proposed Safe Control Strategy

This chapter presents our proposed CBF-based approach to safe control. We first

describe the control policy and derive conditions for it to guarantee safety with

the desired probability. We then analyze these conditions for special cases of the

safe region. Finally, we discuss the computation of parameters associated with the

control policy.

4.1 Control Policy Definition

The intuition behind our approach is as follows. If the fault pattern r is known, then

safety can be guaranteed with probability (1− ε) by constructing an estimator that

ignores the sensor measurements from the set F(r), defining an SCBF, and then

applying a linear constraint to the control input derived from Eq. (3.6). Since the

fault pattern is unknown, we can instead maintain a set of m EKFs and m SCBFs,

each corresponding to a different possible fault pattern in {r1, . . . , rm}, and each

resulting in a different linear constraint on the control input.

The potential drawback of this approach, however, is that it may be infeasible

to select a control input that satisfies all m constraints simultaneously at time t,
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particularly when faulty sensor measurements cause the state estimates to diverge.

We therefore resolve conflicts between the constraints by defining a set of
(
m
2

)
EKFs,

each of which omits all sensors affected by either fault ri or fault rj for some i, j ∈

{1, . . . ,m}. These estimators are used to remove conflicting constraints.

The policy is defined formally as follows. Define ci to be the c matrix with the

rows indexed in F(ri) removed, yt,i to be equal to the vector y with the entries

indexed in F(ri) removed, and νt,i to be the matrix νt with rows and columns

indexed in F(ri) removed. Let Rt,i = νt,iν
T
t,i and Kt,i = P t,ic

T
i (Rt,i)

−1. Here P t,i is

the solution to the Riccati differential equation

dP t,i

dt
= At,iP t,i + P t,iA

T
t,i +Qt − P t,ic

T
i R
−1

t,i ciP t,i

with At,i = ∂f
∂x

(x̂t,i, ut). Define a set of m EKFs with estimates denoted x̂t,i via

dx̂t,i = (f(x̂t,i) + g(x̂t,i)ut) dt+Kt,i(dyt,i − cix̂t,i dt). (4.1)

Each of these EKFs represents the estimate obtained by removing the sensors af-

fected by fault ri. Furthermore, define yt,i,j, νt,i,j, ci,j, Rt,i,j, and Kt,i,j in an analo-

gous fashion with entries indexed in F(ri)∪F(rj) removed. We assume throughout

that the R matrices are invertible. We then define a set of
(
m
2

)
estimators x̂t,i,j as

dx̂t,i,j = (f(x̂t,i,j) + g(x̂t,i,j)ut) dt+Kt,i,j(dyt,i,j − ci,jx̂t,i,j dt). (4.2)

When F(ri) ∪ F(rj) = {1, . . . , q}, the open-loop estimator is used for x̂t,i,j.

We then select parameters γ1, . . . , γm ∈ R+, and {θij : i < j} ⊆ R+, δ > 0. The

set of feasible control actions is defined at each time t using the following steps:

1. Define Xt(δ) = {i : ĥi(x̂t,i) < δ}. Let Zt = Xt(δ). Define a collection of sets

12



Ωi, i ∈ Zt, by

Ωi ,

{
u :

∂hi
∂x

(x̂t,i)f(x̂t,i, ut)− γi||
∂h

∂x
(x̂t,i)Kt,ic||2

+
1

2
tr(νTt,iK

T
t,i

∂2hi
∂x2

(x̂t,i)Kt,iνt,i) ≥ −ĥi(x̂t,i)
}
. (4.3)

Select ut satisfying ut ∈
⋂
i∈Xt(δ)

Ωi. If no such ut exists, then go to Step 2.

2. For each i, j with ||x̂t,i − x̂t,j||2 > θij, set Zt = Zt \ {i} (resp. Zt = Zt \ {j})

if ||x̂t,i − x̂t,i,j||2 > θij/2 (resp. ||x̂t,j − x̂t,i,j||2 > θij/2). If
⋂
i∈Zt

Ωi 6= ∅, then

select ut ∈
⋂
i∈Zt

Ωi. Else go to Step 3.

3. Remove the indices i from Zt corresponding to the estimators with the largest

residue values yt,i − cix̂t,i until there exists ut ∈
⋂
i∈Zt

Ωi.

This policy attempts to select a control input that guarantees safety regardless of

the fault pattern that is experienced (Step 1). If no such input exists, then the set

of constraints is pruned by looking for constraints Ωi such that x̂t,i deviates from

x̂t,i,j by more than a threshold value, since such deviations are likely to be due to

faults. Meanwhile, if the fault pattern is ri, then the estimates x̂t,i and x̂t,i,j will

likely be close to one another for all t and j 6= i, since both estimators do not rely

on the faulted sensor. We note that these constraints are compatible with feedback

policies as well as more general history-based control policies.

At each time t, this policy requires maintaining m +
(
m
2

)
EKFs, checking

(
m
2

)
inequalities of the form ||x̂t,i − x̂t,i,j||2 > θij/2 in the worst-case, and checking the

feasibility of m linear inequalities.

The following result gives sufficient conditions for this control policy to guarantee

safety.
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Theorem 3 Define

hγi = sup
{
h(x) : ||x− x0||2 ≤ γi for some x0 ∈ h−1({0})

}
and ĥi(x) = h(x) − hγi. Suppose γ1, . . . , γm, and θij for i < j are chosen such

that the following conditions are satisfied:

1. Define Λi(x̂t,i) = ∂hi
∂x

(x̂t,i)g(x̂t,i). There exists δ > 0 such that for any X ′t ⊆

Xt(δ) satisfying ||x̂t,i − x̂t,j||2 ≤ θij for all i, j ∈ X ′t, there exists u such that

Λi(x̂t,i)u > 0 (4.4)

for all i ∈ X ′t.

2. For each i, when r = ri,

Pr(||x̂t,i − x̂t,i,j||2 ≤ θij/2 ∀j, ||x̂t,i − xt||2 ≤ γi ∀t) ≥ 1− ε. (4.5)

Then Pr(xt ∈ C ∀t) ≥ 1− ε for any fault pattern r ∈ {r1, . . . , rm}.

Proof: Suppose that r = ri. We will show that, if ||x̂t,i − xt||2 ≤ γi and

||x̂t,i − x̂t,i,j||2 ≤ θij/2 for all t, then ut ∈ Ωi holds whenever ĥi(x̂t,i) < δ. Hence

xt ∈ C for all t by Theorem 2.

At time t, suppose that ĥi(x̂t,i) < δ, so that i ∈ Xt(δ), and that ||x̂t,i− x̂t,i,j||2 ≤

θij/2. We consider three cases, namely (i) ||x̂t,j − x̂t,k||2 ≤ θjk for all j, k ∈ Xt(δ),

(ii) ||x̂t,i − x̂t,j||2 ≤ θij for all j ∈ Xt(δ), but there exist j, k ∈ Xt(δ) \ {i} such that

||x̂t,j − x̂t,k||2 > θjk, and (iii) ||x̂t,i − x̂t,j||2 > θij for some j ∈ Xt(δ).

Case (i): We will show that there exists u ∈ ∩j∈Xt(δ)Ωj, and hence in particular ut

14



satisfies Ωi. Each Ωj can be written in the form

Ωj = {u : Λj(x̂t,j)ut ≥ ωj} (4.6)

where ωj is a real number that does not depend on ut. Under the assumption 2) of

the theorem, there exists u satisfying (4.4) for all i ∈ Xt(δ). Choose

ut =

(
max
j
{|ωj|}/||u||2

)
u.

This choice of ut satisfies ut ∈
⋂
j∈Xt(δ)

Ωj, in particular ut ∈ Ωi.

Case (ii): In this case, Step 2 of the procedure is reached and constraints Ωj are

removed until all indices in Zt satisfy ||x̂t,j − x̂t,k||2 ≤ θjk. Since ||x̂t,i − x̂t,j||2 ≤ θij

already holds for all j ∈ Xt(δ), i will not be removed from Zt during this step. After

Step 2 is complete, the analysis of Case (i) holds and there exists a u which satisfies

all the remaining constraints, including Ωi.

Case (iii): Suppose j satisfies ||x̂t,i − x̂t,j||2 > θij. We have

θij < ||x̂t,i − x̂t,i,j + x̂t,i,j − x̂t,j||2

≤ ||x̂t,i − x̂t,i,j||2 + ||x̂t,i,j − x̂t,j||2 (4.7)

≤ θij/2 + ||x̂t,i,j − x̂t,j||2 (4.8)

where Eq. (4.7) follows from the triangle inequality and (4.8) follows from the

assumption that ||x̂t,i − x̂t,i,j||2 ≤ θij/2. Hence ||x̂t,j − x̂t,i,j||2 > θij/2 and j is

removed from Zt. By applying this argument to all such indices j, we have that i is

not removed during Step 2 of the procedure, and thus the analyses of Cases (i) and

(ii) imply that ut ∈ Ωi.

From these cases, we have that Ωi holds whenever ĥi(x̂t,i) < δ. Therefore, by

15



Theorem 2,

Pr(xt ∈ C ∀t|||x̂t,i − x̂t||2 ≤ γi, ||x̂t,i − x̂t,i,j||2 ≤ θij/2 ∀t) = 1

and Pr(xt ∈ C ∀t) > 1− ε by (4.5).

If functions h1, . . . , hm that satisfy the conditions of Theorem 3, then they are

referred to as Fault-Tolerant Control Barrier Functions (FT-CBF).

4.2 FT-CBF Construction

The conditions of Theorem 3 are not guaranteed to hold, and depend on the system

dynamics, level of noise, and the geometry of the safe region. In what follows, we

develop sufficient conditions for LTI systems with dynamics

dxt = (Fxt +Gut) dt+ σdWt. (4.9)

We consider two cases of the safe region, namely, safe regions defined by half-planes

and safe regions defined by ellipsoids. Since Eq. (4.5) depends on the accuracy of

the estimator instead of the set C, we will focus on satisfying constraint (4.4).

4.2.1 Half-plane Constraint with LTI System

We first consider constraints of the form h(x) = aTx− b. In this case, ∇ĥi(x) = aT

for all i and x, and hence Λi(x̂t,i) = aTG.

Lemma 1 Suppose that aTG 6= 0. Then at each time t, there exists u satisfying

(4.4).

Proof: For any values of x̂t,i, we can choose an index l ∈ {1, . . . , p} such that
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[aTG]l 6= 0, set [u]s = 0 for s 6= l and select [u]l > 0 if [aTG]l > 0 and [u]l < 0 if

[aTG]l < 0. Hence, for any values of x̂t,i we can choose u satisfying Eq. (4.4).

Next, we consider the case where aTG = 0. If the LTI system is controllable, then

there exists a minimum i such that aTF iG 6= 0. Define a set of functions h0, . . . , hi

as h0 = h(x),

hk+1(x) =
∂hk
∂x

Fx+
1

2
tr

(
σT
(
∂2hk
∂x2

)
σ

)
− γ||∂hk

∂x
(x)Kc||2 + hk(x).

Define

Ck = {x : hk(x) ≥ 0}.

The following result gives a sufficient condition for safety in this case.

Theorem 4 ([36]) Suppose that x0 ∈
⋂i
k=0 Ck and, for all t,

∂hi
∂x

g(x)u ≥ −∂hi
∂x

f(x)− 1

2
tr

(
σT
∂2hi
∂x2

σ

)
− γ||∂hk

∂x
(x)Kc||2 − hi(x). (4.10)

Then Pr(xt ∈ C ∀t) = 1. Furthermore, ∂hi
∂x
Gu = aTF iGu.

As a corollary to Theorem 4, we can choose an index l ∈ {1, . . . , p} such that

[aTF iG]l 6= 0, set [u]s = 0 for s 6= l, and select [u]l > 0 if [aTG]l > 0 and [u]l < 0 if

[aTG]l < 0. Hence a high relative degree half-plane constraint can be satisfied with

the desired probability as well.

4.2.2 Ellipsoid Constraint with LTI System

We next consider an ellipsoid constraint of the form C = {x : (x−x′)TΦ(x−x′) ≤ 1}

for some positive definite matrix Φ and x′ ∈ Rn, so that h(x) = 1−(x−x′)TΦ(x−x′).

We therefore have ĥi(x̂) = 1− hγi − (x− x′)TΦ(x− x′). The gradient of hi is then
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given by

∇hi(x) = −2((x− x′)TΦ).

In this case,

Λi(x̂t,i) = −2(x̂t,i − x′)TΦG.

We first consider the case where rank(G) = n. Define θ = max {θij : i < j} and

h = max {hγi : i = 1, . . . ,m}.

Proposition 1 Suppose θ ≤
√

2(1−h)

λ(Φ)
and rank(G) = n. Then there exists δ such

that (4.4) is satisfied.

Proof: Choose δ < 1 − h − 1
2
λθ

2
. We select u such that Gu = (x̂t,i − x′)

for some i ∈ X ′t. For this choice of u, we have that Λj(x̂t,j)Gu is proportional to

(x̂t,j − x′)TΦ(x̂t,i − x′). We therefore need to show that (x̂t,j − x′)TΦ(x̂t,i − x′) > 0.

Let zt,i = Φ1/2(x̂t,i − x′) and zt,j = Φ1/2(x̂t,j − x′). We have ||zt,i||22 ∈ (1 − δ −

h, 1− h), ||zt,j||22 ∈ (1− δ − h, 1− h), and

||zt,i − zt,j||2 = ||Φ1/2(x̂t,i − x̂t,j)||2

≤ ||Φ1/2||2||x̂t,i − x̂t,j||2 ≤ θ
√
λ

Furthermore,

(x̂t,i − x′)TΦ(x̂t,j − x′) = zTt,izt,j = ||zt,i||2||zt,j||2 cos ζ,

where ζ is the angle between zt,i and zt,j. By the law of cosines,

cos ζ =
||zt,i||22 + ||zt,j||22 − ||zt,i − zt,j||22

2||zt,i||2||zt,j||2

≥ 2(1− δ − h)− λθ2

2||zt,i||2||zt,j||2
> 0
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due to the choice of δ. We therefore have that Λj(x̂t,j)u < 0 for all j.

When rank(G) < n, the above approach may be insufficient to ensure the ex-

istence of an FT-CBF, since −(x̂t,i − x′) might not be in the span of G. We next

propose two sufficient conditions for an FT-CBF to guarantee safety. The first is

a condition on the state trajectory, which can be used to guide offline trajectory

planning. The second approach imposes additional constraints that reduce the size

of C but ensure the existence of an FT-CBF. Define H as the projection matrix onto

the span of Φ1/2G and define H as the projection onto the orthogonal space to the

span of Φ1/2G.

Proposition 2 Let r = ri and suppose there exist φ and δ such that

(x̂t,i − x′)TΦ1/2HΦ1/2(x̂t,i − x′)
(x̂t,i − x′)TΦ(x̂t,i − x′)

≥ φ (4.11)

whenever i ∈ Xt(δ). If θ
2 ≤ (1−δ−h)φ

λ
, then at each time t with i ∈ Xt(δ) there exists

u satisfying (4.4).

The proof of Proposition 2 is omitted due to space constraints.

One approach to ensuring safety in the presence of faults when rank(G) < n is

to introduce an auxiliary half-plane constraint of the form (x − x′)TΦv < 0, which

changes the safe region from C to C , C ∩ {x : (x − x′)TΦv < 0}. This constraint

ensures that there is always a control input u satisfying (4.4) at each time step, as

shown by the following theorem.

Theorem 5 At each time t, if x̂t,i ∈ C for all i, then there exists ut such that

∂hi
∂x

(x̂t,i)Gut < 0 (4.12)

−vTGut < 0 (4.13)
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Furthermore, if ut satisfies (4.12) and (4.13) at each time step, then Pr(xt ∈ C) >

1− ε.

Proof: Select ut such that Gut = v. The gradient associated with the auxil-

iary half-plane constraint is given by −vTv < 0, and hence (4.13) is satisfied. The

gradient for the ellipsoid constraint is equal to (x̂t,i − x′)TΦv < 0 by choice of v

for each i, and hence (4.12) is satisfied. Both equations imply that Eq. (4.4) holds

for both the set C and the set {x : (x − x′)TΦv < 0}. Thus xt ∈ C for all t with

probability at least (1− ε) by Theorem 3.

4.3 Computation of θ, γ, and hγ

The computation of γi, i = 1, . . . ,m, and θij for i < j is briefly considered as follows.

For the parameter γi, we observe that, for an LTI system, (xt − x̂t,i) is a Gaussian

random process with mean 0 and covariance matrix Pt, where Pt is the solution to

the Riccati equation

dP

dt
= FPt + PtF

T + σt − PtCTν−1
t,i CPt.

The minimum γ satisfying Pr(||x̂t,i − xt||2 > γ) < 1− ε can be computed based on

this distribution.

In the case of θij, a simple bound can be obtained by using the fact that (x̂t,i−xt)

and (x̂t,i,j−xt) are both Gaussian processes described above. Hence, ||x̂t,i−x̂t,i,j||2 ≤

||x̂t,i − xt||2 + ||x̂t,i,j − xt||2, and ||x̂t,i − x̂t,i,j||2 can be bounded above by deriving

bounds on each of the two terms.

Computation of hγ is described for half-plane constraints in [35]. For ellipsoid

constraints, we have the following closed form for hγ.
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Proposition 3 Suppose that h(x) = 1 − (x − x′)TΦ(x − x′) where Φ is a positive

definite matrix and x′ ∈ Rn. Then

hγ =


1, γ ≥ 1√

λ(Φ)

1−
(

1− γ
√
λ(Φ)

)2

, else

A proof can be found in the appendix.
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Chapter 5

Joint Safety and Stability

This chapter presents a framework for jointly ensuring safety and stability in systems

with faults via Control Lyapunov Functions (CLFs) and CBFs. Such an approach

has been widely used in fault-free scenarios. We first give the problem statement,

followed by our proposed joint CBF-CLF based policy and results on the CBF-CLF

construction.

5.1 Problem Statement and CBF-CLF Construc-

tion

The stability problem is stated as follows. Define the goal set G by G = {x : w(x) ≥

0} for some function w. The goal of the system is to asymptotically approach the set

G with some desired probability. Our approach towards satisfying this constraint is

through the use of stochastic Control Lyapunov Functions. A function V : Rn → R≥0

is a stochastic CLF for the SDE (3.1) if, for each x, we have

inf
u

{
∂V

∂x
f(x) +

∂V

∂x
g(x)u+

1

2
tr

(
σT
∂2V

∂x2
σ

)}
< −ρV (xt) (5.1)
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for some ρ > 0.

We next state a control policy that combines CLFs and CBFs to ensure safety

and stability. At each time t, the set of feasible control actions is defined as follows:

1. Define Yt(V ) = {j : V (x̂t,j) > V ), and initialize Ut = Yt(V ) Define a collection

of sets Υi, i ∈ Ut, by

Υi ,

{
u :

∂Vi
∂x

f(x̂t,i, u) + γi||
∂Vi
∂x

(x̂t,i)Ktc||2

+
1

2
tr

(
νTt,iK

T
t,i

∂2V

∂x2
(x̂t,i)Kt,iνt,i

)
< −ρV (x̂t,i)

}
(5.2)

for i = 1, . . . ,m. Select any

ut ∈

(⋂
i∈Zt

Ωi

)
∩

(⋂
j∈Ut

Υj

)
,

where Ωi is defined as in (4.3). If no such ut exists, go to Step 2.

2. For each i, j with ||x̂t,i − x̂t,j||2 > θij, set Zt = Zt \ {i} and Ut = Ut \ {i}

(resp. Zt = Zt \ {j} and Ut = Ut \ {j}) if ||x̂t,i − x̂t,i,j||2 > θij/2 (resp.

||x̂t,j − x̂t,i,j||2 > θij/2). If

(⋂
i∈Zt

Ωi

)
∩

(⋂
j∈Ut

Υj

)
6= ∅,

then select ut from this set. Else go to Step 3.

3. Remove the sets Ωi and Υi corresponding to the estimators with the largest

residue values until there exists a feasible ut.

This policy is similar to the CBF-based approach of Section 4, with additional con-

straints to satisfy the stability condition. This leads to another m linear inequalities.
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We omit the analysis of this scheme due to space constraints. A controller

that reaches a goal set defined by a function V while satisfying a safety constraint

C = {x : h(x) ≥ 0} can be obtained by solving the optimization problem

minimize uTt Rut

s.t. Λi(x̂t,j)ut ≤ ωj ∀j ∈ Xt(δ) (CBF)

Γi(x̂t,i)ut ≤ τ i ∀i ∈ Yt(V ) (CLF)

(5.3)

at each time step, where R is a positive definite matrix representing the cost of

exerting control.
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Chapter 6

Case Study

A simulation of our approach on a wheeled mobile robot is described as follows. We

first describe the system model. We then present the results of the simulation.

6.1 System Model

We consider a wheeled mobile robot (WMR) with dynamics


[ẋt]1

[ẋt]2

θ̇t

 =


cos θt 0

sin θt 0

0 1


[ωt]1

[ωt]2

+ wt (6.1)

where ([xt]1, [xt]2, θt)
T is the vector of the horizontal, vertical, and orientation coor-

dinates for the wheeled mobile robot, ([ωt]1, [ωt]2)T (the linear velocity of the robot

and the angular velocity around the vertical axis) is taken as the control input, and

wt is the process noise.

The feedback linearization [47] is utilized to transform the original state vector

and the WMR model into the new state variable xt = ([xt]1, [xt]2, [ẋt]1, [ẋt]2)T and
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the controllable linearized model



[ẋt]1

[ẋt]2

[ẍt]1

[ẍt]2


=



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0





[xt]1

[xt]2

[ẋt]1

[ẋt]2


+



0 0

0 0

1 0

0 1


[ut]1

[ut]2

+ w
′

t (6.2)

where w
′
t is the process noise. The following compensator is used to calculate the

input [ωt]1 and [ωt]2 into (6.1)

[ωt]1 =

∫ t+

t−
[ut]1 cos θt + [ut]2 sin θt dt (6.3)

[ωt]2 = ([ut]2 cos θt − [ut]1 sin θt)/[ωt]1. (6.4)

Here we assume that the observation for the orientation coordinate θt is attack-free

and noise-free, which enables feedback linearization based on the variable θt.

In the linearized model, we use the observation equation



[yt]1

[yt]2

[yt]3

[yt]4

[yt]5

[yt]6


=



1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1





[xt]1

[xt]2

[ẋt]1

[ẋt]2


+ at + vt (6.5)

where at and vt describe the impact of the attack and the measurement noise. Note

that there is one redundant sensor for the horizontal coordinate and one for the

vertical coordinate.

Here we let the safe region C = {xt : h(xt) = [xt]2 + 0.2[ẋt]2 + 0.05 ≥ 0, t ≥ 0}
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and the goal region G = {xt : ω(xt) = d − ||xt − xg||2 ≥ 0}, where xg is the center

and d = 0.05 is the radius of the goal region. In order to reach the goal region

without violating the safety constraint, we choose the CLF

V (x) = (xt − xg)TPd(xt − xg) (6.6)

where Pd = 108

1
d
I 0

0 I

PL

1
d
I 0

0 I

, PL is the solution of the Lyapunov equation

ATPL + PLA = −I, and I is the identity matrix [37], [48]. We set ρ = 1/(dλ̄(Pd))

in the linear constraints corresponding to CLF. The control input ut is computed

at each time step by solving (5.3) with R = I.

6.2 Numerical Study

(a) (b)

Figure 6.1: Evaluation of our proposed approach on a linearized wheeled mobile
robot model case study. (a) The robot trajectory converges to the goal set (green
circular region) without reaching the unsafe region (red rectangular region) in spite
of a constant error of a = 1. Meanwhile, a baseline scheme that computes CBF and
CLF constraints including the faulty sensor violates safety. (b) Lyapunov function of
the proposed approach shows lower values than Lyapunov function of the baseline,
and converges to zero, proving stability.

A numerical study of the proposed algorithm was performed using Matlab. We
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set m = 2 and F(r1) = 2, F(r2) = 4, which correspond to the redundant horizontal

and vertical observations. In order to test the safety and stability of the system,

an attack given by at = (0, 0, 0, 1, 0, 0)T is injected into the redundant vertical

observation [y]4. This input caused the robot to appear to be farther from the safe

region than it actually was, which could potentially cause the controller to violate

the safety constraint. We test the algorithm under the attack with start point x0 =

(1, 0, 0, 0)T and goal region G = {xt : ω(xt) = 0.05− ||xt − (0, 0, 0, 0)T ||2 ≥ 0}. The

noises w
′
t and vt are Gaussian processes with means identically zero and covariances

10−3I. The values of γi and θi,j are 0.001 and 0.045.

The results are shown in Fig. 6.1. In Fig. 6.1(a), we plot the first two dimensions

of the state, which describe the horizontal and vertical coordinates. Note that the

robot stays in the safe region and eventually reaches the goal region, and hence

satisfies safety and stability. For comparison, the baseline based on all sensors

(including the faulty sensors) defined in [35] resulted in a safety violation. As shown

in Fig. 6.1(b), the value of V (xt) for our proposed scheme is always smaller than

the value of V (xt) for the baseline, and the value of V (xt) eventually converges to

zero under our approach.
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Chapter 7

Conclusions and Future Work

This thesis proposed a new class of Control Barrier Functions (CBFs) for the safety

and stability of stochastic systems under sensor faults and attacks. Under our model,

the set of possible fault patterns is known, but the specific fault pattern experienced

by the system is unknown. Our approach was to compute a set of state estimators,

each of which excluded a set of possibly faulted sensors in order to mitigate the

impact of a particular fault pattern. We then constructed a CBF for each state

estimator, which guaranteed safety provided that a linear constraint on the control

input was satisfied at each time step. We proposed a scheme for using additional

state estimators to resolve conflicts between these constraints and derived sufficient

conditions for ensuring safety with a desired probability for linear systems under dif-

ferent geometries of the safe region, including half-plane and ellipsoidal regions. We

then showed how to compose our proposed CBFs with Control Lyapunov Functions

(CLFs) to achieve joint safety and stability under faults and attacks. Our approach

was validated using both numerical study and implementation on a wheeled mobile

robot. Future work in this area will include attacks that jointly affect sensors and

actuators, as well as analysis under arbitrary geometries and nonlinear dynamics.
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Appendix A

proofs

Proof of Proposition 3: We have that h̄γ = 1− α, where α is equal to

min (x− x′)TΦ(x− x′)

s.t. (x0 − x′)TΦ(x0 − x′) = 1

||x− x0||2 ≤ γ

(A.1)

Since Φ is positive definite, we can write Φ = CTDC where D is a diagonal matrix

with positive entries equal to the eigenvalues of Φ and C is an orthogonal matrix.

We assume without loss of generality that the diagonal entries of D are in decreasing

order, i.e., [D]11 ≥ [D]22 ≥ · · · ≥ [D]nn > 0. Introducing new optimization variables

z = C(x− x′) and z0 = C(x0 − x′), we have that (A.1) is equivalent to

min zTDz

s.t. ||z − z0||2 ≤ γ

(z0)TDz0 = 1

(A.2)
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First, note that if γ > 1√
λ(Φ)

, then we can select z0 as

[z0]i =


1√
λ(Φ)

, i = 1

0, else

and z = 0. Since this point is feasible, we have that the minimum value of (A.2) is

0 and hence the h̄ = 1 in this case.

Now, if γ ≤ 1√
λ(Φ)

, we analyze the Karush-Kuhn-Tucker conditions for (A.2).

The Lagrangian of (A.2) is equal to

L(z, z0, λ, µ) = zTDz + λ((z0)TDz0 − 1)

+ µ((z − z0)T (z − z0)− 1).

The stationary points of (A.2) therefore satisfy

(D + µI)z = µz0 (A.3)

µz = (λD + µI)z0 (A.4)

Eq. (A.4) implies that

z =
1

µ
(λD + µI)z0. (A.5)

Substituting this quantity into (A.3) and simplifying yields

(λD + (µλ+ µ)I)Dz0 = 0,

implying that z0 is an eigenvector of D with eigenvalue −µ(λ+1)
λ

. Applying (A.5)

yields that z = −λz0, and hence z is an eigenvector of D with eigenvalue µ(λ+ 1).

Obtaining z and z0 is therefore equivalent to solving for λ and µ.
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By complementary slackness, if ||z − z0||2 < γ, then µ = 0, and hence z = 0,

which is infeasible when γ ≤ 1√
λ(Φ)

. We therefore have that ||z − z0||2 = γ. Using

the fact that z = −λz0, we have ||z0||2 = γ
λ+1

.

Now, primal feasibility implies that (z0)TDz0 = 1. Furthermore, z0 is an eigen-

vector of D, and hence we have

(
γ

λ+ 1

)2

Dii = 1

for some i ∈ {1, . . . , n}. Solving for λ yields λ = γ
√
Dii−1. Since z0 is an eigenvector

of D with eigenvalue −µ(λ+1)
λ

, we must have

−µ(λ+ 1)

λ
=
√
Dii,

and thus

µ =
1− γ

√
Dii

γ
.

Substituting these values of µ and λ into the expressions for z0 and z yields that

the candidate optimal primal solutions to (A.2) are given by

z0 =
γ

λ+ 1
v =

1√
Dii

v (A.6)

z =
1− γ

√
Dii√

Dii

v, (A.7)

where v is an eigenvector of D with eigenvalue Dii. Hence

zTDz =
(

1− γ
√
Dii

)2

.

When γ
√
Dii < 1, this quantity is minimized when Dii is maximized, i.e., when

Dii = λ(Φ). This gives α = (1− γ
√
λ(Φ))2 and thus the desired result for h̄γ.
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