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Abstract

As machine learning becomes an increasingly relevant field being incorporated into

everyday life, so does the need for consistently high performing models. With these

high expectations, along with potentially restrictive data sets, it is crucial to be able

to use techniques for machine learning that increase the likelihood of success. Robust

Principal Component Analysis (RPCA) not only extracts anomalous data, but also

finds correlations among the given features in a data set, in which these correlations

can themselves be used as features. By taking a novel approach to utilizing the

output from RPCA, we address how our method effects the performance of such

models. We take into account the efficiency of our approach, and use projectors

to enable our method to have a 99.79% faster run time. We apply our method

primarily to cyber security data sets, though we also investigate the effects on data

sets from other fields (e.g. medical).
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Chapter 1

Introduction

Cyber-attacks occur every 39 seconds [Cuk18]. They are an on-going issue that

effects millions of people across all industries [Fir20], and the cost to recover from

attacks can be substantial. The amount of data and information that is required

to be sifted through in order to identify these cyber-attacks is too much for manual

processing to be effective. This is where Machine Learning (ML) can assist. There

are many ML applications that involve trying to solve the problem of intrusion

detection [YJ13, BG15, THLL09]. However, when ML is applied as a solution,

there can be many models to choose from, although only a few of those models

might perform well on a given problem, there are limited ways to improve on them.

One obvious option is to use a better data set, or one with more data. However, a

better or more complete data set may not exist. Another option is to use feature

engineering1, though this can often require substantial user expertise that may not

always be available.

We propose a new way of applying techniques for enhancing data sets with our

1A process of manipulating data to improve accuracy in a model or algorithm.
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Python software package, RPyCA2. This package combines several different types

of feature engineering and provides novel capabilities for creating new features, thus

expanding the data set. We use Robust PCA (RPCA) to accomplish this, since

unlike Principle Component Analysis (PCA), we’re not only able to extend and

utilize the capabilities of dimensionality reduction, but also detect anomalous values

in every feature. After the RPCA algorithm is run once on a data set, projectors

can then be used to execute this same task, but more efficiently, in place of the

RPCA algorithm. By running the original data set through RPCA and taking its

output, we can create new sets of data to be used in ML models.

Further, we propose that by using RPCA on a preprocessed data set, even the

simplest machine learning models will be able to show an increase in their perfor-

mance compared to using the same data set without using RPCA, and, that if given

minimal data, a decent model can still be achieved.

1.1 Related Work

Our research was inspired by the following cited papers [PKS18, CLMW11]. Our

technique appears to be a novel contribution for the application we are targeting.

There has been a publication on the reverse situation, improving RPCA with neural

networks [SS02], and much more on various applications using PCA as a dimension

reduction technique to assist neural networks [EY07, GDAD08, ZWN+09]. The

closest paper to our proposed thesis focuses on using RPCA with pulse-coupled

neural network to improve the accuracy in multi-focus image fusion [ZWN+09],

however its purpose is far off from ours.

2Link to public repository: https://github.com/Marissa4/RPyCA
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1.2 Inspirational Example

This example describes, in a more relatable sense, how computer networks operate.

In Figure 1.1, you live in the apartment building on the left, and have created the

best lasagna recipe ever. In order to share this recipe with your friends, you write

down the details of how to make this amazing lasagna, and enclose it in an envelope

addressed to your friend to send in the mail. You repeat this process to send all of

your friends a letter with this recipe. The letters are sent via the USPS3 mail service.

Many events can happen when sending a letter. As depicted on the right side of

Figure 1.1, two of your friends receive your letter without any issues. However,

one friend didn’t care for the recipe, so they throw it away. The third friend never

received your letter (denoted with the red ? in the figure). This wasn’t their fault

necessarily, the letter could have gotten lost in the mail system, the address could

have been incorrect, etc.

Figure 1.1: This example shows a letter being sent with a lasagna recipe to the
sender’s friends and the different scenarios that can happen to the letter in transit.

Now let’s focus on the friend who received your letter and kept it. They decide

3United States Postal Service.
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to make the lasagna and agree that it is the best lasagna they have ever had. They

write a thank you note and put it in an envelope addressed to you, to send back

to you. The same process you took to send your recipe occurs when your friend

sends you something. Relating this back to a computer network, we replace our

apartment example with an example of an office of computers in Figure 1.2.

Figure 1.2: This example shows a packet with the designated IP address, port
number, protocol number, and other information being sent to other computers on
the same network.

If you had typed up the lasagna recipe to send to your co-workers on your of-

fice computer, a similar process would occur as in our apartment example. In this

case, your envelope is what’s called a packet. Packets contain information needed

to send a communication from computer to computer. In order, from the list in

Figure 1.2, a packet contains Internet Protocol (IP) Addresses (source and desti-

nation), port numbers (source and destination), a protocol used, and other various

pieces of information, like the message content. IP Addresses can be related back

to our apartment example as your and your friends’ apartment building addresses.

They are used to define which computer is sending a communication to which other

computer(s). Port numbers can be the equivalent to your and your friends’ apart-

ment numbers. They specify more precisely than IP addresses which channel on

the computer is to receive the communication. The protocol can be compared with
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the mail system you chose to send the letter in (USPS, but could have been FedEx,

UPS, etc.). It defines how the communication will be sent and with what rules (e.g.

tracking). The other information would contain the lasagna recipe itself, along with

other details.

Packets do not always carry lasagna recipes in them. Malware and viruses are

dispersed to other computers by the sending of these packets. This can be thought

of as receiving blackmail, or something that is meant to cause harm to you and/or

your computer. An example of one such attack is a SQL4 injection. This involves

an attacker finding security flaws in an application and using malicious query state-

ments in order to retrieve information from a database they would otherwise not be

allowed access to. We classify the packet(s) involved as an attack, and label them

as bad packets. Unfortunately, it is not easy to avoid these as every communication

from outside of your computer could contain some form or part of an attack, and

there are ways to disguise them as good packets. However, we can’t pay people

to detect these bad packets manually; it’s too hard of a problem! This is where

machine learning techniques can come into play for solving this problem.

4SQL stands for Standard Query Language and it is a coding language that is used for building
and interacting with databases.
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Chapter 2

Background

We divide the background section into several subsections, each of which address an

important aspect of this thesis. In particular, this thesis draws from many disciplines

and we will extract from each the important concepts we need here. For example,

as our focus is on detecting attacks in cyber networks we begin by defining some

necessary concepts and terminology. We would like to emphasize the importance of

Section 2.4 as it contains novel accomplishments of this thesis. The following table

illustrates the notation used in the rest of this paper.

Notation Definition italic
y, ŷ Scalars are non-bold and italic
z, w Vectors are lower-case and bold
X Matrices are UPPER-CASE and bold
XT T indicates matrix transpose
Xs Indicates sub-matrix s of X
n Number of samples
m Number of features
k Number of reduced samples or features
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2.1 PCAP Files

Packet CAPture (PCAP) files are a type of file that contain various information

about the interactions between computers. This information can include the time

and date the communication occurred, the source and destination IP addresses, the

protocol used, the length of the communication, and more. The particulars are

gathered from the user recording the activity on their computer to a PCAP file.

This can be done through an application called Wireshark, a free and open-source

network protocol analyzer [ORB06]. Figure 2.1 shows the basic panes used to view

the information.

Figure 2.1: Wireshark Pane Layout. These panes can be customized to display all
information about the packets captured in the file.

Within a PCAP file, one can find the details on every communication (packets)

sent on the network. The Packet List Pane shows quick one-line summaries of each

packet in the capture. This would include the information listed above. The Packet

Details Pane provides, in a tree-like structure, a more comprehensive look at the

specifics of the packet, such as which protocol was used and with what settings. The

Packet Bytes Pane displays the raw captured data in both hexadecimal and text
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format. This information represents the payload of the packet that will be used by

the end user. Examples include text-encoded payloads for HTML representations

of web pages, and binary-encoded payload for video streams. These are useful as

each packet can be thought of from two perspectives. First, a packet is a transport

mechanism and contains information such as IP addresses and protocol type (e.g.

UDP versus TCP). On the other hand, each packet is also a part of some end user

process. At the simplest, a packet might be a “ping” packet which asks for a response

to check for if a certain computer exists on the network. At the other extreme, a

packet can be a small piece of a web page. For each type of detail, like the length

of the packet, the destination and source IP addresses, etc., they become a feature

for us to use in our data set.

However, some data sets provide packet flows. The main difference between

packet captures and packet flow captures is that the former shows every single com-

munication on a network, while the latter groups the sequences of communications

on a network. By specification, “a flow is a sequence of packets sent from a particular

source to a particular...destination that a node desires to label as a flow” [ACJR11].

This means that instead of seeing every single packet sent and received in, for exam-

ple, the action of sending an email to someone, we see a single “packet” summarizing

the details of that action, which we call a flow. This includes all of the basic details

of a packet we’ve covered previously, like the source and destination IP addresses

and port numbers, the protocol, etc., but it also provides other details not seen in

single packet captures, such as how many packets were sent (Total Forward Pack-

ets), how many were received (Total Backward Packets), how long the flow lasted

(Flow Duration), and other statistics on the packets within the flow.

For our work, it’s useful to turn this information into Comma Separated Values

(CSV) files as the data that is generated by Wireshark needs to be shared with other
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parts of the processing chain. Fortunately, the raw Wireshark data can be exported

into standard formats, such as CSV, for later being easily consumed by our Python

package.

2.2 PCA

Principal components analysis (PCA) is a standard method for modeling correla-

tion [BHPT06]. It’s used for reducing the number of dimensions (features) in a

data set. Specifically, PCA is most often implemented using the Singular Value

Decomposition (SVD). In particular, consider the following equation:

X = UΣVT (2.1)

where X ∈ Rm×n is a matrix of the data, U ∈ Rm×m is a unitary matrix, Σ ∈ Rm×n

is a diagonal matrix with non-negative real numbers on the diagonal, and VT ∈ Rn×n

is a unitary matrix.

It is important to note that Σ in equation 2.1 provides important structural

information about the data of interest, as do U and V. For example, many of the

items we measure are not independent of each other. One of the key research results

of this work is to study how the dependencies between our measured quantities

change depending on the presence or absence of an attack.

So, we can use the values on the diagonal in Σ to our advantage for extracting

the important features. The values on the diagonal vary from a few large singular

values to many smaller values close to zero. The order on the diagonal also serves

a purpose, as the largest value is the top, left-most value in the matrix. This order

9



can be seen in equation 2.2.

σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σn ≥ 0 (2.2)

We are the most interested in the larger singular values. We can reduce the Σ

matrix down to only the rows and columns that contain the largest sigma values on

the diagonal. This produces Σ̂, and the process can be viewed in Figure 2.2.

Figure 2.2: Example showing how the values on the diagonal of the Σ matrix are
reduced to only the largest σ values to produce Σ̂, and thus X̂.

We use Σ̂ to derive equation 2.1 to produce our equation for PCA:

X̂ = ÛΣ̂V̂T (2.3)

where X̂ ∈ Rm×n is a matrix of the data, a unitary matrix Û ∈ Rm×k, a diago-

nal matrix with non-negative, non-zero numbers on the diagonal Σ̂ ∈ Rk×k, and a

unitary matrix V̂T ∈ Rk×n.

PCA chooses a low dimensional representation of the input data X based upon

minimizing the squared distance between the original points and the low dimensional

points. Since PCA uses the square of the distance, outliers in the data can skew its

performance greatly. Given that our goal is to classify good packets from the bad

ones, PCA lacks what we need.

10



2.3 Robust PCA

Robust Principle Component Analysis (RPCA) can be used in the detection of

anomalous data. It is similar to PCA, as it also performs dimension reduction on a

data set, though it surpasses PCA in overcoming the interference of outliers in the

data.

One of the main input parameters we use to tune the RPCA algorithm is lambda

(λ). It is a float value normally greater than 0 and less than 1. The value for λ will

vary per data set, and ML model used. So for one model, a good λ value could be

0.07, while for another it could be 0.2. The process of choosing a λ value is not well

understood for the kinds of problems that we want to solve. There is an equation 2.4

that can be used to update λ based on the size of the data set.

λ = 1/ sqrt(max(m,n)) (2.4)

However, the theoretical assumptions behind this equation are different than those

in the problems we consider. A detailed analysis of this equation is beyond the scope

of this thesis, and we merely observed that 2.4 is not designed for the case where

one is using RPCA for feature engineering. Accordingly, we iterate over a range of

possible λ values to run our package on to find acceptable λ(s). Then, we scale down

that original range depending on the results to find the best λ possible. Although,

either method may not produce an optimal λ. To date, there is no existing algorithm

or method for computing an optimal λ for when the output of RPCA is used for

feature engineering.

One of the novel aspects of this work is to study RPCA and how λ effects how the
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data in the X matrix is dispersed. This is shown in equation 2.5 from [CLMW11].

minimize‖L‖∗ + λ‖S‖1 s.t. L + S = M (2.5)

where M represents our X matrix, S ∈ Rm×n is a sparse matrix (i.e. has only a

few non-zero entries), and L ∈ Rm×n. Here we can observe that λ effects the sparse

matrix and helps to distribute the data between the S and L matrices based on

its value. In addition, from the above equation L is constrained by the nuclear

norm 2.6 [Fan51], while S by the L1 norm in 2.7 [DZHZ06].

‖A‖∗ =

min(m,n)∑
i=1

σi(A) (2.6)

‖A‖p =

(
m∑
1

n∑
1

∣∣api,j∣∣
)1/p

(2.7)

While beyond the scope of this thesis, we observe that the RPCA equation can be ef-

ficiently solved using an alternating direction method of multipliers (ADMM) [PKS18].

The L matrix is computed from the PCA equation 2.3, and can be written as:

L = ÛΣ̂V̂T (2.8)

RPCA produces both Σ̂, a measure of how related measurements are, as well as

S, a measure of how some measurements are not related (the anomalous data). In

Figure 2.3, we can see a point that clearly sticks out in the S matrix that otherwise

would not seem significant in X. The same point is circled in red for the X and L

matrices in the figure.

Note that the real-world network data is quite low-dimensional, which means it’s

quite predictable. It is interesting to consider the decomposition in equation 2.5 in

12



Figure 2.3: A visual representation of the RPCA equation in the form of matrix
heat-maps for the same rows of packets from X, L, and S that highlight an anomaly.

the context of cyber-data. In particular, when thinking of the data that is generated

by a computer network it is not hard to imagine that various of the measurements

we make are quite correlated. Using RPCA, one can observe that the predictability

changes (as shown in S) are important in figuring out which features most attribute

to categorizing “an attack”. However, once the output of RPCA becomes two

dimensional, the produced S matrix may not contain all of the points where it thinks

there are “anomalies” in the data, and this information will bleed into the L matrix.

In order to handle this case, we will need to resort to using machine learning tools

to further extract the anomalies, which can be thought of as unsupervised feature

engineering.

2.4 Projectors

Inspired by RPCA, to help reduce the time complexity of our technique and increase

the flexibility of how a data set could be manipulated, we use projectors. They allow

us to be able to run the RPCA algorithm only once on a data set and apply the

same reduction to other data (such as testing data from an ML algorithm). From

the RPCA algorithm, the matrices Û, Σ̂, V̂T, and S are produced (see 2.5). Only

the matrix V̂T is used to further calculate the projection onto other matrices. In
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the following we develop the details of producing our desired projected matrices.

Our package takes a data set, given as a matrix X ∈ Rm×n, and splits it into

three matrices to use in the rest of the package. The purposes of them are

• Xtrain ∈ Rk×n runs on the RPCA algorithm and trains the ML models,

• Xvalidate ∈ Rk×n tunes the hyper-parameters e.g. λ,

• and Xtest ∈ Rk×n evaluates the performance of the ML models.

Since the RPCA equation (2.5), in part, uses the PCA equation (2.3), we can

benefit from this relationship between them. Specifically, with the calculation for X̂

of 2.3, we know this to be equal to the L matrix for 2.8. If we then take equation 2.3

and dot both sides with V̂ (see 2.9), we can obtain equation 2.10:

Xvalidate = ÛvalidateΣ̂validateV̂
T
validate

(Xvalidate)V̂train = (ÛΣ̂V̂T)V̂train (2.9)

XvalidateV̂train = ÛΣ̂ (2.10)

Where V̂train ∈ Rn×k is the transpose of V̂T
train ∈ Rk×n, and ÛΣ̂V̂T are from Xvalidate.

Note that in the equation above we assume that V̂T
validateV̂train = I. Of course, this

is, in general, not true. However, as long as it is approximately true we demonstrate

in Section 4 that the following procedure is effective in improving the capabilities

of ML algorithms. Taking equation 2.10, we can again dot both sides, though this

time with V̂T
train to obtain equation 2.11:

XvalidateV̂trainV̂T
train = ÛΣ̂V̂T

train (2.11)

However, we stop here and see something familiar! If we remember the note from
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earlier in this section, the right-hand side of 2.11 is equal to L in the RPCA equation

(2.5). Presented in equation 2.12:

Lvalidate = XvalidateV̂trainV̂T
train (2.12)

Where Lvalidate ∈ Rm×n is the projected L matrix of Xvalidate. From here it’s as

simple as using equation 2.5, and reordering the terms to produce:

Svalidate = Xvalidate − Lvalidate (2.13)

Where Svalidate ∈ Rm×n is a sparse matrix that is the projection of the S matrix of

Xvalidate. These equations, 2.12 and 2.13, are also used to calculate Xtest as well:

Ltest = XtestV̂trainV̂T
train

Stest = Xtest − Ltest

To summarize, we utilized this process in order to obtain Lvalidate and Svalidate

of Xvalidate instead of needing to rerun the RPCA algorithm on Xvalidate, and again

for Xtest. This gives us more flexibility and better time complexity in our method.
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Chapter 3

Methodology

The first step in answering our research question, “does using RPCA improve the

output performance of ML models?”, was to create the code base for running and

testing this theory. In this chapter, we detail the data sets utilized, and explain our

approach used to conduct the research.

3.1 Data Sets

We utilized three data sets in our research and experiments, listed below. The

primary data set used while developing our package is the first data set in the list

from the University of New Brunswick. Further details on each of these data sets

can be found in the following subsections, and tables of how we feature engineer the

data sets are in appendix A.

1. Intrusion Detection Evaluation Dataset (CICIDS2017), from the University of

New Brunswick1

1UNB link: https://www.unb.ca/cic/datasets/ids-2017.html
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2. MIT LL 2000 DARPA Intrusion Detection Scenario Specific Dataset; LLDOS

2.0.2 - Scenario Two2

3. Data set by MIT’s GOSSIS community initiative (From the WiDS Datathon

2020)3

3.1.1 Data Set One

The UNB data set was created to improve upon previous intrusion detection data

sets. It provides the most up-to-date common attacks, and is very realistic to true

network traffic in an every-day office setting. We chose to use this set as we wanted

to apply our research to cyber security applications, and as its purpose of creation

states, is very detailed and has a variety of benign and attack data. Thus, the goal

of using this data set is to classify normal packets from malicious packets.

From the data set, we run tests using the “Thursday Morning” CSV file, and

utilize most of the features provided. After some preliminary research and unusually

accurate results, we realized using the source IP address as a feature was causing

bias in our method, and thus do not include it as a feature. This is due to there

only being a few attacker IP addresses, compared to the many victim IP addresses.

We do use the destination IP address, though we spilt it into each of the address’

bytes (4), then one-hot encode those bytes. This is to reduce the number of overall

features. We also capped the source and destination port numbers to 1024 if they

were at or above this number to again help reduce the overall number of features,

and also since the ports 0 to 1023 are privileged ports4. See Table A.1 for more

details on every feature in the data set, and how we handle them.

2LLDOS link:https://archive.ll.mit.edu/ideval/data/2000/LLS_DDOS_2.0.2.html
3WiDS link: https://www.kaggle.com/c/widsdatathon2020/overview
4Meaning there are certain protocols reserved for these ports.
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3.1.2 Data Set Two

This data set is an enhanced version of an earlier data set produced by Joshua W.

Haines for DARPA5. It is comprised of five phases leading up to a DDoS attack6

by the adversary. We chose to use this set in order to compare with the work done

from the paper [PKS18]. Again, the goal of using this data set is to classify normal

packets from malicious packets.

It includes PCAP files that we converted into CSV files. To keep consistency

for comparison with the work done from [PKS18], we only use the first 3 phases

of the data and try to match as much as possible the same feature engineering

choices. We did only use the first byte of the source and destination IP addresses

for features to reduce the overall number of features. And we again capped the

source and destination port numbers to 1024 if they were at or above this number

to help reduce the overall number of features. Other than these changes, the rest of

the feature engineering choices stayed the same. See Table A.2 for more details on

every feature, and how we handle them.

3.1.3 Data Set Three

This data set emerged from the Kaggle competition for the 2020 Women in Data Sci-

ence (WiDS) Datathon, though was originally started with the GOSSIS7 Project [Fab17].

We participated in a team for the competition, and used our package to assist our

team members. This also gave us another variety of data sets to try. The goal of

5The first being MIT LL 2000 DARPA Intrusion Detection Scenario Specific Dataset; LLDOS
1.0 - Scenario One.
Link to site: https://archive.ll.mit.edu/ideval/data/2000/LLS_DDOS_1.0.html

6Distributed Denial of Service. The attack floods the victim’s computer system with traffic to
compromise the system.

7Global Open Source Severity of Illness Score
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this competition was to create a model that uses data from the first 24 hours of

intensive care to predict each patient’s mortality rate.

There were two main CSV files provided for the data set. One file had labelled

data, and the other was unlabelled. For our contributions with our package to the

competition, we performed basic feature engineering to all features. See Table A.3

for more details on every feature, and how we handle them.

3.2 Approach

Our package consists of a few distinct parts during execution. The first being the

use of a configuration file, for setting the parameters, operations, and data set of

the run. Second, the creation of the data matrix X, including the normalization

and randomization of the data. Third, the use of RPCA and projections on the

matrix X. And finally, the running and evaluation of machine learning models.

This process can also be viewed in the UML8 diagram below:

Figure 3.1: RPyCA Python Software Package structure.

8Unified Modeling Language.
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3.2.1 Main Program

For each split matrix from X, we utilize their corresponding output from RPCA and

the projectors to produce two other matrices to use as different feature engineering

techniques we test. These are, as depicted in Figure 3.2, the concatenation of the

L and S matrices, LS, and the concatenation of the X, L, and S matrices, XLS.

For example, if we take Xtrain, its matrices would only use Xtrain’s corresponding

L and S matrices from the RPCA algorithm.

Figure 3.2: Feature engineered matrices we test on ML models.

The purpose of using these matrices is to test our hypothesis that RPCA gen-

erated features assist in ML tasks. For the LS matrix, this can be thought of as

an expanded version of the X matrix (see equation 2.5). For XLS, this is taking

the original data, X, and appending extra information to each row (in our case,

the rows are packets). These are the matrices we run through the ML models, in

addition to each X matrix. When we describe our process in the following, it also

includes testing with the related LS and XLS matrices.

Our process of running our package is described in the following and can be

referenced in the “Main Algorithm” and “Testing” blocks in Figure 3.1. We start by

executing the RPCA algorithm on Xtrain. Then we project, as detailed in section 2.4,

onto the Xvalidate matrix, with the results from the RPCA algorithm. Then we assess

how Xtrain and Xvalidate perform on the ML model. Only if the results from the

ML model are good, do we move on to evaluate with the final matrix, Xtest. If a

20



result is not produced by any of our matrices, we repeat the above process with a

new lambda value. Else, we again project onto Xtest, then use Xtrain and Xtest on

the same model with the chosen hyper-parameters. This is where we retrieve our

final results.

If we want to reproduce an exact experiment or run, there is a logger included in

the package that creates log files for the user that saves the necessary information

in order to achieve this. Of course, if the package is to be used for commercial

purposes, the logger should be handled appropriately for security.

3.2.2 Configurations

Configurations of the package lie in the config.ini file in the project structure. This

file allows the user to define the necessary parameters for using the package. It

also allows for the ease of reuse on a variety of data sets. Users can save custom

configurations in the file by typing them into the file. Another option is users can

start off with the default configuration.

The default run is recommended for first-time runs of a data set, as it will perform

parameter tuning and testing for the best results and create a new configuration with

these parameters. This is, of course, a much longer run time of the package, but it

is a necessary step for determining the most optimal parameters and achieving the

best output from the models. Though this tuning and setting of the parameters can

be done manually, we cannot guarantee the benefits of using this package for this

case. It is also recommended to perform this initial run in a place where it will only

run once or run it once separately from the program being used to benefit from this

package. More details on the configuration file can be read in the appendix B.1.
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3.2.3 Pre-Processing

After the configuration is set, the code moves on to extracting the data from the

specified database file, then creates and normalizes the X matrix.9 We first specify

which columns from X to perform one-hot encoding on, then normalize each column,

and finally we randomize the rows to produce the three final matrices of X..

One-Hot Encoding

One pre-processing step we use is one-hot encoding. This technique is not needed for

every feature in our data, but it is useful for enabling those features it is performed

on to produce more meaningful information. The process involves taking a column

of data and transforming it into multiple columns with binary values. This means

that if we have a feature that is categorical, we can convert the data in that column

to be more useful to a model. This is necessary, as when a model receives a value

from a categorical feature, like “Breeds of Dogs”, the category of the actual strings

“German Shepard” and “Golden Bois” do not provide semantic value to the model.

However, if instead we make each breed of dog a feature, then assign a value of 1

if that row has that breed, 0 otherwise, and provide those features, we are able to

convey much more information to the model.

Categorical features do not have to be strings or words as data, they can be

numbers as well. One instance is when we handle port numbers.10 For example,

port 21 is for the File Transfer Protocol (FTP), while port 22 is for Secure Shell

(SSH). These ports vary greatly in function, even though these numbers are close

9While creating the X matrix, an accompanying y vector where y ∈ Rm×1 is also created for
the purpose of the corresponding labels. See the note in the appendix for Table A.1 for more
information.

10Port numbers are logical access channels for communication between two devices. In simpler
terms, they act as passages to allow communications to flow between two computers.
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numerically, they actually could not be any more different.

As shown in figure 3.3, equivalent port numbers are grouped together to create

their own column to be used in matrix X. These expanded columns replace where

the one original column was in the matrix. Continuing with this example, if we only

had those three port numbers appear in the Source Port column in X, then those

three columns would replace the one for Source Port in X.

Figure 3.3: The source port feature goes through one-hot encoding to produce the
three new features on the right-hand side of the figure.

We can also choose how to manipulate the groupings of the data in column by

grouping columns before one-hot encoding them. One example of a grouping could

be by grouping all protected ports, port numbers above 59414. Overall, by one-hot

encoding the data we can bring meaning to the categorical values of the column.

Normalization

Once all the columns from X have been pre-processed, we then normalize X using

Z-transform (a.k.a. z-score). We use the equation 3.1 to compute the score across

each column individually.

z =
xi − µi

σi
(3.1)

Where z ∈ Rm×1 is the resulting normalized column vector of the data, xi ∈
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Rm×1 is the ith column of matrix X that is being normalized, µi ∈ R is the mean of

the ith column of matrix X, and σi ∈ R is the standard deviation of the ith column

of matrix X.

It is necessary to do this as it prevents our columns of data from having large

skews between the values in the column. For example, as shown in figure 3.4, a

point that has a value of 1 compared with another point in the same column of 2

will distribute the two points from the mean. This type of normalization shifts and

scales the data over the original distribution centered around µ.

Figure 3.4: A feature in the data set is normalized based on the data in the column
by using the Z-transform equation 3.1

Randomization

After processing on X is complete, we use a random seed to randomly assign chosen

rows (data points) from X to create the new matrices referred to in Section 2.4. A

visual representation of how the randomization happens can be seen in Figure 3.5.

We perform this step to help ensure that the order of the data provides no statistical

relevance in how our model performs. That is to say, we do not rely on the order of

the data as a “feature”, and our technique performs independently of it.
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Figure 3.5: Rows on the left-hand side of the figure get reordered on the right-hand

side after randomization happens. This process is based on a randomly generated

seed.

Note that the actual size of these resulting matrices vary on the size of X, and

what parameters are used in the configuration file. A random seed is generated to

section which data points are included in each matrix. Once this is finished, the

matrices are returned and are ready to be used in the RPCA algorithm.
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Chapter 4

Results

In this section we evaluate the effectiveness of our technique across various machine

learning models and the data sets. General descriptions for each model can be found

in the appendix B.2. For the majority of our data sets, we use F1-score to evaluate

the performance output of the machine learning models1. We use the equation 4.1

to calculate the score of the model on each X matrix as well as on each feature

engineered matrix [VR79].

F1 =
2 · precision · recall
precision+ recall

(4.1)

This score can be derived from the confusion matrix. This is a table that can

be used to describe the performance of a model through showing the True Positives

(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) as shown

in Figure 4.1. To achieve the best performance for a data set that has binary classes,

there should only be values in the TP and TN squares.

We chose this metric as it takes into consideration both precision and recall, as

1AUC (Area Under the Curve) score was used for the WiDS competition.
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Figure 4.1: This figure from [Nar19] shows the different squares in a confusion
matrix. To achieve the best performance for a data set that has binary classes,
there should only be values in the TP and TN squares.

shown by the equation. This is useful as we perform binary classification2 on the

data sets, and need to consider whether the model chose packets that are relevant

(precision), and that all relevant packets are chosen (recall).

4.1 Main Data Set

As stated previously in Section 3.1, we utilize the Thursday Morning CSV file to

execute our testing on. We chose this file due to the nature of the cyber-attacks it

covers which include different varieties of Web Attacks3. The goal of these type of

attacks is to try to gain information users have out on the internet, like credit card

information or personally identifiable information (PII).

No matter the original size of the file, we restrict the size of our resulting matrices

to ratios of 0.2 of the total data set to the training set, and the remaining portion

of the data set to 0.4 for the validation set, and the remaining to the testing set.

2Classifying a normal packet as 0, and an attack as 1.
3Specifically Brute Force, XSS, and SQL Injections.
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These ratios are set in the configuration file. In addition to these ratios, we also set

in the configuration file a sample size of a quarter (0.25) of the entire file size to

cut down on total run time, and to show that little data is needed in order for our

method to perform well.

For the data used from this file, we roughly split the matrices as shown in

Table 4.1 below. These numbers are estimates, as with every run, a random number

will skew the exact count of normal and attack packets per matrix. To regulate the

distribution, we set those ratios for the training and validation data matrices. The

total sample size for the Thursday Morning file ends up being 42,592 packets.

Matrix Normal Attack Total
Train 8407 112 8519

Validate 20168 275 20443
Test 13453 177 13630

Table 4.1: These are estimates of the number of normal vs. attack packets used in
producing these results. The total is 42592 rows of data (a quarter of the actual
file).

Below in Table 4.2 we show the results from the file for each ML model.

Model Lambda Average F1 Score # of times outperformed X
X LS XLS (LS) (XLS)

dtree 0.0005 0.99572 0.48474 0.48026 0 0
gb 0.0002 0.99414 0.99442 0.99384 1 1

knn 0.004 0.86315 0.95181 0.92323 10 10
logreg 0.03 0.98912 0.55940 0.99324 1 7

nb 0.1 1.0 0.99863 1.0 0 0
pynn 0.0001 0.51398 0.49328 0.53868 2 7
rf* 0.07 0.0 0.04841 0.60229 1 2

svm 0.14 0.98544 0.98627 0.98571 2 1

Table 4.2: Results from running our method on the Thursday Morning file from the
UNB data set. Averages are from 10 randomly seeded runs. Shown in bold are the
max scores for each model.
* These models did not produce results for all 10 runs.

Seven out of the nine models we used benefited from using either the LS or
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XLS matrices. Some models did benefit more than others. In the case of Random

Forest (rf), while the X matrix was not able to detect the attacks, XLS did, and

with a decent accuracy of about 60%. For this data set, the K-Nearest Neighbors

(knn) model benefited the most from the other matrices, especially LS, as they

outperformed X for all ten runs. Further, it improved the accuracy of the model by

8.8%.

4.2 LLDOS Data Set

For this data set, we use as much of the data as possible while only including the

first three phases of the attack. For the data used from this file, we roughly split the

matrices as shown in Table 4.3 below. These numbers are estimates, as with every

run, a random number will skew the exact count of normal and attack packets per

matrix. To regulate the distribution, we set the ratios for the training and validation

data matrices as 0.3 and 0.6 in the configuration file. The total sample size for the

file ends up being 90,399 packets.

Matrix Normal Attack Total
Train 27095 25 27120

Validate 25293 18 25311
Test 37929 39 37968

Table 4.3: These are estimates of the number of normal vs. attack packets used in
producing these results. The total is 90399 rows of data.

Below in Table 4.4 we show the results from the file for each ML model.

While these results are not as substantial as the last data set, they do show some

interesting outcomes. Again, we see that Random Forest was not able to produce

any score for X, yet we were able to get scores from LS and XLS. We also observe

that for K-Nearst Neighbors it did not matter which matrix it was given. For some

other models, it is odd how X performs so well while the other matrices do not.
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Model Lambda Average F1 Score # of times outperformed X
X LS XLS (LS) (XLS)

dtree 0.22 0.99192 0.04409 0.03063 0 0
gb 0.2 0.99086 0.12855 0.16048 0 0

knn 0.005 0.87681 0.87681 0.87681 0 0
logreg 0.17 0.94884 0.91374 0.91374 1 1

nb 0.13 0.08061 0.06324 0.0613 2 2
rf 0.14 0.0 0.08564 0.09348 10 9

svm 0.17 0.88972 0.84607 0.85091 0 0
pynn 0.19 0.81826 0.15587 0.15484 0 0

Table 4.4: Results from running our method on the LLDOS data set. Averages are
from 10 randomly seeded runs. Shown in bold are the max scores for each model.

This could be due to having less features used. The values of lambda are also much

higher than the last model, and it is very possible there are better lambdas for these.

4.3 GOSSIS Data Set

Since this data set differs greatly from the others, results were gathered in a slightly

different manner. As stated in Section 3.1, the goal was to predict the patient’s

mortality rate. This was predicted as a percentage, and is thus not a binary clas-

sification. This percentage was evaluated using the AUC score metric, and not the

F1 score. As a team, we utilized LightGBM, a variant of Gradient Boosting, for

our model [KMF+17]. The total data set included 91,713 encounters (with different

patients).

The website the competition was hosted on produces the results for testing how

our model performed. These scores in Table 4.5 are produced from the website.

During the competition, the “Public” column was used to rank teams, and evaluated

team’s result on only half of the solutions file. The “Private” column was only

revealed to teams after the competition ended, and evaluated with the other half of
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Run X LS XLS
Private Public Private Public Private Public

1 0.87868 0.86403 0.87928 0.87103 0.87874 0.86547
2 0.87545 0.86225 0.87689 0.8666 0.8751 0.86358
3 0.87616 0.86075 0.87769 0.86395 0.87723 0.85904
4 0.87571 0.86197 0.87703 0.86591 0.87637 0.85955
5 0.87624 0.86147 0.87573 0.86017 0.87595 0.85878
6 0.87565 0.86193 0.87628 0.86085 0.87614 0.85932
7 0.8767 0.86104 0.87785 0.86398 0.87717 0.85975
8 0.87669 0.86191 0.87712 0.86286 0.87689 0.86045
9 0.87662 0.86601 0.8792 0.87016 0.87809 0.86359
10 0.87593 0.85836 0.87801 0.86417 0.87736 0.85985

Average 0.876383 0.861972 0.877508 0.864968 0.876904 0.860938

Table 4.5: Results from running our method on the GOSSIS data set with Light
GBM. Public scores were evaluated on half of the solutions file, while private scores
evaluated the other half. Each run was randomly seeded and scores were calculated
with AUC. Shown in bold are the max scores for each run. Overall, LS had the
highest average.

the solutions4.

Overall, LS had the highest average for this data set. We can see that given

other random seeds, like in runs 5 and 6, X sometimes did outperform LS and XLS.

However, over these ten runs, LS did have more consistently high scores.

4.4 Method Efficiency

The comparison of the efficiency of using projectors instead of the RPCA algorithm

can be seen in table 4.6. These results were gathered by running on the UNB data

set. We chose to set the λ value for these runs to 0.0431, as it is the average of the

λ values used for each model in Table 4.2. In order to produce these time results,

we again ran our method ten times, using a different random seed each time. On

4The solutions file is not directly available. In order to score the results, a file with the predic-
tions must be ran through the competition website.
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Run RPCA (seconds) Projector (seconds)

1 602.40 1.29
2 606.93 1.32
3 602.02 1.22
4 564.97 1.22
5 576.50 1.21
6 587.40 1.24
7 601.05 1.23
8 625.76 1.30
9 613.63 1.22
10 595.21 1.19

Average 597.58 1.24

Table 4.6: Comparison of running the RPCA algorithm vs. the projection equations
on the Thursday Morning file from the UNB data set. These were produced from
10 randomly seeded runs with a λ value of 0.0431.

average, the RPCA algorithm completed in 597.58 seconds, or roughly 10 minutes.

Contrarily, the projection equations completed in 1.24 seconds. That is a 99.79%

decrease in time! Based on the results gathered, it is quite obvious that projectors

are faster than the RPCA algorithm5.

4.5 Summary

These results help to further support our hypothesis. Although they are quite

minimal given the potential our technique can cover, they provide a nice base line

for future testing. We’ve shown that for some models where X does not score, our

matrices can, and that even by restricting our data sets to smaller sizes, we can

have the models continue to perform at a reasonable caliber. Additionally, by using

projectors, our method provides minimal time in order for use.

During the operation of our method, the RPCA algorithm can be run just once,

5The RPCA algorithm must be ran at least once in order to use projectors. After that initial
run, there is no need to run the algorithm again unless the data used to run the algorithm changes.
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and its output can be reused for later calculations, as with the projectors, which are

very efficient. This allows for our method to be conducted in a streaming fashion

(i.e., some small block of data arrives and is immediately processed to see if there

is an attack). Finally, the RPCA algorithm can be run “offline”, perhaps just once

a day, to supply new projections for any changes in the data.

Note that for the column in the first two data set results tables, “number of

times outperformed X”, only applies to F1 Scores that were larger than what X

scored during each run. This means that if LS or XLS met the same score as X it

would not be counted here. The averages columns in each table are meant to act

as a measure of consistency, as if for every run the model’s perform equally, their

average F1 scores would be the same. In some tables, we do not see this, although

the other matrices may have outperformed X a few times, or vice versa, as there

may have been runs where they performed less well, or not at all. Of course, all of

these results depend on the random numbers used.

Even when LS and/or XLS do not outperform X, our method can still benefit

the user. In the case for when LS and or XLS match the performance of X, this

information can be used to pin point the exact number of features needed to achieve

peak performance. For example, with the Support Vector Machine (svm) of the

LLDOS data set, at a lambda value of 0.17, the confusion matrices and calculated

f1 scores were identical. This is shown in Figure 4.2.
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Figure 4.2: This is the output from a run of the results of the SVM model from the

LLDOS data set with all matrices producing the same F1 score.

All of the matrices had the same performance metric, however, during the pro-

jection, only 84 out of 143 features were used. This is beneficial for users to know

as reducing the number of features can improve run time and the accuracy of the

model. More confusion matrices can be viewed in the appendix C.1.
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Chapter 5

Conclusion & Future Work

Our hypothesis is that with the enhanced data provided by RPCA, machine learning

models will perform better than if given the data as-is. As machine learning models

become more prevalent in day-to-day life, there will be a greater need to improve

these models quickly, reliably, and possibly with limited data available. Our method

provides relief to this area, and the ability to be utilized among virtually any model

and data set.

There are many suggestions for improvements that could be made on top of our

work. Applying the method to other machine learning models, other data sets, or

adding or removing pre-processing techniques are just some. One of the more zealous

advancements is to create an equation or algorithm for finding an optimal lambda

for RPCA. Another possible area would be to try the method with image data sets.

With our technique being very malleable there are many options for future work.
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Appendix A

Data Set Specifics

*Note: The Label feature in all tables is not used in the context of creating the X

matrix of data being performed on. It is used for creating the vector y for evaluation.

A.1 UNB Features Table

Order Feature Pre-process

1 Flow ID Not Used

2 Source IP Address Not Used

3 & 5 Source/Destination Port One-Hot

4 Destination IP Address One-Hot

6 Protocol One-Hot

7 Timestamp Not Used

8 Flow Duration Z-transform

9 & 10 Total Fwd/Bwd Packets Z-transform

11 & 12 Total Length Fwd/Bwd Packets Z-transform

13-20 Fwd/Bwd Packet Length Max/Min/Mean/Std Z-transform
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21 Flow Bytes/s Z-transform

22 Flow Packets/s Z-transform

23-36 Flow/Fwd/Bwd IAT Mean/Std/Max/Min & (Fwd/Bwd Total) Z-transform

37-40 Fwd/Bwd PSH/URG Flags One-Hot

41 & 42 Fwd/Bwd Header Length Z-transform

43 & 44 Fwd/Bwd Packets/s Z-transform

45-49 Packet Length Min/Max/Mean/Std/Variance Z-transform

50-57 FIN/SYN/RST/PSH/ACK/URG/CWE/ECE Flag Count One-Hot

58 Down/Up Ratio Z-transform

59 Average Packet Size Z-transform

60 & 61 Avg Fwd/Bwd Segment Size Z-transform

62 Fwd Header Length Z-transform

63-68 Fwd/Bwd Avg (Bytes/Bulk) / (Packets/Bulk) / (Bulk Rate) Z-transform

69-72 Subflow Fwd/Bwd Packets / Bytes Z-transform

73 & 74 Init Win bytes Forward/Backward Z-transform

75 act data pkt fwd Z-transform

76 min seg size forward Z-transform

77-80 Active Mean/Std/Max/Min Z-transform

81-84 Idle Mean/Std/Max/Min Z-transform

85 Label Not Used*

Table A.1: List of features and how they were encoded.
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A.2 LLS DDOS Features Table

*Note: The Label feature is not used when creating the X matrix, but only for the

y labels vector.

Encoding Feature Pre-process

0 or 1 Source IP Address One-hot

0 or 1 Destination IP Address One-Hot

0 or 1 Source Port One-Hot

0 or 1 Ports below 1024 One-Hot

0 or 1 Ports above 1024 One-Hot

0 or 1 Missing source port number One-Hot

0 or 1 Missing destination port number One-Hot

0 or 1 Protocol One-Hot

Numerical Number of bytes in the packet Z-transform

0 or 1 Label Not Used*

Table A.2: Selected features from the PCAP files

from the data set to keep consistent with feature list

in [PKS18].
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A.3 GOSSIS Features Table

*Note: The hospital death feature is the label feature in this data set, and is not

used when creating the X matrix, but only for the y labels vector.

Order Feature Name Pre-process

1 encounter id Not Used

2 patient id Not Used

3 hospital id Not Used

4 hospital death Not Used*

5 age Z-transform

6 bmi Z-transform

7 elective surgery Z-transform

8 ethnicity One-Hot

9 gender One-Hot

10 height Z-transform

11 hospital admit source One-Hot

12 icu admit source One-Hot

13 icu id Not Used

14 icu stay type One-Hot

15 icu type One-Hot

16 pre icu los days Z-transform

17 readmission status Not Used

18 weight Z-transform

19 albumin apache Z-transform

20 apache 2 diagnosis Z-transform
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21 apache 3j diagnosis Z-transform

22 apache post operative Z-transform

23 arf apache Z-transform

24 bilirubin apache Z-transform

25 bun apache Z-transform

26 creatinine apache Z-transform

27 fio2 apache Z-transform

28 gcs eyes apache Z-transform

29 gcs motor apache Z-transform

30 gcs unable apache Z-transform

31 gcs verbal apache Z-transform

32 glucose apache Z-transform

33 heart rate apache Z-transform

34 hematocrit apache Z-transform

35 intubated apache Z-transform

36 map apache Z-transform

37 paco2 apache Z-transform

38 paco2 for ph apache Z-transform

39 pao2 apache Z-transform

40 ph apache Z-transform

41 resprate apache Z-transform

42 sodium apache Z-transform

43 temp apache Z-transform

44 urineoutput apache Z-transform

45 ventilated apache Z-transform
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46 wbc apache Z-transform

47 d1 diasbp invasive max Z-transform

48 d1 diasbp invasive min Z-transform

49 d1 diasbp max Z-transform

50 d1 diasbp min Z-transform

51 d1 diasbp noninvasive max Z-transform

52 d1 diasbp noninvasive min Z-transform

53 d1 heartrate max Z-transform

54 d1 heartrate min Z-transform

55 d1 mbp invasive max Z-transform

56 d1 mbp invasive min Z-transform

57 d1 mbp max Z-transform

58 d1 mbp min Z-transform

59 d1 mbp noninvasive max Z-transform

60 d1 mbp noninvasive min Z-transform

61 d1 resprate max Z-transform

62 d1 resprate min Z-transform

63 d1 spo2 max Z-transform

64 d1 spo2 min Z-transform

65 d1 sysbp invasive max Z-transform

66 d1 sysbp invasive min Z-transform

67 d1 sysbp max Z-transform

68 d1 sysbp min Z-transform

69 d1 sysbp noninvasive max Z-transform

70 d1 sysbp noninvasive min Z-transform
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71 d1 temp max Z-transform

72 d1 temp min Z-transform

73 h1 diasbp invasive max Z-transform

74 h1 diasbp invasive min Z-transform

75 h1 diasbp max Z-transform

76 h1 diasbp min Z-transform

77 h1 diasbp noninvasive max Z-transform

78 h1 diasbp noninvasive min Z-transform

79 h1 heartrate max Z-transform

80 h1 heartrate min Z-transform

81 h1 mbp invasive max Z-transform

82 h1 mbp invasive min Z-transform

83 h1 mbp max Z-transform

84 h1 mbp min Z-transform

85 h1 mbp noninvasive max Z-transform

86 h1 mbp noninvasive min Z-transform

87 h1 resprate max Z-transform

88 h1 resprate min Z-transform

89 h1 spo2 max Z-transform

90 h1 spo2 min Z-transform

91 h1 sysbp invasive max Z-transform

92 h1 sysbp invasive min Z-transform

93 h1 sysbp max Z-transform

94 h1 sysbp min Z-transform

95 h1 sysbp noninvasive max Z-transform
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96 h1 sysbp noninvasive min Z-transform

97 h1 temp max Z-transform

98 h1 temp min Z-transform

99 d1 albumin max Z-transform

100 d1 albumin min Z-transform

101 d1 bilirubin max Z-transform

102 d1 bilirubin min Z-transform

103 d1 bun max Z-transform

104 d1 bun min Z-transform

105 d1 calcium max Z-transform

106 d1 calcium min Z-transform

107 d1 creatinine max Z-transform

108 d1 creatinine min Z-transform

109 d1 glucose max Z-transform

110 d1 glucose min Z-transform

111 d1 hco3 max Z-transform

112 d1 hco3 min Z-transform

113 d1 hemaglobin max Z-transform

114 d1 hemaglobin min Z-transform

115 d1 hematocrit max Z-transform

116 d1 hematocrit min Z-transform

117 d1 inr max Z-transform

118 d1 inr min Z-transform

119 d1 lactate max Z-transform

120 d1 lactate min Z-transform
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121 d1 platelets max Z-transform

122 d1 platelets min Z-transform

123 d1 potassium max Z-transform

124 d1 potassium min Z-transform

125 d1 sodium max Z-transform

126 d1 sodium min Z-transform

127 d1 wbc max Z-transform

128 d1 wbc min Z-transform

129 h1 albumin max Z-transform

130 h1 albumin min Z-transform

131 h1 bilirubin max Z-transform

132 h1 bilirubin min Z-transform

133 h1 bun max Z-transform

134 h1 bun min Z-transform

135 h1 calcium max Z-transform

136 h1 calcium min Z-transform

137 h1 creatinine max Z-transform

138 h1 creatinine min Z-transform

139 h1 glucose max Z-transform

140 h1 glucose min Z-transform

141 h1 hco3 max Z-transform

142 h1 hco3 min Z-transform

143 h1 hemaglobin max Z-transform

144 h1 hemaglobin min Z-transform

145 h1 hematocrit max Z-transform
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146 h1 hematocrit min Z-transform

147 h1 inr max Z-transform

148 h1 inr min Z-transform

149 h1 lactate max Z-transform

150 h1 lactate min Z-transform

151 h1 platelets max Z-transform

152 h1 platelets min Z-transform

153 h1 potassium max Z-transform

154 h1 potassium min Z-transform

155 h1 sodium max Z-transform

156 h1 sodium min Z-transform

157 h1 wbc max Z-transform

158 h1 wbc min Z-transform

159 d1 arterial pco2 max Z-transform

160 d1 arterial pco2 min Z-transform

161 d1 arterial ph max Z-transform

162 d1 arterial ph min Z-transform

163 d1 arterial po2 max Z-transform

164 d1 arterial po2 min Z-transform

165 d1 pao2fio2ratio max Z-transform

166 d1 pao2fio2ratio min Z-transform

167 h1 arterial pco2 max Z-transform

168 h1 arterial pco2 min Z-transform

169 h1 arterial ph max Z-transform

170 h1 arterial ph min Z-transform
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171 h1 arterial po2 max Z-transform

172 h1 arterial po2 min Z-transform

173 h1 pao2fio2ratio max Z-transform

174 h1 pao2fio2ratio min Z-transform

175 apache 4a hospital death prob Z-transform

176 apache 4a icu death prob Z-transform

177 aids Z-transform

178 cirrhosis Z-transform

179 diabetes mellitus Z-transform

180 hepatic failure Z-transform

181 immunosuppression Z-transform

182 leukemia Z-transform

183 lymphoma Z-transform

184 solid tumor with metastasis Z-transform

185 apache 3j bodysystem One-Hot

186 apache 2 bodysystem One-Hot

Table A.3: Complete list of features from the WiDS com-

petition data set and how they were encoded.
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Appendix B

Package Information

B.1 Configuration File

Table B.1 shows the parameters, in order, and their default values.

Parameter Name Value Restraints

lambdastartvalue 0.001 0 < n < 1
lambdaendvalue 0.1 0 < n < 1
lambdaincrvalue 0.001 0 < n < 1
csvfile datasets/defaultDataset.csv String; must end in .csv
labels Label String; name of label column
oneHot None String; must use , as delimiter
skip None String; must use , as delimiter
randomseed 0 n = -1 or any real number
samplesize 0 0 <= n < 1
ratiotraindata 1/3 0 < n and

n + ratiovaliddata != 1
ratiovaliddata 1/3 0 < n and

n + ratiotraindata != 1
mode 0 n = 0, 1, 2
models all String; See codes in

appendix B.2
logfile defaultRun String

Table B.1: List of the DEFAULT configuration parameters where n is a possible
value.
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The parameters lambdastartvalue, lambdaendvalue, and lambdaincrvalue

in the default configuration are all used to find an optimal lambda for the data

set. Lambda is used to adjust the output of the RPCA algorithm As their names

suggest, lambdastartvalue is the start value for lambda, lambdaendvalue is the

end value, and lambdaincrvalue is the amount to increment the lambda value by

on each iteration of the code.

The parameter csvfile defines the file path to and the file name of the csv file

that is the data set to be used. This should be changed by the user on the first run.

The onehot parameter is a list of column names that need one hot encoding.

Similarly, skip takes in the same type of input, and skips using the indexes in the

data.

The ratiotraindata and ratiovaliddata define how large the training and test-

ing portions of the data set should be, respectively. For example, with a data set

of 100 rows, and the ratiotraindata and ratiovaliddata each set to 1/3, then the

resulting training set size will be 33 rows, testing set size will be 33 rows, and the

validation set size will be 34 rows.

The mode parameter can be set to either 0, 1, or 2. mode controls the operation

for finding/using lambda. When equal to the default, 0, all lambda parameters are

used to search the default range (0.001 to 0.1 incremented by 0.001) to find an

optimal lambda. Setting the mode value to 1 is for when an optimal lambda has

previously been found. It will only use lambdastartvalue. This mode will run

the program once, which is ideal for development with the package and regular use.

Lastly, setting it to 2 is used for plotting graphs of a distribution on a single lambda.

Again, this only uses lambdastartvalue.

The models parameter defines which machine learning models to run. As the

default, the package will run all models. For descriptions and a list of these models
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and their corresponding codes for use, see appendix B.2.

Finally, the logfile parameter is used to set the name of the .log file to be saved

in the Logs folder under the project structure. If a file with this name does not

exist in the Logs folder, a new one will automatically be made on runtime. If the

file already exists, new log information will be appended to the file.
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B.2 Machine Learning Models

B.2.1 Machine Learning Model Codes

Model Code Parameters

Decision Tree dtree random state=0
Gradient Boosting gb

K-Nearest Neighbors knn
Logistic Regression logreg random state=0,

solver=‘lbfgs’,
multi class=‘multinomial’

(Gaussian) Naive Bayes nb
(PyTorch) Neural Network pynn

Random Forest rf max depth=2, ran-
dom state=0

Support Vector Machine svm gamma=“scale”
Run all models all

Run custom model (No code, leave empty)

Table B.2: List of codes for running the corresponding machine learning models. If
the Parameters column is empty for a model, we use the default parameters.

B.2.2 Decision Tree

This is one of the most simplistic machine learning models. It creates and uses a

decision tree structure to perform its predictions, for example, like the one depicted

in Figure B.1. The branches constitute the features in a given row of data while the

leaves are the class labels with 0 being a normal packet, and 1 being an attack [SH77].

B.2.3 Gradient Boosting

This model typically combines multiple varieties of weak prediction models, like

decision trees. It builds these models in stages, and allows for optimization of

various differentiable loss functions [Fri01].
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Figure B.1: In this figurative example, if a row of data contained a port number
equal to 21, and a protocol number not equal to 6, it would be classified as an attack.

B.2.4 K-Nearest Neighbors

This model performs classification by grouping the k closest training examples in

the feature space [Alt92]. For a row of data (a packet), based on the features in

that row, it will be classified based on what other already placed packets are closest

to it, and their classification. If a packet is nearest to a group of normal packets, it

will be classified as normal.

B.2.5 Logistic Regression

This model uses a logistic function to classify data. Although this model is not

traditionally meant for classification problems, it is able to achieve ways of classifying

by using a cutoff value. This will assign the data points that lie above this value to

one class, and the points below to another [KDG+02].

B.2.6 Naive Bayes

This model uses a probabilistic classifier based on applying Bayes’ Theorem [Joy03].

It uses naive independence assumptions between features in a row of data [R+01].
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B.2.7 Pytorch Neural Network

Pytorch is a framework that can be used to build neural networks [Ket17]. A neural

network uses what are called neurons to create a network to classify data. An

example of a simple network includes an input layer, a hidden layer, and an output

layer, like in Figure B.2. The connections between the neurons are weighted, and

an activation function controls the output.

Figure B.2: An example of a what a simple neural network could look like. The
lines between the neurons (circles) include weights.

B.2.8 Random Forest

This model constructs and employs multiple decision trees. When classifying a row

of data, the model outputs the mode of the classes [LW+02].

B.2.9 Support Vector Machine

This model maps the samples from the training data in space with as wide of a gap

as possible for dividing the two classes (normal packets and attack packets). New

samples (packets) get mapped in the same space based on their features, and are

assigned a class based on which side of the gap they fall on [SV99].
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Appendix C

Supplemental Results

C.1 Confusion Matrices

Here, we show two runs of confusion matrices from the results of the UNB data set.

In Figure C.1, we show the results of a run from the K-Nearest Neighbors model.

Figure C.1: This is the output from a run of the results of the KNN model from the
UNB data set.
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What is most interesting about these results, is that the F1 scores for all matrices,

X, LS, and XLS, all improved by a small amount in the testing set. Then, looking

at the confusion matrices themselves, we see that for the testing set (and mostly for

the validation set as well), all were able to correctly classify the malicious packets,

except there were varying degrees of how many benign packets were classified as

malicious.

In Figure C.2, we show the results of a run from the Decision Tree model. If

we remember back to Table 4.2, the dtree model performed the best when the X

matrix was used. Here in the figure however, we show that there were some runs

where the feature engineered matrices perform almost as well as X. And, even still,

all matrices improved their F1 scores in the testing set.

Figure C.2: This is the output from a run of the results of the Decision Tree model

from the UNB data set.
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