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Abstract 
 

The goal of this project is to analyze families of small graphs with one or two loops at various vertices. 

We examine their adjacency matrices and Kronecker Products and determine their corresponding spectra. 

We describe features of the graphs and derive the number of closed walks. The degrees of each vertex, 

expressions for the spectra of each graph, and the correlating multiplicities of the eigenvalues were found 

through pattern recognition and implementation of the Binomial Theorem and a generating function.  
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Chapter 1: Background 
 

Matrices with entries reduced by a specified modulus have been the interest of many investigations. We 

consider graphs and their adjacency matrices, which contain entries corresponding to the number of 

edges that connect two vertices of said graphs. An adjacency matrix of a simple graph is modulo 2. As 

our graphs are not simple, we reduce the adjacency matrices of the families of graphs to modulo 2 or 3 

because it helps to identify patterns. See Figure 1. For example, 7 reduced to modulo 3 will equal 1. For 

our purposes, we refer to pseudo-graphs, or graphs with loops, as graphs.  

The purpose of our work is to explore the properties of various graphs with the aim of finding formulas 

that calculate the total number of closed walks in a graph and the number of closed walks at a particular 

vertex. In pursuit of this objective, we mimic a paper written by Peter R. Christopher and J. W. Kennedy, 

Binomial Graphs and their Spectra (1997), while changing one key variable: the initial graph. We created 

many new graphs by manipulating their graph, 𝐵1, whose graph and adjacency matrix can be seen in 

Figure 1; 𝐵1 is an edge with a single loop at one vertex. We changed the number of vertices, varied the 

modulus, and created one or two additional loop(s) at various vertices, while keeping the graphs simple in 

all other respects.  

𝐴(𝐵1) = [
1 1
1 0

] 

Figure 1. Graph and Adjacency Matrix of 𝑩𝟏 

We then examined the adjacency matrices of each of the respective graphs. We define an entry in an 

adjacency matrix to be the number of edges that connects vertex 𝑣𝑖 to vertex 𝑣𝑗. Also, each loop 

contributes two to the total degree of a vertex. We determined the characteristic polynomials and the 

eigenvalues using MATLAB. A characteristic polynomial is an expression that when set equal to zero, 

the solutions are the eigenvalues of the adjacency matrix. 

The simple programming code is displayed in Figure 2, shown below, where A is an example of an 

adjacency matrix.  

 

Figure 2. MATLAB Code for Calculating the Characteristic Polynomial and its Solutions 

From there, we calculated the Kronecker product of each adjacency matrix, using modulo 2 or modulo 3, 

depending on the matrix. If we take the Kronecker product of an 𝑚 × 𝑛 matrix, 𝐴, with a 𝑝 × 𝑞 matrix, 𝐵, 

the result would be an 𝑚𝑝 × 𝑛𝑞 matrix, denoted by 𝐴 ⊗ 𝐵. If 

𝐴 = [
𝑎 𝑏
𝑐 𝑑

], 

then 

𝑣1 𝑣0 
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𝐴 ⊗ 𝐵 = [
𝑎𝐵 𝑏𝐵
𝑐𝐵 𝑑𝐵

]. 

Additionally, if the eigenvalues of 𝐴 are 𝜆𝑖 where 𝑖 = 1, 2, … , 𝑛 and the eigenvalues of 𝐵 are µ𝑗 where 

𝑗 = 1, 2, … , 𝑘, then the eigenvalues of 𝐴 ⊗ 𝐵 are 𝜆𝑖µ𝑗. We will denote a family of graphs as 𝑄𝑛 =

{𝑄1, 𝑄2, … }, where 𝑛 is one more than the number of Kronecker products taken.Suffice to say that 𝑄𝑛 is 

the graph with adjacency matrix 𝐴(𝑄1) ⊗ 𝐴(𝑄𝑛−1). 

Given the adjacency matrices, we calculated the 𝑛th Kronecker product of a graph, 𝑄𝑛, by multiplying the 

matrix 𝐴(𝑄𝑛−1) with the initial adjacency matrix, 𝐴(𝑄1), as corresponding with [1]. Next, we attempted 

to find a relationship between these new matrices and Pascal’s Triangle, the Fibonacci sequence, and 

other sequences with the help of the Online Encyclopedia of Integer Sequences.  

Further, we examined if there was a correlation among a graph’s eigenvalues with the next graph’s 

eigenvalues in the family and tried to identify a pattern in the number of closed walks. We did this by 

finding the characteristic polynomial of the initial adjacency matrix and solving for its solutions, or 

eigenvalues, and their multiplicities. The multiplicity of an eigenvalue is the number of times an 

eigenvalue occurs as a solution to a characteristic polynomial. For example, the matrix  

𝐴(𝑍) = [
1 1
1 1

], 

has a characteristic polynomial of 𝜆2 − 2𝜆 and eigenvalues of 𝜆 = 0 and 2 with both values having a 

multiplicity of 1, or 𝑚(0) = 1 and 𝑚(2) = 1. Whereas, the matrix  

𝐴(𝑌) = [
1 0
0 1

], 

has a characteristic polynomial of 𝜆2 − 2𝜆 + 1 and eigenvalues of 𝜆 = 1 and 1 with 𝑚(1) = 2. From 

here, we determined a pattern for the eigenvalues of each adjacency matrix and their multiplicities. For 

the families with determinable eigenvalues and their corresponding multiplicities, we used a generating 

function to find the number of closed walks for said graph. A generating function is a power series where 

its coefficients denote an infinite sequence of numbers [2]. In our case, this infinite sequence is the 

number of closed walks of fixed length in a graph. If the eigenvalues were irreducible or we could not 

determine their multiplicities, we found an explicit formula for the number of closed walks. Similarly, we 

were able to formulate an equation which shows the number of closed walks at a particular vertex, 𝑣0. 

There are various fields of applications of graph theory including physics, civil engineering, chemistry, 

and data science. More specifically, the applications range from reducing traffic flow by developing road 

maps to creating a dynamic structure of molecules which help to accurately model atoms’ locations. 



 
 

3 
 

Chapter 2: Introduction to Family C 
 

For each non-negative integer 𝑛, we define 𝐶𝑛 to have the vertex set 𝑉𝑛 = {𝑣𝑗: 𝑗 = 0, 1, … , 2𝑛 − 1}. The 

edge cardinality of 𝐶𝑛, or the number of edges, is |𝐸𝐶| =
1

4
(3𝑛+1 + 1). Obviously, |𝑉𝑛| = 2𝑛. We take 

(0
0
) = 1. Thus, 𝐶1 has two loops at 𝑣0, but is otherwise a simple graph as shown in Figure 3.  

       𝐴(𝐶1) = [
2 1
1 0

] 

Figure 3. Graph and Adjacency Matrix of 𝑪𝟏 

We used modulo 3 for 𝐴(𝐶1) which has two vertices, as the use of modulo 2 would result in a graph too 

trivial to be of interest. We used modulo 2 for the adjacency matrices of the other six initial graphs, as 

they all have three or four vertices. However, as these other graphs have no multiple edges, meaning more 

than one edge incident to two vertices, or multiple loops on any one vertex, their matrices would contain 

only 0’s and 1’s no matter the modulus. 

Also, for 𝑛 > 1 and each 𝑘 = 1,… , 𝑛 − 1, 𝐶𝑛 has (𝑛
𝑘
) vertices of degree 3 × 2𝑘−1, a single vertex, 𝑣𝑛−1, 

of degree 1, and a single vertex, 𝑣0, of degree 3 × 2𝑛−1 + 2 if n is odd or 3 × 2𝑛−1 + 1 if n is even. Thus, 

if n is even, the sum of the degrees of vertices in 𝐶𝑛 is  

1 + ∑ (
𝑛

𝑘
) ×  3 × 2𝑘−1

𝑛−1

𝑘=1

+ (3 × 2𝑛−1 + 1 ) =  2 + 3 ∑ (
𝑛

𝑘
) × 2𝑘−1

𝑛

𝑘=1

, 

= 2 −
3

2
+

3

2
∑ (

𝑛

𝑘
) × 2𝑘

𝑛

𝑘=0

, 

and one more if n is odd. The next step is easily shown through the Binomial Theorem,  

∑ (
𝑛

𝑘
)𝑥𝑘

𝑛

𝑘=0

= (𝑥 + 1)𝑛, 

which will equal 

=  
1

2
(3𝑛+1 + 1). 

Thus, as with all matrices, if we repeatedly take the Kronecker product of a matrix with itself, it “exhibits 

a self-similarity.” Meaning, there is a pattern within each iteration of matrices where the matrix is mapped 

onto the original matrix. However, unlike any other family of graphs we will discuss, each entry in 𝐴(𝐶𝑛) 

is reduced to modulus three as mentioned above. 

𝑣1 𝑣0 
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[
 
 
 
 
 
 
 
2 1
1 0

1 2
2 0

1 2
2 0

0 0
0 0

1 2
2 0

2 1
1 0

2 1
1 0

0 0
0 0

1 2
2 0

2 1
1 0

2 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0]

 
 
 
 
 
 
 

 

Figure 4. Adjacency Matrix of 𝑪𝟑 

Thus, if we take 𝐴(𝐶0) = [1], then, for each 𝑛 ≥ 1, the adjacency matrix of the family, 𝐶𝑛, reduced 

modulo three is 

𝐴(𝐶𝑛) = [
2𝐴(𝐶𝑛−1) 𝐴(𝐶𝑛−1)

𝐴(𝐶𝑛−1) 0
] = [

2 1
1 0

] ⊗ 𝐴(𝐶𝑛−1) = 𝐴(𝐶1) ⊗ 𝐴(𝐶𝑛−1). 

 

 

 

 

 

 

Figure 5. Graph of 𝑪𝟑 

 

2.1 Spectra of Family C 
 

Since we will take 𝐴(𝐶𝑛) modulo three, it is a bit more complicated than any of the other matrices we will 

discuss in this paper. As it happens, the set of eigenvalues, also called the spectrum of a matrix, has two 

distinct patterns; one when 𝑛 is odd and one when 𝑛 is even. Thus, we must consider these two separate 

cases. We denote the spectrum of a graph 𝐺 as Ʌ(𝐺). 

Theorem CI: When 𝑛 is odd, the set of the eigenvalues at a given 𝑛 is 

Ʌ(𝐶𝑛) = {(−1)
𝑛+1
2

+𝑗(𝑎𝑗 ± 𝑏𝑗√2) } 𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,… ,
𝑛 + 1

2
. 

The multiplicities of the eigenvalues for odd 𝑛 are as follows: 

𝑚(𝜆𝑜𝑑𝑑 𝑛) = (
𝑛

𝑝
)  𝑤ℎ𝑒𝑟𝑒 𝑝 =

𝑛 − 1

2
+ 𝑗. 

The constants, 𝑎𝑗 and 𝑏𝑗, have a recursive relationship with each other; the succeeding term in the 

sequence relies on the preceding terms.  

𝑣0 

𝑣1 

𝑣4 𝑣2 

𝑣6 

𝑣5 

𝑣3 𝑣7 
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𝑎𝑗+1 = 3𝑎𝑗 + 4𝑏𝑗 𝑤ℎ𝑒𝑟𝑒 𝑎1 = 1 𝑎𝑛𝑑 𝑏1 = 1, 

𝑏𝑗+1 = 2𝑎𝑗 + 3𝑏𝑗 𝑤ℎ𝑒𝑟𝑒 𝑎1 = 1 𝑎𝑛𝑑 𝑏1 = 1. 

For example,  

𝑎2 = 3𝑎1 + 4𝑏1,    𝑏2 = 2𝑎1 + 3𝑏1, 

𝑎2 = 3 + 4 = 7.    𝑏2 = 2 + 3 = 5. 

𝑚(−1 ± √2) = (
3

2
) = 3, 

𝑚(7 ± 5√2) = (
3

3
) = 1. 

Thus,  

Ʌ(𝐶3) = {(−1)
3+1
2

+𝑗𝑎𝑗 ± 𝑏𝑗√2 }  𝑤ℎ𝑒𝑟𝑒 𝑗 = 1, 2, 

= {−1 ± √2
(3)

, 7 ± 5√2
(1)

}. 

These equations can be written explicitly, where we find the value of each constant given the number of 

Kronecker product iterations (i.e. without relying on the preceding terms). 

Lemma CI: The explicit forms of 𝑎𝑗 and 𝑏𝑗 for the eigenvalues of 𝐴(𝐶𝑛) for odd 𝑛 are: 

𝑎𝑗 = −(
1 − √2

2
) (3 + 2√2)

𝑗
− (

1 + √2

2
) (3 − 2√2)

𝑗
, 

𝑏𝑗 = (
2 − √2

4
) (3 + 2√2)

𝑗
+ (

2 + √2

4
) (3 − 2√2)

𝑗
. 

Proof: From the recursive formulas stated above, we know  

𝑎𝑗+2 = 3𝑎𝑗+1 + 4𝑏𝑗+1, 

𝑎𝑗+2 = 3𝑎𝑗+1 + 4(2𝑎𝑗 + 3𝑏𝑗), 

𝑎𝑗+2 = 3𝑎𝑗+1 + 8𝑎𝑗 + 12(
𝑎𝑗+1 − 3𝑎𝑗

4
), 

𝑎𝑗+2 = 6𝑎𝑗+1 − 𝑎𝑗. 

Now, we assume the solution is homogenous and of the form, 𝑎𝑗 = 𝑐𝑟𝑗. Thus, 

𝑐𝑟𝑗+2 = 6𝑐𝑟𝑗+1 − 𝑐𝑟𝑗, 

0 = 𝑟2 − 6𝑟 + 1, 
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𝑟 = 3 ± 2√2. 

Substituting each solution of 𝑟 into the homogenous equation, 𝑎𝑗 = 𝑐1𝑟1
𝑗 + 𝑐2𝑟2

𝑗. Applying the initial 

conditions, we obtain 

𝑎1 = 𝑐1(3 + 2√2) + 𝑐2(3 − 2√2) = 1, 

𝑎2 = 𝑐1(3 + 2√2)
2
+ 𝑐2(3 − 2√2)

2
= 7. 

Now, we solve for the constants. From the first equation, 

𝑐2 =
1 − 𝑐1(3 + 2√2)

3 − 2√2
, 

𝑐1(3 + 2√2)
2
+ (

1 − 𝑐1(3 + 2√2)

3 − 2√2
) (3 − 2√2)

2
= 7, 

𝑐1(16 + 12√2) = 4 + 2√2, 

𝑐1 = −(
1 − √2

2
). 

−(
1 − √2

2
) (3 + 2√2) + 𝑐2(3 − 2√2) = 1, 

𝑐2(3 − 2√2) =
1 − √2

2
, 

𝑐2 =
1

2(1 − √2)
= −(

1 + √2

2
). 

Therefore, 

𝑎𝑗 = −(
1 − √2

2
) (3 + 2√2)

𝑗
− (

1 + √2

2
) (3 − 2√2)

𝑗
. 

We repeat the past steps to solve for 𝑏𝑗. 

𝑏𝑗+2 = 2𝑎𝑗+1 + 3𝑏𝑗+1, 

𝑏𝑗+2 = 2(3𝑎𝑗 + 4𝑏𝑗) + 3𝑏𝑗+1, 

𝑏𝑗+2 = 6(
𝑏𝑗+1 − 3𝑏𝑗

2
) + 8𝑏𝑗 + 3𝑏𝑗+1, 

𝑏𝑗+2 = 6𝑏𝑗+1 − 𝑏𝑗 . 
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Just like for 𝑎𝑗, we assume the solution is homogenous and of the form, 𝑏𝑗 = 𝑑𝑟𝑗. Consequently, the 

solutions are the same, 𝑟 = 3 ± 2√2, but 𝑏𝑗 has different initial conditions.  

𝑏1 = 𝑑1(3 + 2√2) + 𝑑2(3 − 2√2) = 1, 

𝑏2 = 𝑑1(3 + 2√2)
2
+ 𝑑2(3 − 2√2)

2
= 5. 

𝑑2 =
1 − 𝑑1(3 + 2√2)

3 − 2√2
, 

𝑑1(3 + 2√2)
2
+ (

1 − 𝑑1(3 + 2√2)

3 − 2√2
) (3 − 2√2)

2
= 5, 

𝑑1(16 + 12√2) = 2 + 2√2, 

𝑑1 =
2 − √2

4
. 

(
2 − √2

4
) (3 + 2√2) + 𝑑2(3 − 2√2) = 1, 

𝑑2(3 − 2√2) =
2 − √2

4
, 

𝑑2 =
2 + √2

4
. 

Therefore, 

𝑏𝑗 = (
2 − √2

4
) (3 + 2√2)

𝑗
+ (

2 + √2

4
) (3 − 2√2)

𝑗
. ∎ 

 

Theorem CII: When 𝑛 is even, the expression for the eigenvalues is as follows: 

Ʌ(𝐶𝑛) = {(−1)
𝑛
2
+𝑘(𝑎𝑘 ± 𝑏𝑘√2)}  𝑤ℎ𝑒𝑟𝑒 𝑘 = 0,… ,

𝑛

2
. 

The multiplicities of the even eigenvalues are 

𝑚(𝜆𝑒𝑣𝑒𝑛 𝑛) = (
𝑛

𝑞
)  𝑤ℎ𝑒𝑟𝑒 𝑞 =

𝑛

2
+ 𝑘. 

Interestingly, the odd and even eigenvalues share the same recursive formulas. However, they 

have different explicit formulas because of different initial conditions.  

𝑎𝑘+1 = 3𝑎𝑘 + 4𝑏𝑘  𝑤ℎ𝑒𝑟𝑒 𝑎0 = 1 𝑎𝑛𝑑 𝑏0 = 0, 
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𝑏𝑘+1 = 2𝑎𝑘 + 3𝑏𝑘 𝑤ℎ𝑒𝑟𝑒 𝑎0 = 1 𝑎𝑛𝑑 𝑏0 = 0. 

For example, 

𝑎2 = 3𝑎1 + 4𝑏1,    𝑏2 = 2𝑎1 + 3𝑏1, 

𝑎2 = 3 + 0 = 3.    𝑏2 = 2 + 0 = 2. 

𝑚(−1) = (
2

1
) = 2, 

𝑚(3 ± 2√2) = (
2

2
) = 1. 

Thus,  

Ʌ(𝐶2) = {(−1)
2
2
+𝑘𝑎𝑘 ± 𝑏𝑘√2 }  𝑤ℎ𝑒𝑟𝑒 𝑘 = 0, 1, 

= {−1(2), 3 ± 2√2
(1)

}. 

Note, the eigenvalues of the original matrix are factors of 𝑟. This will be true for every matrix we see in 

the paper and will be the reason this method has difficulties when using matrices with eigenvalues that 

cannot be simplified to an algebraic form. 

Lemma CII: The explicit forms of 𝑎𝑘 and 𝑏𝑘 for the eigenvalues of 𝐴(𝐶𝑛) for even 𝑛 are: 

𝑎𝑘 =
1

2
(3 + 2√2)

𝑘
+

1

2
(3 − 2√2)

𝑘
, 

𝑏𝑘 =
√2

4
(3 + 2√2)

𝑘
−

√2

4
(3 − 2√2)

𝑘
. 

Proof: As with Lemma CI, we assume the solution is homogenous and of the form, 𝑎𝑘 = 𝑐3𝑟3
𝑘 + 𝑐3𝑟3

𝑘, 

Thus, we apply the initial conditions and obtain 

𝑎0 = 𝑐3 + 𝑐4 = 1, 

𝑎1 = 𝑐3(3 + 2√2) + 𝑐4(3 − 2√2) = 3. 

𝑐4 = 1 − 𝑐3, 

𝑐3(3 + 2√2) + (1 − 𝑐3)(3 − 2√2) = 3, 

3𝑐3 + 2√2𝑐3 + 3 − 2√2 − 3𝑐3 + 2√2𝑐3 = 3, 

4√2𝑐3 = 2√2, 

𝑐3 =
1

2
. 
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1

2
+ 𝑐4 = 1, 

𝑐4 =
1

2
. 

 

Therefore,  

𝑎𝑘 =
1

2
(3 + 2√2)

𝑘
+

1

2
(3 − 2√2)

𝑘
. 

Again, we apply the initial conditions to 𝑏𝑘, and find 

𝑏0 = 𝑑3 + 𝑑4 = 0, 

𝑏1 = 𝑑3(3 + 2√2) + 𝑑4(3 − 2√2) = 2. 

𝑑4 = −𝑑3, 

𝑑3(3 + 2√2) − 𝑑3(3 − 2√2) = 2, 

3𝑑3 + 2√2𝑑3 − 3𝑑3 + 2√2𝑑3 = 2, 

𝑑3 =
√2

4
. 

𝑑4 = −
√2

4
. 

Therefore, 

𝑏𝑘 =
√2

4
(3 + 2√2)

𝑘
−

√2

4
(3 − 2√2)

𝑘
. ∎ 

Also, the number of distinct eigenvalues is 𝑛 + 1, and the sum of the eigenvalues at a particular 𝑛 is 2𝑛. 

 

2.2 Number of Closed Walks of Family C 
 

Now that we have calculated the eigenvalues of 𝐴(𝐶𝑛), we are ready to compute the number of closed 

walks on 𝐶𝑛. By definition, the characteristic polynomial of 𝐶𝑛 is 

𝑃(𝐶𝑛; 𝑥) = ∏(𝑥 − 𝑤1
𝑗𝑤2

𝑛−𝑗)
(𝑛

𝑗)
𝑛

𝑗=0

 𝑤ℎ𝑒𝑟𝑒 𝑤1 = 1 + √2 𝑎𝑛𝑑 𝑤2 = 1 − √2. 
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𝑤1 and 𝑤2 are the eigenvalues. We will find the number of closed walks of length ℎ in 𝐶𝑛 by using 

Lemma CIII. In Lemma CIII, we are reproducing the result from [1] for 𝐶𝑛. 

Lemma CIII: In the generating function, denoted by 𝑊(𝐺; 𝑡), the coefficient of 𝑡ℎ is the number of 

closed walks of length ℎ in a graph, 𝐺. 

𝑊(𝐺; 𝑡) =
𝑃′ (𝐺;

1
𝑡
)

𝑡𝑃 (𝐺;
1
𝑡)

 𝑤ℎ𝑒𝑟𝑒 𝑃′(𝐺; 𝑥) =
𝑑

𝑑𝑥
𝑃(𝐺; 𝑥) [2]. 

Proof: 

𝑃(𝐶𝑛; 𝑥) = ∏(𝑥 − 𝑤1
𝑗𝑤2

𝑛−𝑗)
(𝑛

𝑗)
𝑛

𝑗=0

. 

𝑙𝑛(𝑃(𝐶𝑛; 𝑥)) = ∑(
𝑛

𝑗
) × 𝑙𝑛(𝑥 − 𝑤1

𝑗𝑤2
𝑛−𝑗)

𝑛

𝑗=0

, 

𝑃′(𝐶𝑛; 𝑥)

𝑃(𝐶𝑛; 𝑥)
= ∑

(𝑛
𝑗
)

𝑥 − 𝑤1
𝑗𝑤2

𝑛−𝑗

𝑛

𝑗=0

, 

𝑃′ (𝐶𝑛;
1
𝑡)

𝑡𝑃 (𝐶𝑛;
1
𝑡)

= ∑
(𝑛

𝑗
)

1 − 𝑤1
𝑗𝑤2

𝑛−𝑗𝑡

𝑛

𝑗=0

. 

From here, we can see the function is an infinite geometric series as it is in the form, 
𝑎

1−𝑟
, where  

𝑟 = 𝑤1
𝑗𝑤2

𝑛−𝑗𝑡. 

𝑊(𝐶𝑛; 𝑡) = ∑ ∑ (
𝑛

𝑗
) (𝑤1

𝑗𝑤2
𝑛−𝑗𝑡)

ℎ
∞

ℎ=0

𝑛

𝑗=0

, 

= ∑ (∑(
𝑛

𝑗
)𝑤1

𝑗ℎ𝑤2
(𝑛−𝑗)ℎ

𝑛

𝑗=0

)𝑡ℎ

∞

ℎ=0

. 

Because the inner summation is the Binomial Theorem, 

∑(𝑤1
ℎ + 𝑤2

ℎ)𝑡ℎ

∞

ℎ=0

. ∎ 

Therefore, the total number of closed walks of length ℎ in 𝐶𝑛 is (1 + √2)
ℎ

+ (1 − √2)
ℎ

. This result is 

consistent with the result in [1] but with a different 𝜑 as the series are similar. By manipulating 

𝑤1
𝑗𝑤2

𝑛−𝑗, as shown below, we can see it is interchangeable with (−1)𝑗𝜑𝑛−2𝑗 where 𝜑 = 1 − √2. 
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𝑤1
𝑗𝑤2

𝑛−𝑗 = (1 + √2)
𝑗
(1 − √2)

𝑛−𝑗
, 

= (−
1

1 − √2
)

𝑗

(1 − √2)
𝑛−𝑗

, 

= (−1)𝑗 (
1

1 − √2
)

𝑗

(1 − √2)
𝑛−𝑗

, 

= (−1)𝑗(1 − √2)
𝑛−2𝑗

= (−1)𝑗𝜑𝑛−2𝑗. 

Along with the total number of closed walks in 𝐶𝑛, we determined the total number of closed walks in 𝐶1 

at 𝑣0. 

Theorem CIII: The number of closed walks at 𝑣0 of length ℎ in 𝐶1. 

𝑎ℎ = (
√2

4
) (1 + √2)

ℎ+1
− (

√2

4
) (1 − √2)

ℎ+1
, 

and the recursive formula is 𝑎ℎ+1 = 2𝑎ℎ + 𝑎ℎ−1 where 𝑎0 = 1 and 𝑎1 = 2. 

Proof: As the solution is homogeneous by definition, it’s of the form 𝑎ℎ = 𝑐𝑟ℎ. Thus, 

𝑐𝑟ℎ+1 = 2𝑐𝑟ℎ + 𝑐𝑟ℎ−1, 

0 = 𝑟2 − 2𝑟 − 1, 

𝑟 = 1 ± √2. 

Notice the solutions of 𝑟 are eigenvalues of 𝐶1. 

𝑎ℎ = 𝑐1(1 + √2)
ℎ

+ 𝑐2(1 − √2)
ℎ
. 

Using the initial conditions we can see  

𝑐1 + 𝑐2 = 1, 

𝑐1(1 + √2) + 𝑐2(1 − √2) = 2. 

𝑐2 = 1 − 𝑐1, 

𝑐1(1 + √2) + (1 − 𝑐1)(1 − √2) = 2, 

𝑐1 + √2𝑐1 + 1 − √2 − 𝑐1 + √2𝑐1 = 2, 

2√2𝑐1 = 1 + √2, 
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𝑐1 =
1 + √2

2√2
. 

𝑐2 = 1 − (
1 + √2

2√2
), 

𝑐2 = −(
1 − √2

2√2
). 

Therefore, the final formula for the number of closed walks of length ℎ in 𝐶1 at 𝑣0 is 

𝑎ℎ = (
1 + √2

2√2
)(1 + √2)

ℎ
− (

1 − √2

2√2
)(1 − √2)

ℎ
. 

𝑎ℎ = (
√2

4
) (1 + √2)

ℎ+1
− (

√2

4
) (1 − √2)

ℎ+1
. ∎ 

We will next show an inductive proof that shows 𝐴𝐿
𝑖𝑗 gives the number of walks of length 𝐿 from 𝑖 to 𝑗. 

These are well-known results of linear algebra.  

Proof: 𝐴1 is trivial since it is the adjacency matrix. Assume it holds for 𝐴𝑘. 

𝐴𝑘+1
𝑖𝑗 = (𝐴𝑘 ∙ 𝐴)

𝑖𝑗
= ∑ 𝐴𝑘

𝑖𝑚 𝐴𝑚𝑗

𝑁

𝑚=1

, 

= 𝐴𝑘
𝑖1 𝐴1𝑗 + 𝐴𝑘

𝑖2 𝐴2𝑗 + ⋯+ 𝐴𝑘
𝑖𝑁 𝐴𝑁𝑗, 

= 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑙𝑘𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑘 + 1. [8] 

Theorem CIV: The number of closed walks of length 𝐿 in arbitrary family Q is 

(∑𝐴𝐿
𝑖𝑖

𝑁

𝑖=1

)

𝑛

= (∑𝜆𝑖
𝐿

𝑁

𝑖=1

)

𝑛

. [8] 

Proof: The number of closed walks of length 𝐿 in 𝑄1 is 

∑𝐴𝐿
𝑖𝑖

𝑁

𝑖=1

= 𝑡𝑟(𝐴𝐿) = 𝑡𝑟(( ѴɅѴ−1)𝐿) = 𝑡𝑟(ѴɅ𝐿Ѵ−1) = 𝑡𝑟(Ѵ−1ѴɅ𝐿) = 𝑡𝑟(Ʌ𝐿) = ∑𝜆𝑖
𝐿

𝑁

𝑖=1

. 

We can diagonalize 𝐴 into ѴɅѴ−1 because the matrix is symmetric. Then we use the cyclic property of 

the trace. Now, we will show the number of closed walks of length 𝐿 in 𝑄𝑛. 

∑(𝐴 ⊗ 𝐴 ⊗ …⊗ 𝐴)𝐿
𝑖𝑖

𝑁

𝑖=1

= 𝑡𝑟[𝐴 ⊗ 𝐴 ⊗ …⊗ 𝐴]𝐿 , 

= 𝑡𝑟[(𝐴 ⊗ 𝐴 ⊗ …⊗ 𝐴) × (𝐴 ⊗ 𝐴 ⊗ …⊗ 𝐴) × …× (𝐴 ⊗ 𝐴 ⊗ …⊗ 𝐴)]. 
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By the mixed product property of matrices, 

= 𝑡𝑟[(𝐴 × 𝐴 × …× 𝐴) ⊗ (𝐴 × 𝐴 × …× 𝐴) ⊗ …⊗ (𝐴 × 𝐴 × …× 𝐴)]. 

= 𝑡𝑟[𝐴𝐿 ⊗ 𝐴𝐿 ⊗ …⊗ 𝐴𝐿]. 

By the trace product of the Kronecker product, 

= 𝑡𝑟(𝐴𝐿) × 𝑡𝑟(𝐴𝐿) × …× 𝑡𝑟(𝐴𝐿), 

= [𝑡𝑟(𝐴𝐿)]𝑛, 

= (∑𝜆𝑖
𝐿

𝑁

𝑖=1

)

𝑛

. ∎ 

The number of closed walks from 𝑣0 to 𝑣0 is of the same form. Therefore, the formula for the number of 

closed walks of length ℎ in 𝐶𝑛 at 𝑣0 is 

(𝑎ℎ)𝑛 = ((
√2

4
) (1 + √2)

ℎ+1
− (

√2

4
) (1 − √2)

ℎ+1
)

𝑛

. ∎ 

Please note, it is important to distinguish ℎ from 𝑛; ℎ is the number of times we use matrix multiplication, 

and 𝑛 is the number of times we take the Kronecker product.  
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Chapter 3: Introduction to Family D 
 

We define 𝐷𝑛 to have the vertex set 𝑉𝑛 = {𝑣𝑗: 𝑗 = 0, 1, … , 3𝑛 − 1} and |𝑉𝑛| = 3𝑛. The edge cardinality of 

𝐷𝑛 is |𝐸𝐷| =
1

2
(5𝑛 + 1). 

       𝐴(𝐷1) = [
1 1 1
1 0 0
1 0 0

] 

Figure 6. Graph and Adjacency Matrix of 𝑫𝟏 

For each 𝑘 = 0, 1,… , 𝑛 − 1, 𝐷𝑛 has (𝑛
𝑘
)2𝑛−𝑘 vertices of degree 3𝑘 and a single vertex of degree 3𝑛 + 1. 

Thus, the sum of the degrees of vertices in 𝐷𝑛 is  

∑  (
𝑛

𝑘
)2𝑛−𝑘 × 3𝑘

𝑛−1

𝑘=0

+ (3𝑛 + 1) = 1 + ∑ (
𝑛

𝑘
)2𝑛−𝑘 × 3𝑘

𝑛

𝑘=0

, 

= 1 + 2𝑛 ∑ (
𝑛

𝑘
) (

3

2
)
𝑘𝑛

𝑘=0

. 

By implementing the Binomial Theorem, 

∑ (
𝑛

𝑘
)𝑥𝑘𝑦𝑛−𝑘

𝑛

𝑘=0

= (𝑥 + 𝑦)𝑛, 

it will equal 

= 5𝑛 + 1. 

[
 
 
 
 
 
 
 
 
1 1 1
1 0 0
1 0 0

1 1 1
1 0 0
1 0 0

1 1 1
1 0 0
1 0 0

1 1 1
1 0 0
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 1 1
1 0 0
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 
 
 

 

Figure 7. Adjacency Matrix of 𝑫𝟐 

 

 

 

 

Figure 8. Graph of 𝑫𝟐 
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𝑣7 

𝑣0 

𝑣8 

𝑣3 

𝑣2 

𝑣0 𝑣1 𝑣2 

𝑣6 

𝑣1 
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3.1 Spectra of Family D 
 

𝐷1 is similar to 𝐵1, but it adds an edge and vertex to 𝑣0. 𝐷1’s eigenvalues are −1, 0, and 2, and 𝐴(𝐷𝑛) has 

𝑛 + 2 distinct eigenvalues. Theorem DI shows the set of eigenvalues but does not include zero. We know 

the matrix 𝐴 ⊗ 𝐵 has eigenvalues that are a combination of the eigenvalues of the matrices 𝐴 and 𝐵. 

Because zero is an eigenvalue of both and multiplying any number by zero is zero, zero will always be an 

eigenvalue. Thus, Theorem DI shows the non-zero eigenvalues. 

Theorem DI: Let Ʌ′(𝐷𝑛) denote the non-zero spectrum of 𝐴(𝐷𝑛). Then 

Ʌ′(𝐷𝑛) = {(−1)𝑘 × 2𝑛−𝑘} 𝑓𝑜𝑟 𝑘 = 0,… , 𝑛. 

Proof: Using induction, we first show the statement is true for 𝑛 = 1. 

Ʌ′(𝐷1) = (−1)(−2)1−𝑘 𝑓𝑜𝑟 𝑘 = 0, 1. 

When 𝑘 = 0, 𝜆1 = 2, and when 𝑘 = 1, 𝜆1 = −1, which are the eigenvalues of 𝐷1. We assume  

Ʌ′(𝐷𝑛) = (−1)𝑘 × 2𝑛−𝑘 for 𝑘 = 0,… , 𝑛. Next, we multiply Ʌ′(𝐷𝑛) with the initial non-zero eigenvalues 

to find the eigenvalues of the following matrix, 𝐴(𝐷𝑛+1). 

(−1) × (−1)𝑘 × 2𝑛−𝑘 = (−1)𝑘+1(2)𝑛−𝑘 , 

= (−1)𝑘+1(−2)(𝑛+1)−(𝑘+1) 𝑓𝑜𝑟 𝑘 + 1 = 1,… , 𝑛 + 1. 

Also, 

(2) × (−1)𝑘 × 2𝑛−𝑘 = (−1)𝑘(2)𝑛−𝑘+1, 

= (−1)𝑘(−2)(𝑛+1)−𝑘 𝑓𝑜𝑟 𝑘 = 0,… , 𝑛 + 1. 

Note the bounds of 𝑘. Multiplying Ʌ′(𝐷𝑛) by 2 creates Ʌ′(𝐷𝑛+1) with the bounds of 𝑘 = 0,… , 𝑛 + 1, 

which means the formula holds for 𝑛 + 1. In addition, multiplying Ʌ′(𝐷𝑛) by −1 increases the 

multiplicity of the eigenvalues of Ʌ′(𝐷𝑛+1) for 𝑘 = 0,… , 𝑛. Hence, the newest eigenvalue terms are 

derived from multiplying Ʌ′(𝐷𝑛) by 2 and have multiplicities of 1. Therefore, Ʌ′(𝐷𝑛) = (−1)𝑘 × 2𝑛−𝑘 

for 𝑘 = 0,… , 𝑛 holds for 𝐷𝑛.∎ 

The multiplicities of the non-zero eigenvalues of 𝐷𝑛 are one layer of Pascal’s Triangle in order of 

magnitude. For example, when 𝑛 = 2, the eigenvalues of 𝐴(𝐷2) are 1, −2, and 4, with multiplicities of 1, 

2, and 1, respectively. The eigenvalues of the next matrix when 𝑛 = 3, the eigenvalues of 𝐴(𝐷3) are −1, 

2, −4, and 8, with multiplicities of 1, 3, 3, and 1, respectively. Finally, 0 will always appear as an 

eigenvalue with a multiplicity of 3𝑛 − 2𝑛. 
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3.2 Number of Closed Walks of Family D 
 

From the eigenvalues and their respective multiplicities, we can obtain the characteristic polynomial of 

𝐷𝑛. 

𝑃(𝐷𝑛; 𝑥) = ∏[𝑥 − ((−1)𝑗 × 2𝑛−𝑗)]
(𝑛

𝑗) × 𝑥3𝑛−2𝑛

𝑛

𝑗=0

 

𝑙𝑛[𝑃(𝐷𝑛; 𝑥)] = ∑(
𝑛

𝑗
) 𝑙𝑛[𝑥 − ((−1)𝑗 × 2𝑛−𝑗)]

𝑛

𝑗=0

+ (3𝑛 − 2𝑛)𝑙𝑛[𝑥], 

𝑃′(𝐷𝑛; 𝑥)

𝑃(𝐷𝑛; 𝑥)
= ∑

(𝑛
𝑗
)

𝑥 − ((−1)𝑗 × 2𝑛−𝑗)

𝑛

𝑗=0

+
3𝑛 − 2𝑛

𝑥
, 

𝑃′ (𝐷𝑛;
1
𝑡)

𝑡𝑃 (𝐷𝑛;
1
𝑡
)

= ∑
(𝑛

𝑗
)

1 − ((−1)𝑗 × 2𝑛−𝑗)𝑡
+

𝑛

𝑗=0

(3𝑛 − 2𝑛), 

𝑊(𝐷𝑛; 𝑡) = ∑(
𝑛

𝑗
) ∑[((−1)𝑗 × 2𝑛−𝑗)𝑡]

𝑘
+ (3𝑛 − 2𝑛)

∞

𝑘=0

𝑛

𝑗=0

, 

= ∑ ∑[(
𝑛

𝑗
) ((−1)𝑗𝑘 × 2(𝑛−𝑗)𝑘)] 𝑡𝑘 + (3𝑛 − 2𝑛)

𝑛

𝑗=0

∞

𝑘=0

. 

From these calculations, 

𝑊(𝐷𝑛; 𝑡) = ∑ ∑[(
𝑛

𝑗
) [(−1)𝑘]𝑗 × [2𝑘](𝑛−𝑗)] 𝑡𝑘 + (3𝑛 − 2𝑛)

𝑛

𝑗=0

∞

𝑘=0

. 

By the Binomial Theorem,  

𝑊(𝐷𝑛; 𝑡) = ∑[(−1)𝑘 + (2)𝑘]𝑛𝑡𝑘

∞

𝑘=0

+ (3𝑛 − 2𝑛). 

From here, we can see the coefficient of 𝑡𝑘 is the number of closed walks of length 𝑘 in 𝐷𝑛. ∎ 

Theorem DII: The number of closed walks from 𝑣0 of length 𝑘 in 𝐷1. 

𝑎𝑘+1 = 𝑎𝑘 + 2𝑎𝑘−1 𝑤ℎ𝑒𝑟𝑒 𝑎0 = 1 𝑎𝑛𝑑 𝑎1 = 1. 
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Proof: Assume the solution is homogeneous and of the form 𝑎𝑘 = 𝑐𝑟𝑘. Thus, 

𝑐𝑟𝑘+1 = 𝑐𝑟𝑘 + 2𝑐𝑟𝑘−1, 

0 = 𝑟2 − 𝑟 − 2, 

𝑟 = −1, 2. 

The solutions of 𝑟 are eigenvalues. 

𝑎𝑘 = 𝑐1(−1)𝑘 + 𝑐2(2)𝑘. 

𝑐1 + 𝑐2 = 1, 

−𝑐1 + 2𝑐2 = 1. 

Solving for the constants, we find 𝑐1 =
1

3
 and 𝑐2 =

2

3
. 

Therefore, the final equation for the number of closed walks of length 𝑘 at 𝑣0 in 𝐷1 is 

𝑎𝑘 =
1

3
((−1)𝑘 + 2𝑘+1).∎ 

Utilizing Theorem CIV, the formula for the number of closed walks of length 𝑘 in 𝐷𝑛 at 𝑣0 is 

(𝑎𝑘)𝑛 = (
1

3
((−1)𝑘 + 2𝑘+1))

𝑛

. ∎ 
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𝑣3 

Chapter 4: Introduction to Family E 
 

For each non-negative integer 𝑛, we define 𝐸𝑛 to have the vertex set 𝑉𝑛 = {𝑣𝑗: 𝑗 = 0, 1, … , 3𝑛 − 1} and 

|𝑉𝑛| = 3𝑛 for 𝐸𝑛. The edge cardinality of 𝐸𝑛 is |𝐸𝐸| =
1

2
(7𝑛 + 1).  

 

𝐴(𝐸1) = [
1 1 1
1 0 1
1 1 0

] 

Figure 9. Graph and Adjacency Matrix of 𝑬𝟏 

Also, for each 𝑘 = 0, 1, … , 𝑛 − 1, 𝐸𝑛 has (𝑛
𝑘
)2𝑛−𝑘 vertices of degree 3𝑘2𝑛−𝑘 and a single vertex, 𝑣0, of 

degree 3𝑛 + 1. Thus, the sum of the degrees of vertices in 𝐸𝑛 is  

∑  (
𝑛

𝑘
)2𝑛−𝑘 × 3𝑘2𝑛−𝑘

𝑛−1

𝑘=0

+ (3𝑛 + 1) = 1 + 4𝑛 (
3

4
)
𝑛

+ 4𝑛 ∑  (
𝑛

𝑘
)(

3

4
)
𝑘𝑛−1

𝑘=0

. 

Again, by the Binomial Theorem, 

= 4𝑛 (
7

4
)
𝑛

+ 1 = 7𝑛 + 1. 

[
 
 
 
 
 
 
 
 
1 1 1
1 0 1
1 1 0

1 1 1
1 0 1
1 1 0

1 1 1
1 0 1
1 1 0

1 1 1
1 0 1
1 1 0

0 0 0
0 0 0
0 0 0

1 1 1
1 0 1
1 1 0

1 1 1
1 0 1
1 1 0

1 1 1
1 0 1
1 1 0

0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 
 
 

 

Figure 10. Adjacency Matrix of 𝑬𝟐 

 

 

 

 

 

 

 

Figure 11. Graph of 𝑬𝟐 

𝑣0 

𝑣4 

𝑣8 

𝑣6 

𝑣7 

𝑣2 

𝑣2 𝑣1 

𝑣0 

𝑣1 

𝑣5 
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4.1 Spectra of Graph E 
 

Like with 𝐷𝑛, we want to use the generating function to show the number of closed walks of length 𝑘 on 

𝐸𝑛. The eigenvalues of 𝐴(𝐸1) are −1, 1 ± √2. But, we want to find a formula for the eigenvalues and 

their respective multiplicities for any 𝑛, which is shown in Theorem EI. 

Theorem EI: The spectrum of 𝐸𝑛 is 

Ʌ(𝐸𝑛) = {

𝑎𝑖 ± 𝑏𝑖√2 𝑓𝑜𝑟 𝑖 = 0,… , 𝑛 − 2

−𝑎𝑖 ± 𝑏𝑖√2 𝑓𝑜𝑟 𝑖 = 0,… , 𝑛 − 1

𝑎𝑛 ± 𝑏𝑛√2

}, 

where  

𝑎𝑖 =
1

2
(1 + √2)

𝑖

+
1

2
(1 − √2)

𝑖
, 

𝑏𝑖 =
1

2√2
(1 + √2)

𝑖
−

1

2√2
(1 − √2)

𝑖
. 

The notation of Ʌ(𝐸𝑛) means all three cases occur simultaneously for the specified range of 𝑖. 

However, two lemmas are necessary to show this.  

Lemma EI: The explicit forms of 𝑎𝑛 and 𝑏𝑛 of 𝐸𝑛. 

𝑎𝑛 =
1

2
(1 + √2)

𝑛
+

1

2
(1 − √2)

𝑛
, 

𝑏𝑛 =
1

2√2
(1 + √2)

𝑛
−

1

2√2
(1 − √2)

𝑛
. 

Respectively, their recursive forms are  

𝑎𝑛 = 2𝑎𝑛−1 + 𝑎𝑛−2 𝑤ℎ𝑒𝑟𝑒 𝑎0 = 1 𝑎𝑛𝑑 𝑎1 = 1, 

𝑏𝑛 = 2𝑏𝑛−1 + 𝑏𝑛−2 𝑤ℎ𝑒𝑟𝑒 𝑏0 = 0 𝑎𝑛𝑑 𝑏1 = 1. 

Proof: Given the following recursive formula holds, 

𝑎𝑛 = 2𝑎𝑛−1 + 𝑎𝑛−2 𝑤ℎ𝑒𝑟𝑒 𝑎0 = 1 𝑎𝑛𝑑 𝑎1 = 1, 

we assume the solution is homogenous and of the form, 𝑎𝑛 = 𝑐𝑟𝑛. 

𝑐𝑟𝑛 = 2𝑐𝑟𝑛−1 + 𝑐𝑟𝑛−2, 

0 = 𝑟2 − 2𝑟 − 1, 

𝑟 = 1 ± √2. 
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Substituting the solutions of 𝑟 into the form, 𝑎𝑛 = 𝑐𝑟𝑛, yields 𝑎𝑛 = 𝑐1(1 + √2)
𝑛

+ 𝑐2(1 − √2)
𝑛

. 

When 𝑎0 = 1, 

𝑐1 + 𝑐2 = 1, 

𝑐2 = 1 − 𝑐1. 

When 𝑎1 = 1, 

𝑐1(1 + √2) + (1 − 𝑐1)(1 − √2) = 1, 

𝑐1 + 𝑐1√2 + 1 − 𝑐1 − √2 + 𝑐1√2 = 1, 

𝑐12√2 = √2, 

𝑐1 =
1

2
. 

𝑐2 = 1 −
1

2
=

1

2
. 

𝑎𝑛 =
1

2
(1 + √2)

𝑛

+
1

2
(1 − √2)

𝑛
. 

The same process can be applied to 

𝑏𝑛 = 2𝑏𝑛−1 + 𝑏𝑛−2 𝑤ℎ𝑒𝑟𝑒 𝑏0 = 0 𝑎𝑛𝑑 𝑏1 = 1. 

Since the solutions of 𝑟 are the same, we substitute them into the form, 𝑏𝑛 = 𝑑𝑟𝑛, which yields  

𝑏𝑛 = 𝑑1(1 + √2)
𝑛

+ 𝑑2(1 − √2)
𝑛
. 

When 𝑏0 = 0, 

𝑑1 + 𝑑2 = 0. 

When 𝑏1 = 1, 

𝑑1(1 + √2) + (−𝑑1)(1 − √2) = 1. 

𝑑1 =
1

2√2
, 

𝑑2 = −
1

2√2
. 

 

Therefore,  
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𝑏𝑛 =
1

2√2
(1 + √2)

𝑛
−

1

2√2
(1 − √2)

𝑛
. ∎ 

With 𝑎𝑛 and 𝑏𝑛 defined by the explicit formulas above, Lemma EII holds. 

Lemma EII: Recursive equations for 𝑎𝑛 and 𝑏𝑛 of the eigenvalues of 𝐴(𝐸𝑛). 

𝑎𝑛 + 2𝑏𝑛 = 𝑎𝑛+1, 𝑏𝑛 + 𝑎𝑛 = 𝑏𝑛+1, 𝑎𝑛 − 2𝑏𝑛 = −𝑎𝑛−1, 𝑏𝑛 − 𝑎𝑛 = −𝑏𝑛−1. 

Proof: 

𝑎𝑛 + 2𝑏𝑛 =
1

2
(1 + √2)

𝑛
+

1

2
(1 − √2)

𝑛
+

1

√2
(1 + √2)

𝑛
−

1

√2
(1 − √2)

𝑛
. 

Simplifying the above equation yields 

1 + √2

2
(1 + √2)

𝑛
+

1 − √2

2
(1 − √2)

𝑛
=

1

2
(1 + √2)

𝑛+1
+

1

2
(1 − √2)

𝑛+1
= 𝑎𝑛+1. 

The same process is applied to the other three equations: 

 

𝑏𝑛 + 𝑎𝑛 =
1

2√2
(1 + √2)

𝑛
−

1

2√2
(1 − √2)

𝑛
+

1

2
(1 + √2)

𝑛
+

1

2
(1 − √2)

𝑛
, 

=
1 + √2

2√2
(1 + √2)

𝑛
+

1 − √2

2√2
(1 − √2)

𝑛
=

1

2√2
(1 + √2)

𝑛+1
+

1

2√2
(1 − √2)

𝑛+1
= 𝑏𝑛+1. 

 

𝑎𝑛 − 2𝑏𝑛 =
1

2
(1 + √2)

𝑛
+

1

2
(1 − √2)

𝑛
−

1

√2
(1 + √2)

𝑛
+

1

√2
(1 − √2)

𝑛
, 

=
1 − √2

2
(1 + √2)

𝑛
+

1 + √2

2
(1 − √2)

𝑛
= −

1

2
(1 + √2)

𝑛−1
−

1

2
(1 − √2)

𝑛−1
= −𝑎𝑛−1. 

 

𝑏𝑛 − 𝑎𝑛 =
1

2√2
(1 + √2)

𝑛
−

1

2√2
(1 − √2)

𝑛
−

1

2
(1 + √2)

𝑛
−

1

2
(1 − √2)

𝑛
, 

=
1 − √2

2√2
(1 + √2)

𝑛
− (

1 + √2

2√2
) (1 − √2)

𝑛
= −

1

2√2
(1 + √2)

𝑛−1
+

1

2√2
(1 − √2)

𝑛−1
= −𝑏𝑛−1. ∎ 

 

 

Now that we have shown these two lemmas to be true, we can prove Theorem EI. As stated above, 
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Theorem EI: The spectrum of 𝐸𝑛 is 

Ʌ(𝐸𝑛) = {

𝑎𝑖 ± 𝑏𝑖√2 𝑓𝑜𝑟 𝑖 = 0,… , 𝑛 − 2

−𝑎𝑖 ± 𝑏𝑖√2 𝑓𝑜𝑟 𝑖 = 0,… , 𝑛 − 1

𝑎𝑛 ± 𝑏𝑛√2

}, 

where  

𝑎𝑖 =
1

2
(1 + √2)

𝑖

+
1

2
(1 − √2)

𝑖
, 

𝑏𝑖 =
1

2√2
(1 + √2)

𝑖
−

1

2√2
(1 − √2)

𝑖
. 

The notation of Ʌ(𝐸𝑛) means all three cases occur simultaneously for the specified range of 𝑖. 

Proof: We need to show the theorem holds up to 𝑛 = 2 because that is the first time all three cases occur. 

When 𝑛 = 0, 

𝑎0 ± 𝑏0√2 = 1. 

When 𝑛 = 1, 

−𝑎0 ± 𝑏0√2 = −1 𝑎𝑛𝑑 𝑎1 ± 𝑏1√2 = 1 ± √2. 

When 𝑛 = 2, 

𝑎0 ± 𝑏0√2 = 1,−𝑎0 ± 𝑏0 √2 = −1,−𝑎0 ± 𝑏0 √2 = −1 ± √2, 𝑎𝑛𝑑 𝑎2 ± 𝑏2√2 = 3 ± 2√2. 

Next, we assume the theorem holds for 𝑛 = 𝑘. 

Ʌ(𝐸𝑘) = {

𝑎𝑖 ± 𝑏𝑖√2 𝑓𝑜𝑟 𝑖 = 0,… , 𝑘 − 2

−𝑎𝑖 ± 𝑏𝑖√2 𝑓𝑜𝑟 𝑖 = 0,… , 𝑘 − 1

𝑎𝑘 ± 𝑏𝑘√2

}. 

We will show this is true for 𝑛 = 𝑘 + 1 by multiplying Ʌ(𝐸𝑘) by the original eigenvalues. We will show 

the eigenvalues of Ʌ(𝐸𝑘+1) appear in the tables below. The entries in the left column are multiplied by 

entries in the first row and their result is displayed at the intersection. Starting with 𝑎𝑖 ± 𝑏𝑖√2  for 

𝑖 = 0,… , 𝑘 − 2, we find 

 𝑎𝑖 + 𝑏𝑖√2 𝑎𝑖 − 𝑏𝑖√2 

−1 −𝑎𝑖 − 𝑏𝑖√2 −𝑎𝑖 + 𝑏𝑖√2 

1 + √2 (𝑎𝑖 + 2𝑏𝑖) + (𝑏𝑖 + 𝑎𝑖)√2 (𝑎𝑖 − 2𝑏𝑖) − (𝑏𝑖 − 𝑎𝑖)√2 

1 − √2 (𝑎𝑖 − 2𝑏𝑖) + (𝑏𝑖 − 𝑎𝑖)√2 (𝑎𝑖 + 2𝑏𝑖) − (𝑏𝑖 + 𝑎𝑖)√2 

Table 1. Multiplication of 𝒂𝒊 ± 𝒃𝒊√𝟐 for 𝒊 = 𝟎,… , 𝒌 − 𝟐 by the Original Eigenvalues of 𝑬𝒏 

Table 1 can be simplified to Table 2 by Lemma EII. 
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 𝑎𝑖 + 𝑏𝑖√2 𝑎𝑖 − 𝑏𝑖√2 

−1 −𝑎𝑖 − 𝑏𝑖√2 −𝑎𝑖 + 𝑏𝑖√2 

1 + √2 𝑎𝑖+1 + 𝑏𝑖+1√2 −𝑎𝑖−1 + 𝑏𝑖−1√2 

1 − √2 −𝑎𝑖−1 − 𝑏𝑖−1√2 𝑎𝑖+1 − 𝑏𝑖+1√2 

Table 2. Simplification of Table 1 

Though Table 2 contains some of the values we are searching for, none of the values have the full range 

of the values in Ʌ(𝐸𝑘+1). But this repetition of eigenvalues is how the multiplicities increase. We will see 

the full range of the values of Ʌ(𝐸𝑘+1) in Table 3 and Table 4 where we have already simplified by 

Lemma EII. 

 −𝑎𝑖 + 𝑏𝑖√2 −𝑎𝑖 − 𝑏𝑖√2 

−1 𝑎𝑖 − 𝑏𝑖√2 𝑎𝑖 + 𝑏𝑖√2 

1 + √2 𝑎𝑖−1 − 𝑏𝑖−1√2 −𝑎𝑖+1 − 𝑏𝑖+1√2 

1 − √2 −𝑎𝑖+1 + 𝑏𝑖+1√2 𝑎𝑖−1 + 𝑏𝑖−1√2 

Table 3. Multiplication of −𝒂𝒊 ± 𝒃𝒊√𝟐 for 𝒊 = 𝟎,… , 𝒌 − 𝟏 by the Original Eigenvalues of 𝑬𝒏 

 𝑎𝑘 + 𝑏𝑘√2 𝑎𝑘 − 𝑏𝑘√2 

−1 −𝑎𝑘 − 𝑏𝑘√2 −𝑎𝑘 + 𝑏𝑘√2 

1 + √2 𝑎𝑘+1 + 𝑏𝑘+1√2 𝑎𝑘−1 − 𝑏𝑘−1√2 

1 − √2 𝑎𝑘−1 + 𝑏𝑘−1√2 𝑎𝑘+1 − 𝑏𝑘+1√2 

Table 4. Multiplication of 𝒂𝒌 ± 𝒃𝒌√𝟐 by the Original Eigenvalues of 𝑬𝒏 

We can see that 𝑎𝑖 ± 𝑏𝑖√2 holds for 𝑖 = 0,… , 𝑘 − 1 from the information provided in Table 3 

(highlighted in green), −𝑎𝑖 ± 𝑏𝑖√2 for 𝑖 = 0,… , 𝑘 from Table 3 and Table 4 (highlighted in blue), and 

𝑎𝑘+1 ± 𝑏𝑘+1√2 from Table 4 (highlighted in orange). ∎ 

As with 𝐷𝑛, in order to use the generating function for 𝐸𝑛, we must find the multiplicities of the 

eigenvalues. However, it was difficult to determine a formulaic solution to this problem. Thus, we started 

by displaying the values graphically. The first eigenvalue graph of 𝐸𝑛 is  

 

 

 

Figure 12. Graph of the Eigenvalues of 𝑬𝟏 

As it happens, the multiplicities directly correlate with the Binomial Pyramid. The Binomial Pyramid is 

the Binomial (or Pascal’s) Triangle in the third dimension. Each of the three sides of the pyramid is 

Pascal’s Triangle. The interior of the structure relies on the same principle: the value of a term is the sum 

of the previous terms above it. Unlike the outer terms, each interior term is the sum of three terms. For 

example, let us calculate the fourth layer of the pyramid from the third. 

 

 

−1 

1 + √2 1 − √2 
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Figure 13. Graph of the Third Level of Pascal’s Pyramid 

     Figure 14. Graph of the Fourth Level of Pascal's Pyramid 

We can see the first interior term, 6, is located in the fourth layer, where it is the sum of the three 2’s 

located in the third layer. Looking back, the first eigenvalue graph of 𝐸𝑛 corresponds with the second 

layer of the Binomial Pyramid as the multiplicities of the first set of eigenvalues of 𝐸𝑛 are all 1’s. We 

define the three directions of the pyramid to be with respect to one initial eigenvalue. For instance, if we 

move from left to right once, we are multiplying by 1 − √2 and dividing by 1 + √2. But the number of 

−1’s is not affected. This is true for moving in other directions. Let us take the graphic image of the 

eigenvalues for 𝐸3, where 𝑎 = −1, 𝑏 = 1 + √2, and 𝑐 = 1 − √2.  

 

 

 

 

 

 

 

Figure 15. Graph of the Formulaic Eigenvalues of 𝑬𝟑 

Now, we can see any eigenvalue can be represented as 𝑎𝑥𝑏𝑦𝑐𝑧, where 𝑥 is the number of −1’s, 𝑦 is the 

number of 1 + √2’s, and 𝑧 is the number of 1 − √2’s. As a result of Theorem EI,  

𝜆𝑖 = 𝑎𝑥𝑏𝑦𝑐𝑧 = (−1)𝑥(𝑎𝑗 + (−1)𝑘𝑏𝑗√2), 

where 𝑖 is the subscript to differentiate the eigenvalues, 𝑗 = |𝑦 − 𝑧|, and 𝑘 = 1 if 𝑧 > 𝑦 and 0 otherwise. 

Also, the multiplicities of a given eigenvalue can be found through the equation, 

𝑚(𝜆𝑖) =
𝑛!

𝑥! 𝑦! 𝑧!
. 

𝑎3 

1 
1 

3 

3 
2 2 

1 1 

1 1 

2 

6 
3 

3 

3 3 

𝑏3 𝑐3 𝑏2𝑐 𝑏𝑐2 

𝑎2𝑐 

𝑎𝑐2 

𝑎2𝑏 

𝑎𝑏2 
𝑎𝑏𝑐 
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We will show this by example. In 𝐴(𝐸3), let us consider the eigenvalues 7 + 5√2, 1, and 1 − √2. 

The factors of 7 + 5√2 are three 1 + √2’s. Thus, the multiplicity of 7 + 5√2in 𝐴(𝐸3) is  

𝑚(7 + 5√2) =
3!

0! 3! 0!
= 1. 

The factors of 1 are −1, 1 + √2, and 1 − √2. Thus, the multiplicity of 1 in 𝐴(𝐸3) is  

𝑚(1) =
3!

1! 1! 1!
= 6. 

The factors of 1 − √2 are three 1 + √2’s. Thus, the multiplicity of 1 − √2 in 𝐴(𝐸3) is  

𝑚(1 − √2) =
3!

2! 0! 1!
= 3. 

Notice every eigenvalues multiplicity corresponds with a location in Figure 15. One more thing to note, 

the multiplicity number is the number of paths from one of the initial eigenvalues to the eigenvalue being 

considered. 

 

4.2 Number of Closed Walks of Family E 
 

From Theorem EI, we know the number of closed walks of length 1, 2, and 3 of graph 𝐸1 is 𝑎1 = 1, 

𝑎2 = 7, and 𝑎3 = 13, respectively. After calculating the number of closed walks of larger 𝐿, through trial 

and error, we found a recursive relationship shown by the sequence, 𝑎𝐿+1 = 𝑎𝐿 + 3𝑎𝐿−1 + 𝑎𝐿−2. Note, 

this sequence follows from the characteristic polynomial of 𝐴(𝐸1), λ3 − λ2 − 3λ − 1. 

Lemma EIII:  

𝑎𝐿 = (−1)𝐿 + (1 + √2)
𝐿
+ (1 − √2)

𝐿
 

and is the explicit form of 𝑎𝐿 = 𝑎𝐿−1 + 3𝑎𝐿−2 + 𝑎𝐿−3  where 𝑎1 = 1, 𝑎2 = 7, and 𝑎3 = 13. 

Proof of Lemma EIII can be found in the appendix. 

Theorem EIII: The number of closed walks from 𝑣0 of length 𝐿 in 𝐸1. 

𝑎𝑛+1 = 𝑎𝑛 + 3𝑎𝑛−1 + 𝑎𝑛−2 𝑤ℎ𝑒𝑟𝑒 𝑎0 = 1, 𝑎1 = 1, 𝑎2 = 3 

Proof: Assume it is homogeneous and of the form 𝑎𝑛 = 𝑐𝑟𝑛. Thus, 

𝑐𝑟𝑛+1 = 𝑐𝑟𝑛 + 3𝑐𝑟𝑛−1 + 𝑐𝑟𝑛−1, 

0 = 𝑟3 − 𝑟2 − 3𝑟 − 1, 

𝑟 = −1, 1 ± √2. 
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The solutions of 𝑟 are eigenvalues again. 

𝑎𝑛 = 𝑐1(−1)𝑛 + 𝑐2(1 + √2)
𝑛

+ 𝑐3(1 − √2)
𝑛
. 

Using the initial conditions, we can see  

𝑐1 + 𝑐2 + 𝑐3 = 1, 

−𝑐1 + (1 + √2)𝑐2 + (1 − √2)𝑐3 = 1, 

𝑐1 + (1 + √2)
2
𝑐2 + (1 − √2)

2
𝑐3 = 3. 

Let us use the coefficients as entries in a matrix. 

[

1 1 1

−1 1 + √2 1 − √2

1 3 + 2√2 3 − 2√2

] [

𝑐1

𝑐2

𝑐3

] = [
1
1
3
], 

[

1 1 1

0 2 + √2 2 − √2

0 2 + 2√2 2 − 2√2

] [

𝑐1

𝑐2

𝑐3

] = [
1
2
2
], 

[
 
 
 
 
 
1 1 1

0 1
2 − √2

2 + √2

0 0
−4√2

(2 + √2)(2 + 2√2)]
 
 
 
 
 

[

𝑐1

𝑐2

𝑐3

] =

[
 
 
 
 
 

1
2

2 + √2

−2√2

(2 + √2)(2 + 2√2)]
 
 
 
 
 

, 

[

1 1 1

0 1
2 − √2

2 + √2
0 0 1

] [

𝑐1

𝑐2

𝑐3

] =

[
 
 
 
 

1
2

2 + √2
1

2 ]
 
 
 
 

. 

Solving for the constants,  

𝑐3 =
1

2
. 

𝑐2 + (
2 − √2

2 + √2
)(

1

2
) =

2

2 + √2
, 

𝑐2 =
2

2 + √2
− (

1

2
) (

2 − √2

2 + √2
), 

𝑐2 = (
1

2
) (

4 − (2 − √2)

2 + √2
), 
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𝑐2 =
1

2
. 

𝑐1 +
1

2
+

1

2
= 1, 

𝑐1 = 0. 

Therefore, the final equation for the number of closed walks of length 𝐿 at 𝑣0 in 𝐸1 is 

𝑎𝐿 =
1

2
((1 + √2)

𝐿
+ (1 − √2)

𝐿
) .∎ 
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Chapter 5: Introduction to Family F 
 

For each non-negative integer 𝑛, we define 𝐹𝑛 to have the vertex set 𝑉𝑛 = {𝑣𝑗: 𝑗 = 0, 1, … , 3𝑛 − 1} and 

|𝑉𝑛| = 3𝑛. The edge cardinality of 𝐹𝑛 is |𝐸𝐹| =
1

2
(6𝑛 + 2𝑛). 

𝐴(𝐹1) = [
1 1 0
1 0 1
0 1 1

] 

Figure 16. Graph and Adjacency Matrix of 𝑭𝟏 

𝐹𝑛 has 3𝑛 − 2𝑛 vertices of degree 2𝑛 and 2𝑛 vertices of degree 2𝑛 + 1. Thus, the sum of the degrees of 

vertices in 𝐹𝑛 is 

(3𝑛 − 2𝑛) × 2𝑛 + 2𝑛 × ( 2𝑛 + 1) = 2𝑛(3𝑛 + 1), 

= 6𝑛 + 2𝑛. 

[
 
 
 
 
 
 
 
 
1 1 0
1 0 1
0 1 1

1 1 0
1 0 1
0 1 1

0 0 0
0 0 0
0 0 0

1 1 0
1 0 1
0 1 1

0 0 0
0 0 0
0 0 0

1 1 0
1 0 1
0 1 1

0 0 0
0 0 0
0 0 0

1 1 0
1 0 1
0 1 1

1 1 0
1 0 1
0 1 1]

 
 
 
 
 
 
 
 

 

Figure 17. Adjacency Matrix of 𝑭𝟐 

 

 

 

 

 

 

 

 

 

 

Figure 18. Graph of 𝑭𝟐 
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𝑣1 
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𝑣7 

𝑣0 

𝑣2 𝑣1 𝑣0 

𝑣3 

𝑣6 
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5.1 Spectra of Graph F 
 

𝐴(𝐹𝑛) has 𝑛 + 2 distinct eigenvalues and they are very similar to 𝐴(𝐷𝑛). They both have −1 and 2 as 

eigenvalues, but instead of the third initial value being 0, it is 1. Theorem FI is the equation for the 

spectrum of 𝐹𝑛. 

Theorem FI: The spectrum of 𝐹𝑛. 

Ʌ(𝐹𝑘) = {
−2𝑘𝑓𝑜𝑟 𝑘 = 0,… , 𝑛 − 1

2𝑘𝑓𝑜𝑟 𝑘 = 0,… , 𝑛
}. 

Proof: As with 𝐴(𝐷𝑛) and 𝐴(𝐸𝑛), we multiply the eigenvalues of 𝐴(𝐹1) to Ʌ(𝐹𝑘). Thus,  

−2𝑘 𝑓𝑜𝑟 𝑘 = 0,… , 𝑛 − 1, 
 

−2𝑘+1 𝑓𝑜𝑟 𝑘 = 0,… , 𝑛 − 1, 
 

−2𝑘 𝑓𝑜𝑟 𝑘 = 0,… , 𝑛, 

2𝑘  𝑓𝑜𝑟 𝑘 = 0,… , 𝑛 − 1, 
 

2𝑘  𝑓𝑜𝑟 𝑘 = 0,… , 𝑛, 
 

2𝑘+1 𝑓𝑜𝑟 𝑘 = 0,… , 𝑛. 
 

We adjust the second case of negative values and the third case of positive values where the exponents are 

𝑘 + 1 by changing the bounds of 𝑘. 

−2𝑘 𝑓𝑜𝑟 𝑘 = 1,… , 𝑛, 2𝑘  𝑓𝑜𝑟 𝑘 = 1,… , 𝑛 + 1. 
 

Now, we can see the eigenvalues of 𝐴(𝐹𝑛) hold for 𝑛 + 1 since 

Ʌ(𝐹𝑘+1) = {
−2𝑘𝑓𝑜𝑟 𝑘 = 0,… , 𝑛

2𝑘𝑓𝑜𝑟 𝑘 = 0,… , 𝑛 + 1
}. 

The multiplicities of the eigenvalues of 𝐴(𝐹𝑛) are not as simple. The multiplicity of an eigenvalue has the 

same multiplicity as its negative eigenvalue, except for the iteration the value is introduced. For example, 

when 𝑛 = 3, 𝑚(1) = 4 and 𝑚(−1) = 4, 𝑚(2) = 6 and 𝑚(−2) = 6, and 𝑚(4) = 3 and 𝑚(−4) = 3, 

while 𝑚(8) = 1 and 𝑚(−8) = 0. The new eigenvalue, 2𝑛, always has a multiplicity of 1 and its negative 

is always 0. 

Additionally, the multiplicity of an eigenvalue of one iteration relies on the multiplicity of itself, its 

negative, and its half from the previous iteration. For example, the multiplicity of 2 for 𝑛 = 3, relies on 

the multiplicities of 2, −2, and 1 of 𝑛 = 2. Thus the formula for the multiplicity of an eigenvalue is 

𝑚(𝜆𝑖)𝑛 = 𝑚(𝜆𝑖)𝑛−1 + 𝑚(−𝜆𝑖)𝑛−1 + 𝑚 (
1

2
𝜆𝑖)

𝑛−1
. 

Following the example, 

𝑚(2)3 = 𝑚(2)2 + 𝑚(−2)2 + 𝑚 (
1

2
× 2)

2
, 

𝑚(2)3 = 2 + 2 + 2 = 6. 
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The exceptions to this rule are ±1 where each relies on itself and its negative, and 𝑚(±1) = 2𝑛−1. 

 

5.2 Number of Closed Walks of Family F 
 

Like graph 𝐸𝑛, we found a way to calculate the number of closed walks of length 𝐿 of 𝐹1. However, the 

formula changes for odd and even 𝐿.  

Theorem FII: The number of closed walks of 𝐿𝑜𝑑𝑑 of 𝐹1. 

𝑎𝐿 = 2𝐿 , 

and the recursive formula is  

𝑎𝐿+2 = 4𝑎𝐿 𝑤ℎ𝑒𝑟𝑒 𝑎1 = 2.∎ 

Therefore, the number of closed walks of 𝐿𝑜𝑑𝑑 of 𝐹𝑛 is  

(𝑎𝐿)
𝑛 = (2𝐿)𝑛. 

Theorem FIII: The number of closed walks of 𝐿𝑒𝑣𝑒𝑛 of 𝐹1. 

𝑎𝐿 = 2𝐿 + 2, 

and the recursive formula is  

𝑎𝐿+2 = 4𝑎𝐿 − 6 𝑤ℎ𝑒𝑟𝑒 𝑎0 = 3.∎ 

Therefore, the number of closed walks of 𝐿𝑒𝑣𝑒𝑛 of 𝐹𝑛 is  

(𝑎𝐿)
𝑛 = (2𝐿 + 2)𝑛. 

We will not be showing proofs for either of the above theorems as the process is practically identical to 

earlier calculations. 
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Chapter 6: Number of Closed Walks of Family G 
 

Initially, we were only going to research graphs with two or three vertices. However, we happened to 

stumble upon a possible pattern of complete graphs with a single loop at one vertex. A complete graph is 

a graph where every vertex is adjacent to every other vertex except itself. In [1], we see 𝐵𝑛, the complete 

graph of two vertices with a single loop at one vertex, correlates to the Binomial Triangle. Our graph, 𝐸𝑛, 

correlates to the Binomial Pyramid, as shown above. We propose the 𝑛th complete graph with a single 

loop at one vertex would correlate to the 𝑛th level of the binomials. Thus, we wanted to consider the 

complete graph of four vertices with a single loop.  

 

A(𝐺1) = [

1 1
1 0

1 1
1 1

1 1
1 1

0 1
1 0

] 

Figure 19. Graph and Adjacency Matrix of 𝑮𝟏 

Unfortunately, the pattern we hypothesized for the multiplicities of complete graphs with a single loop 

was incorrect. We hoped the multiplicities of the eigenvalues would be the Binomial Triangle in the 

fourth dimension. Meaning, the multiplicities of the eigenvalues of the initial adjacency matrix would all 

be 1. However, the multiplicities turned out to be 1, 1, and 2. We did manage to calculate the number of 

closed walks of length 𝐿 at 𝑣0.  

Theorem G: The number of closed walks of length 𝐿 from 𝑣0 of 𝐺1. 

𝑎𝐿+1 = 3𝑎𝐿 + 𝑎𝐿−1 𝑤ℎ𝑒𝑟𝑒 𝑎0 = 1 𝑎𝑛𝑑 𝑎1 = 1. 

The recurrence relation was formed from experimentation. 

Proof: Assume it is homogeneous and of the form 𝑎𝐿 = 𝑐𝑟𝐿. 

𝑐𝑟𝐿+1 = 3𝑐𝑟𝐿 + 𝑐𝑟𝐿−1, 

0 = 𝑟2 − 3𝑟 − 1, 

𝑟 =
3 ± √13

2
. 

𝑎𝐿 = 𝑐1 (
3 + √13

2
)

𝐿

+ 𝑐2 (
3 − √13

2
)

𝐿

. 

Using the initial conditions, we find 

𝑐1 + 𝑐2 = 1, 

𝑐1 (
3 + √13

2
) + 𝑐2 (

3 − √13

2
) = 1, 

𝑣1 𝑣2 

𝑣3 

𝑣0 
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Solving for the constants, 

𝑐1 (
3 + √13

2
) + (1 − 𝑐1) (

3 − √13

2
) = 1, 

3

2
𝑐1 +

√13

2
𝑐1 +

3 − √13

2
−

3

2
𝑐1 +

√13

2
𝑐1 = 1, 

1 −
3 − √13

2
= √13𝑐1, 

𝑐1 =
13 − √13

26
. 

𝑐2 = 1 −
13 − √13

26
, 

𝑐2 =
13 + √13

26
. 

Therefore, the final equation for the number of closed walks of length 𝐿 in 𝐺1 at 𝑣0 is 

𝑎𝐿 = (
13 − √13

26
)(

3 + √13

2
)

𝐿

+ (
13 + √13

26
)(

3 − √13

2
)

𝐿

. ∎ 

Therefore, the number of closed walks of 𝐿 in 𝐺𝑛 at 𝑣0 is  

(𝑎𝐿)
𝑛 = ((

13 − √13

26
)(

3 + √13

2
)

𝐿

+ (
13 + √13

26
)(

3 − √13

2
)

𝐿

)

𝑛

. 

 

  



 
 

33 
 

Chapter 7: Discussion of Graphs H and J 
 

As mentioned previously, we could not show an explicit formula for the number of closed walks of 

graphs 𝐻𝑛 and 𝐽𝑛. This is because we used a method that relied on the eigenvalues of the original 

matrices. However, the eigenvalues of 𝐻𝑛 and 𝐽𝑛 could not be simplified, or in Latin, casus irreducibilis. 

In spite of this, we will show some of our findings.  

 

7.1 Graph H 
 

For each non-negative integer 𝑛, we define the graph 𝐻𝑛 to have the vertex set  

𝑉𝑛 = {𝑣𝑗: 𝑗 = 0, 1, … , 3𝑛 − 1} and |𝑉𝑛| = 3𝑛.  

A(𝐻1) = [
1 1 0
1 0 1
0 1 0

] 

Figure 20. Graph and Adjacency Matrix of 𝑯𝟏 

Also, for each 𝑘 = 0, 1, … , 𝑛 − 1, 𝐻𝑛 has (𝑛
𝑘
)2𝑘 vertices of degree 2𝑘, 2𝑛 − 1 vertices of degree 2𝑛, and a 

single vertex, 𝑣0, of degree 2𝑛 + 1. The sum of the degrees of vertices in 𝐻𝑛 is 

∑ (
𝑛

𝑘
)2𝑘 × 2𝑘

𝑛−1

𝑘=0

+ (2𝑛 − 1) × 2𝑛 + (2𝑛 + 1) = ∑ (
𝑛

𝑘
)4𝑘

𝑛−1

𝑘=0

+ 4𝑛 − 2𝑛 + 2𝑛 + 1, 

= ∑ (
𝑛

𝑘
)4𝑘

𝑛

𝑘=0

+ 1 = 5𝑛 + 1. 

We believe the number raised to the 𝑛th degree, in this case 5, is directly related to the number of 1’s in 

the initial matrix, 𝐻1. This is seen in graphs 𝐷𝑛, 𝐸𝑛, and 𝐹𝑛 as well. We believe this only occurs when the 

matrix is modulo two and symmetric. However, this is purely speculation from the cases discussed. An 

inductive proof for the sum of the degrees of vertices in 𝐻𝑛 can be found in the appendix. 

Furthermore, although 𝐷𝑛 and 𝐻𝑛 have different degree sets, they both have the same number of vertices, 

number of edges, and sum of degrees. The degree set is a sequence of numbers that corresponds with the 

number of edges incident to a vertex. For example, the degree set of 𝐷1 is 1, 1, 4 because there are two 

vertices that are incident to one edge and one vertex that is incident to four edges. Note, we count both 

ends of a loop. Perhaps any two 𝑛 × 𝑛 matrices with the same number of entries modulo two will have a 

similar result. 

𝑣2 𝑣1 𝑣0 
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[
 
 
 
 
 
 
 
 
1 1 0

1 0 1

0 1 0

1 1 0

1 0 1

0 1 0

0 0 0
0 0 0
0 0 0

1 1 0

1 0 1

0 1 0

0 0 0
0 0 0
0 0 0

1 1 0

1 0 1

0 1 0
0 0 0
0 0 0
0 0 0

1 1 0

1 0 1

0 1 0

0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 
 
 

 

Figure 21. Adjacency Matrix of 𝑯𝟐 

 

 

 

 

 

 

 

 

Figure 22. Graph of 𝑯𝟐 

 

7.2 Graph J 
 

For each non-negative integer 𝑛, we define the graph 𝐽𝑛 to have the vertex set  

𝑉𝑛 = {𝑣𝑗: 𝑗 = 0, 1, … , 3𝑛 − 1} and |𝑉𝑛| = 3𝑛.  

A(𝐽1) = [
1 1 1
1 1 0
1 0 0

] 

Figure 23. Graph and Adjacency Matrix of 𝑱𝟏 

Also, we claim, without proof, the sum of the degrees for 𝐽𝑛 is 6𝑛 + 2𝑛.  

 

𝑣7 

𝑣4 𝑣5 

𝑣8 

𝑣2 
𝑣1 

𝑣0 𝑣1 𝑣2 

𝑣0 

𝑣3 

𝑣6 
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[
 
 
 
 
 
 
 
 
1 1 1
1 1 0
1 0 0

1 1 1
1 1 0
1 0 0

1 1 1
1 1 0
1 0 0

1 1 1
1 1 0
1 0 0

1 1 1
1 1 0
1 0 0

0 0 0
0 0 0
0 0 0

1 1 1
1 1 0
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 
 
 

 

Figure 24. Adjacency Matrix of 𝑱𝟐 

 

 

 

 

 

 

 

 

Figure 25. Graph of 𝑱𝟐  
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Chapter 8: Analysis and Discussion 
 

A distinct feature of the graphs with determinable eigenvalues is bilateral symmetry, or symmetry in two-

dimensional space. If we were to draw a line through the 𝐵1, 𝐶1, 𝐷1, 𝐸1, 𝐹1, and 𝐺1, we could see the left 

side is the mirror of the right. However, if we looked at 𝐻1, it is possible to make the sides mirror each 

other, but not for 𝐽1. Thus, our thinking is if there does not exist an orientation of a graph such that we 

could draw a line that would symmetrically bisect the graph, then the exact eigenvalues can be 

determined. But if there does exist such an orientation, then it is still unknown whether the eigenvalues 

can be determined. But this is purely speculation. 

Something else to note, the 𝐶𝑛 and 𝐷𝑛 have the same recursive formula for the number of closed walks at 

𝑣0 but different initial conditions. This got us thinking if the recursive formulas are related, and if the 

recursive formula for the number of closed walks at 𝑣0 is always the same as the recursive formula for the 

total number of closed walks of that graph. This is in fact the case for 𝐶𝑛, 𝐷𝑛, and 𝐸𝑛. But 𝐹𝑛 and 𝐺𝑛 do 

not share this similarity. 

In addition, we chose the graphs we did because we wanted to remain close to the original graph 𝐵1 from 

[1]. Initially, we were only going to research 𝐷𝑛, 𝐸𝑛, and 𝐻𝑛. However, we thought comparing more 

graphs would lead to more interesting findings. Two graphs we would have liked to research further are 

𝐾𝑛 and 𝑀𝑛. 𝐾1 and 𝑀1, with their corresponding adjacency matrices, can be seen below.  

 

   𝐴(𝐾1) = [
1 1 0
1 1 1
0 1 1

] 

Figure 26. Graph and Adjacency Matrix of 𝐊𝟏 

 

𝐴(𝑀1) = [
1 1 1
1 1 1
1 1 0

] 

Figure 27. Graph and Adjacency Matrix of 𝐌𝟏 

Other graphs with three vertices seemed too trivial. We also would have liked to find explicit formulas for 

the number of closed walks of length 𝑘 at 𝑣0 of graphs 𝐻𝑛 and 𝐽𝑛. 

After reading [1], we considered 𝐶1. It has one more loop at 𝑣0 at 𝐵1. Thus, we would recommend 

considering graphs with additional loops at 𝑣0 and complete graphs with a loop at one vertex. For 

complete graphs with one loop, the multiplicity of the eigenvalue, −1, seems to increase by one every 

time a vertex is added. The other two eigenvalues seem to have a pattern for odd and even numbers of 

vertices. The two non −1 eigenvalues for an even number of vertices seem to be divided by two, the 

integer component is equal to one less than the number of vertices, and the value under the radical is the 

square of that integer plus four. For example, when there are four vertices, the eigenvalues of the 

adjacency matrix are 

𝑣2 𝑣0 

𝑣0 

𝑣2 
𝑣1 

𝑣1 
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Ʌ(𝐺) = −1(2),
3 ± √13

2
. 

Obviously, this is closely related to the quadratic formula. The two non −1 eigenvalues for an odd 

number of vertices do not seem to be divided by two, the integer component is 
1

2
 less than half the number 

of vertices, and the value under the radical is that integer squared plus one. For example, when there are 

five vertices, the eigenvalues of the adjacency matrix are 

Ʌ(𝐺) = −1(3), 2 ± √5. 

But that is not all. If we were to add loops to 𝑣0 in 𝐵1, the eigenvalues would be the non −1 eigenvalues 

of the complete graphs with one loop. It is possible there are even more shared characteristics that could 

be found. 

Our project successfully demonstrated the number of closed walks of various graphs and the number of 

closed walks at a particular vertex in said graphs. We used [1] as our foundation, implementing similar 

methods to find new equations that calculate closed walks. Looking toward the future, we would 

recommend exploring some of the ideas mentioned above. Through this project, we were able to gain a 

deeper understanding and appreciation of the effort and thinking behind mathematical research in graph 

theory.  
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Appendix 
 

Proof of Lemma EIII:  

Given this recursive formula holds, 

𝑎𝐿+1 = 𝑎𝐿 + 3𝑎𝐿−1 + 𝑎𝐿−2 𝑤ℎ𝑒𝑟𝑒 𝑎1 = 1, 𝑎2 = 7, 𝑎𝑛𝑑 𝑎3 = 13, 

we assume the solution is homogenous and of the form, 𝑎𝐿 = 𝑐𝑟𝐿. 

𝑐𝑟𝐿+1 = 𝑐𝑟𝐿 + 3𝑐𝑟𝐿−1 + 𝑐𝑟𝐿−2, 

0 = 𝑟3 − 𝑟2 − 3𝑟 − 1, 

𝑟 = −1, 1 ± √2. 

Next, we substitute the solutions of 𝑟 into the form, 𝑎𝐿 = 𝑐𝑟𝐿, which yields  

𝑎𝐿 = 𝑐1(−1)𝐿 + 𝑐2(1 + √2)
𝐿
+ 𝑐3(1 − √2)

𝐿
. We then apply the initial conditions, 

𝑎1 = −𝑐1 + 𝑐2(1 + √2) + 𝑐3(1 − √2) = 1, 

𝑎2 = 𝑐1 + 𝑐2(1 + √2)
2
+ 𝑐3(1 − √2)

2
= 7, 

𝑎3 = −𝑐1 + 𝑐2(1 + √2)
3
+ 𝑐3(1 − √2)

3
= 13. 

To solve for the coefficients, we put the three equations in matrix form. 

[
 
 
 −1 1 + √2 1 − √2

1 (1 + √2)
2

(1 − √2)
2

−1 (1 + √2)
3

(1 − √2)
3
]
 
 
 
[

𝑐1

𝑐2

𝑐3

] = [
1
7
13

], 

[
 
 
 −1 1 + √2 1 − √2

0 (1 + √2)
2
+ (1 + √2) (1 − √2)

2
+ (1 − √2)

0 (1 + √2)
3
− (1 + √2) (1 − √2)

3
− (1 − √2)]

 
 
 
[

𝑐1

𝑐2

𝑐3

] = [
1
8
12

], 

[
 
 
 
 
 −1 1 + √2 1 − √2

0 1
(1 − √2)

2
+ (1 − √2)

(1 + √2)
2
+ (1 + √2)

0 (1 + √2)
3
− (1 + √2) (1 − √2)

3
− (1 − √2)]

 
 
 
 
 

[

𝑐1

𝑐2

𝑐3

] =

[
 
 
 

1
8

(1 + √2)
2
+ (1 + √2)

12 ]
 
 
 
, 
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[
 
 
 
 
 
 −1 1 + √2 1 − √2

0 1
(1 − √2)

2
+ (1 − √2)

(1 + √2)
2
+ (1 + √2)

0 0 4(
2 − √2

2 + √2
)

]
 
 
 
 
 
 

[

𝑐1

𝑐2

𝑐3

] =

[
 
 
 
 
 

1
8

(1 + √2)
2
+ (1 + √2)

4(
2 − √2

2 + √2
)

]
 
 
 
 
 

, 

Now, we solve for the coefficients. 

4(
2 − √2

2 + √2
)𝑐3 = 4(

2 − √2

2 + √2
), 

𝑐3 = 1. 

𝑐2 +
(1 − √2)

2
+ (1 − √2)

(1 + √2)
2
+ (1 + √2)

𝑐3 =
8

(1 + √2)
2
+ (1 + √2)

, 

𝑐2 =
4 + 3√2

(1 + √2)
2
+ (1 + √2)

, 

𝑐2 = 1. 

−𝑐1 + 𝑐2(1 + √2) + 𝑐3(1 − √2) = 1, 

𝑐1 = 1. 

Therefore, 𝑎𝑛 = (−1)𝑛 + (1 + √2)
𝑛

+ (1 − √2)
𝑛

 is the explicit form of 𝑎𝑛+1 = 𝑎𝑛 + 3𝑎𝑛−1 + 𝑎𝑛−2  

where 𝑎1 = 1, 𝑎2 = 7, and 𝑎3 = 13.∎ 
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Inductive proof of determining the sum of the degrees of vertices in 𝐻𝑛: 

When 𝑛 = 1, 

∑ (
1

𝑘
)4𝑘

1

𝑘=0

+ 1 = 51 + 1. 

Assume: Show: 

∑ (
𝑛

𝑘
)4𝑘

𝑛

𝑘=0

+ 1 = 5𝑛 + 1. ∑ (
𝑛 + 1

𝑘
)4𝑘

𝑛+1

𝑘=0

+ 1 = 5𝑛+1 + 1. 

 

Thus, 

∑ (
𝑛 + 1

𝑘
)4𝑘

𝑛+1

𝑘=0

+ 1 = (
𝑛 + 1

0
) 40 + ∑ (

𝑛 + 1

𝑘
) 4𝑘

𝑛

𝑘=1

+ (
𝑛 + 1

𝑛 + 1
) 4𝑛+1 + 1, 

= 1 + ∑ (
𝑛

𝑘 − 1
)4𝑘

𝑛

𝑘=1

+ ∑ (
𝑛

𝑘
)4𝑘

𝑛

𝑘=1

+ 4𝑛+1 + 1, 

= 1 + ∑ (
𝑛

𝑘
)4𝑘+1

𝑛−1

𝑘=0

+ ∑ (
𝑛

𝑘
)4𝑘

𝑛

𝑘=1

+ 4𝑛+1 + 1, 

= 1 + (∑ (
𝑛

𝑘
)4𝑘+1

𝑛

𝑘=0

− 4𝑛+1) + (∑ (
𝑛

𝑘
)4𝑘

𝑛

𝑘=0

− 1) + 4𝑛+1 + 1, 

= ∑ (
𝑛

𝑘
)4𝑘+1

𝑛

𝑘=0

+ ∑ (
𝑛

𝑘
)4𝑘

𝑛

𝑘=0

+ 1, 

= 5 ∑ (
𝑛

𝑘
)4𝑘

𝑛

𝑘=0

+ 1, 

= 5𝑛+1 + 1.∎ 


