

ENVIRONMENT
COCKPIT

A Major Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the Degree of

Bachelor of Science by

Qiu CHEN Ruoqing FU

1/8/2012

 This report represents the work of one or more WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement.WPI routinely publishes these reports on its web site

without editorial or peer review.

Page 2 of 101

Abstract
 The Environment Cockpit was designed for the BNP Paribas eCommerce technical

support team: just as pilots use a cockpit to control an aircraft, our Environment Cockpit

is a tool to help visualize and control computing facilities. Specifically, it serves to

centralize information from existing tools and to provide a user-friendly and dynamic

graphical representation of different elements of the system to help diagnose alerts

accurately and effectively. This project defined the scope of the tool, implemented a

project prototype with WPF and Graph# library, designed a user interface model and

constructed a prototype implementation.

Page 3 of 101

Table of Contents

INTRODUCTION ... 6

BACKGROUND ... 11

THE GENERAL CONCEPT OF A SERVER ... 11

THE GENERAL CONCEPT OF A CLIENT .. 11

THE CONCEPT OF DEPENDENCY BETWEEN PROCESSES .. 12

THE WIRE ... 12

DISCOVERY SERVICE ... 15

WPF .. 17

MVVM DATA BINDING ... 17

THE IDEA OF AN ‘ABSTRACT’ ITEM ... 19

EXISTING APPLICATIONS AND SERVICES IN THE ECOMMERCE ENVIRONMENT .. 21

Heartbeat ... 21

BMC and MQ .. 21

ITRS ... 25

SAM .. 26

GRAPH THEORY IN THE COCKPIT .. 26

AGILE DEVELOPMENT ... 27

LAYOUT ALGORITHM .. 28

DEVELOPMENT .. 30

CHALLENGE .. 30

The scale of Environment Cockpit ... 30

Difficulties ... 31
Current Difficulties Supporting the Environment .. 31
Display Difficulties ... 32
Technical difficulties .. 33
Implementation difficulties ... 34

STRATEGY .. 35

Initial design ideas .. 35

Graphing tool comparison .. 37

OUTCOME ... 39

PROJECT ARCHITECTURE DIAGRAM .. 39

PROJECT PROTOTYPE .. 40

PROTOTYPE FUNCTIONALITIES SUMMARY.. 44

The tab view .. 44

Abstract items and data flow representations... 45

Hierarchical relationships representations .. 47

Logical view and physical view filter ... 48

Adding and deleting different types of connections .. 50

Importing and exporting graph files ... 52

Detailed information and log files display ... 52

Zoom box .. 53

Double click vertices .. 53

Page 4 of 101

USER STORIES ... 53

User story I – tracing alerts ... 53

User story II – adding connections ... 56

User Story III – Deleting Connections ... 56

User story IV – Exploring real data ... 57

COCKPIT PROTOTYPE IMPLEMENTATION STRATEGY ... 58

CODING ANALYSIS .. 58

Two open source libraries ... 58

Three self-implemented libraries .. 59

One test package .. 59

Two builds ... 60

The Little Cockpit GUI code analysis ... 60

THE ENVIRONMENT COCKPIT GUI .. 62

THE ENVIRONMENT COCKPIT PROOF OF CONCEPT .. 65

METHODOLOGY .. 70

CONCLUSION .. 73

ACKNOWLEDGEMENTS .. 75

REFERENCES .. 76

APPENDIX .. 78

APPENDIX A.1 – COCKPIT PROTOTYPE CODE .. 78

CockpitService.cs.. 78

CockpitServerStartupConsole.cs .. 80

EdgeControl.xaml ... 81

ClientTest.cs .. 87

Brushes.xaml .. 88

DesignerItem.xaml .. 89

Connector.cs ... 90

EdgeRouteToPathConverter.cs ... 91

Singleton.cs ... 92

APPENDIX A.2 – SERIALIZED COCKPIT ITEM .. 92

APPENDIX B – ITEMS LIST AND ATTRIBUTES .. 98

APPENDIX C – TIMELINE ... 100

Figure 1: Sam .. 7

Figure 2: Proteus monitoring alerts .. 7

Figure 3 Block diagram of the Environment Cockpit (Sunai Patel, Project Description) 10

Figure 4: Wire discovery service flow chart (The Wire) .. 15

Figure 5: Discovery Illustration flow chart (The Wire.) ... 16

Figure 6: MVC diagram ... 18

Figure 7: Transmitting deal data from EFX to FXO (Storey) .. 22

Figure 8: Deal information data flow (Storey) .. 23

Figure 9: Snapshot of deal data transmitting in BMC I (Storey) ... 24

Figure 10: Snapshot of deal data transmitting in BMC II (Storey) .. 25

Page 5 of 101

Figure 11: Sam working diagram (Sam.) ... 26

Figure 12: EFX flow environment display ... 31

Figure 13 Logical view and physical view combined .. 33

Figure 14 the Bubble View ... 35

Figure 16 Grid View .. 36

Figure 15 Grid View .. 36

Figure 17 The Environment Cockpit architecture diagram ... 40

Figure 18 Wire service Window.. 41

Figure 19 Cockpit Prototype snapshot I ... 42

Figure 20 Tab view demonstration ... 44

Figure 21 The cockpit prototype snapshot II .. 45

Figure 22The cockpit prototype snapshot III .. 45

Figure 23 Cockpit Prototype snapshot IV ... 47

Figure 24 Logical view filter ... 49

Figure 25 Physical view filter—location view .. 49

Figure 26 Connection Type ... 50

Figure 27 Connectors .. 50

Figure 28 Cockpit Prototype Snapshot V .. 51

Figure 29 Connection pop up box Figure 30 Warning message box 51

Figure 31 Load and Save button ... 52

Figure 32 Log Information .. 52

Figure 33 Detailed Information .. 52

Figure 34 Zoom Box .. 53

Figure 35 ... 54

Figure 36 Logical View .. 55

Figure 37 Overall view .. 55

Figure 38 Physical View .. 55

Figure 39 Adding Connection ... 56

Figure 40 Delete Connection .. 56

Figure 41 Group View of Monza ... 57

Figure 42 Gfit Processes and Servers .. 57

Figure 43 UX team Gui Design I .. 63

Figure 44 UX team Gui Design II ... 64

Figure 45 UX team Gui Design III .. 65

file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139039
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139041
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139042
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139043
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139044
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139047
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139051
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139052
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139055
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139056
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139057
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139058
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139059
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139060
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139061
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139062
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139063
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139064
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139065
file:///C:/Users/sysfrq/Documents/MQP%20Last%20version%20submit.docx%23_Toc314139066

Page 6 of 101

Introduction

BNP Paribas, headquartered in Paris, is one of the biggest banking groups in the

world. The bank can be viewed from both the retail aspect and the investment aspect. The

eCommerce Group is a crucial part of investment banking at BNP Paribas because it is

chiefly in charge of foreign exchange trading.

In order to support the trading events within the eCommerce group, the

eCommerce Application Production Support Group (APS Group) functions to resolve

alerts raised by applications, fix non-functioning servers and broken data flow, and

maintain all eCommerce machines, applications and processes.

Currently, the eCommerce APS group utilizes many small applications to monitor

the department environment. These small applications include Sam (Figure 1), a

relatively new application used for starting and stopping processes, and Proteus(Figure 2),

one of the most widely used applications by the APS group supporters to monitor alerts.

Each of these applications has its own purpose, yet displays a small portion of the

eCommerce environment, so it is difficult for the APS group supporters to understand the

status of the general health condition of the environment. Therefore, it would be very

convenient to pull all the environment data and information together and display the

entire system in one application. In this way, the APS group supporters can easily view

the system and quickly respond to the environment alerts.

Page 7 of 101

Figure 1: Sam

Figure 2: Proteus monitoring alerts

The need for a central application to monitor many small applications brought

about the idea of ― environment cockpit‖ proposed by Wells Powell, the head of

Page 8 of 101

eCommerce Technology Group. Our project consisted of carrying out the first stage of

Environment Cockpit development with the eCommerce architecture team.

The first stage of the cockpit development includes collecting user requirements,

developing the cockpit prototype and designing a user interface. After meetings and

discussions with the eCommerce APS supporters and the architecture group, we

concluded that the user interface should be a dynamic and graphic representation of the

environment. Functionality requirements were adjusted daily to meet the rising business

need.

Throughout a timeframe of seven weeks, we actively communicated with

different stakeholders and produced the definition, functionalities summary and

development strategies of Environment Cockpit. By definition, the Environment Cockpit

is a support monitoring tool that can visually present system information and manage the

entire environment for the eCommerce group. It borrows the idea from the plane cockpit,

where pilots sit to control the whole aircraft. Similarly, for APS supporters, the

environment cockpit graphically displays a large number of environment elements in use,

both production and non-production, to allow easier management and diagnostics .With

this solution, the APS supporters will be able to view the overall environment and

efficiently control and manage the system.

The primary goal of the cockpit is to show infrastructure setup and ultimately give

users control to manage the environment. The first phase , which is to show infrastructure

setup ,includes showing which processes are running, where the processes are located,

communication and dependencies between processes, alerts being raised, log information,

Page 9 of 101

server statistics and links to other internal and external environments. By centralizing all

of this information from existing tools, system usage can be monitored more

conveniently and effectively to achieve the maximum utilization. Moreover, developers

can quickly diagnose issues by viewing alerts from the Environment Cockpit and identify

the source of the alert by using just one application rather than looking into many

different ones. On the second phase, the Environment Cockpit may potentially allow

control of the environment, such as having the ability to start and stop processes or move

processes between servers. In order to move a process from one server to another, the

APS supporters have to switch between applications. The Environment Cockpit will

potentially allow users to drag and drop processes between servers, which will reduce the

number of steps to be taken. This kind of control will significantly improve the efficiency

of supporters. If the Environment Cockpit is proven to be successful in the future, other

teams in the bank could apply its design idea, user interface and all the related

technologies to their system maintenance and usage control management.

Considering the complex nature of the project itself, implementing such an

Environment Cockpit application will take years of effort. Given the project timeframe of

seven weeks, we decided to implement a prototype to explore and research different

possibilities of the GUI design and implementation strategies. We then worked with the

User Experience (UX team) to develop a mature user interface design. Based on the

prototype and GUI design, we proposed a proof of concept of how the Environment

Cockpit can be implemented in the future.

The diagram shown below demonstrates the simplified Environment Cockpit

dataflow. From right to left, server information flows to the existing control agents and

Page 10 of 101

monitoring tools. Server information and traffic information (alerts, heartbeats) flows to

the Environment Cockpit represented by the control box on the left

Figure 3 Block diagram of the Environment Cockpit (Sunai Patel, Project Description)

Page 11 of 101

Background

The general concept of a server

In the Environment Cockpit project, servers have two different meanings. The

two meanings are distinct and cannot be confused with each other. First, servers can refer

to the machines that are used in the bank for processing applications such as Bloomberg,

SAM and TOC. The Environment Cockpit displays the status of these servers. Second,

servers can also represent the server component in the environment cockpit client-server

architecture diagram (Figure 16). In the Environment Cockpit, they are the crucial

machines that are running to collect the environment data from plug-ins and dealing with

the requests of the clients.

The general concept of a client

A client is an application or a system that accesses a service made available by a

server. A client could be connected to a server via network remotely or by inter-process

communication techniques on the same machine. One way of connection applies to

devices that are not capable of running their own programs but communicate with

computers by way of network. The other way of connection is founded on the client-

server model that client and server can run on the same machine and connect through

Unix domain sockets, shared memory, named pipes or other inter communication

methods (Client). The Environment Cockpit was developed by the first means. Various

Page 12 of 101

sources of information about the production environment are gathered up into a couple of

central servers, and then distributed to the Cockpit GUI.

The concept of dependency between processes

When one process cannot occur until another process is completed, there is a

dependency between the two processes. Theoretically, process dependency come in two

forms—resource dependency and data dependency. Resources dependency means

―several segments cannot be executed in parallel if they aren‘t sufficient processing

resources‖ and data dependency means ―data modified by one segment must not be

modified by another parallel segment‖. (Borysowich)

 When one process produces or modifies some tangible resource or data that is

used by another process, the affected process cannot proceed until the prior process

completes modification. For example, the CDP service contains streaming services that

include pricing data service while 360T is an application that depends on the pricing data

service for further display and computation.

The wire

 The wire is a set of libraries that are developed internally by BNP Paribas about

half a year ago. It was defined as ―a set of components designed to enable client-server

and server-server communication‖ on BNP Paribas Wiki page. Both server and client

Page 13 of 101

machines can send message between each other by utilizing the wire library, which can

be accessed in C#, Java and C++ language. There are three key components in the wire.

 Data Object - the definition of the message sent between servers and clients.

 Client - the component to make requests for the message.

 Server - the component to service requests for the message

Data Object:

All the information and data in the message have to be encrypted in a protocol

buffer in order to be transmitted through the wire. The protocol buffer was developed by

Google and defined as ―a language-neutral, platform-neutral, extensible way of

serializing structured data for use in communications protocols, data storage, and more‖

(Developer Guide). The protocol buffer was implemented as a standard for free

transmission between multiple platforms and applications in the bank. Developers need to

define the structure of the message being sent in a file ending with .proto. The file

extension follows not only the protocol buffer syntax rules on the Google Code, but also

a set of stricter rules of naming and syntax required by the bank. All the .proto files have

to be maintained in the definition folder of the DCTV repository in SVN with a rigid

folder structure. Each folder inside the definition folder maps to a .NET binary file in the

output folder. After developers saves .proto files in SVN, the protocol buffer definition

will be automatically converted to an equivalent source code in C#, Java and C++. This

compilation can be realized either locally or remotely in SVN, which usually takes about

20 to 30 minutes. C# and java binary code can then be generated from the output file. By

referencing the generated binary libraries in the wire, developers can directly use setter

Page 14 of 101

and getter methods that are automatically generated through the compilation to

manipulate all the fields defined within the protocol buffer.

Client:

A wire client instantiates either a request or a subscription and sends it to a wire

service. The client references the protocol buffer definition structure in the request

message and will wait for responses from the service after. The difference between a

request and a subscription is that a request will only receive a single synchronous

response from a server immediately while a subscription set up can receive multiple

asynchronous responses from a server whose results will be streamed as they are created.

Before setting up a wire client, the wire environment needs to be configured correctly.

Server:

 Each wire service endpoint is defined by its environment and location. A client has

two ways to connect to a wire service endpoint. One way is simply to connect to the

target service by using its hostname and its port number; the other way is to use the wire

discovery service by setting up a unique service identifier and then having the client

request the service identifier. Then, the wire discovery service will provide service

location information according to the service identifier to the client. The second way is a

better mechanism for its simple server migration.

Page 15 of 101

Figure 4: Wire discovery service flow chart (The Wire)

Discovery service

Before getting into the discussion of discovery service, it would be necessary to introduce

a few concepts.

 Application: ―a logical name for a deployable component that runs as one or more

processes on one or more hosts.‖ (eCommerce)

 Process: ―a separate unit of execution that can be started and stopped by OS

commands.‖ (eCommerce)

 Service: ―It consists of a named collection of Protocol Buffer message types, that are

interpreted as inputs, and is associated with a specified Endpoint. Services with the same

name are assumed to implement the same functionality. For simple cases it‘s perfectly

acceptable for an Application name and Service name to be the same.‖ (eCommerce)

Page 16 of 101

Endpoint: ―a Hostname and port number in the TCP implementation, Other wire

implementation are possible and their Endpoints may differ.‖ (eCommerce)

 MF Heartbeat:” an MF message on RV that includes a subject, the final part of the

subject being the Application.‖ (The Wire.)

Discovery service identifies applications if they generate the appropriate MF heartbeats.

As indicated by the graph shown below, a service provider transmits the

information through heartbeat. Then the discovery service makes the endpoint

information available to let users view the current service end points. Afterwards, the

discovery service publishes the information onto service data RV for the other instances

in the other regions to discover (The Wire.).

Figure 5: Discovery Illustration flow chart (The Wire.)

Page 17 of 101

WPF

WPF, short for Windows presentation Foundation, is a computer-software

graphical subsystem to make the user interface. It was developed by Microsoft and

released as a part of .NET Framework. XAML scripts are used in WPF for defining and

linking various UI elements. In WPF, users can define the look of an element directly or

with the internal templates and styles indirectly. The styles can be composed by a bunch

of property settings on different types of templates provided in WPF, such as the control

template and the data template that we use a lot for our project (Windows Presentation

Foundation.).

MVVM data binding

Model-View-ViewModel (MVVM) design pattern is a widely spread design

pattern within the software world recently. It was originally developed by John Gossman

in 2005, based on the idea of a very classic design pattern called MVC (Model View

Controller). Model-View-Controller pattern contains the View (what you see on the

screen), the Model (the data displays on the screen) and the Controller (the component

that hooks the view and the model together). The figure below shows the relationship

between these three components graphically. (Bucanek)

Page 18 of 101

Figure 6: MVC diagram

This pattern above enables the isolation of the application logic from the user

interface. Developers who are specialized in the interface design and the backend

implementation are able to develop in a rather independent and simultaneous way. The

loose coupling of developing user interface and backend will also create a smooth

designer and developer workflow and then allow efficient coding process.

The difference between MVVM pattern and the classic MVC pattern is that

MVVM pattern replaces the Controller with the ViewModel component. The

ViewModel‘s advantage over Controller is that it not only serves as a data binding

between the view and the model, but also is an abstraction of the view. It‘s a specialized

aspect of the Controller that exposes public properties and abstractions. However the

discussion of their differences is still an ongoing area as the MVVM pattern is getting

more standardized.

Page 19 of 101

There is a fundamental connection between MVVM and WPF. To simplify the

creation of the user interface, MVVM model is introduced as a standardized way to

leverage somecore features of WPF, which as we mentioned before, contains XAML files

for the view and .Net files for the Model and the Viewmodel. WPF is well suited to

MVVM pattern. Most importantly, by binding the View to the ViewModel, the loose

coupling provided by WPF entirely removes the need for writing codes in the

ViewModel that directly updates a View. Other useful features include the data templates

which can apply Views to the ViewModel objects shown in the user interface and

resource system that can automatically locate and apply the templates. The ViewModel

classes are easy to unit test too. The testability of the ViewModel can assist in properly

designing the user interface because developers can write unit tests for the ViewModel

without actually creating any UI object.

The idea of an ‘abstract’ Item

In the environment, there are different types of components that the APS team

monitors, such as servers, processes, bubbles and so on. In order to represent these

different types of environment elements, it is very useful to develop the idea of an

‗abstract‘ item for the Environment Cockpit first. In the cockpit, an item is a unit of data

that we have to manage, such as a process, a computer, a data center, a sub-net, a

component, a group, a domain, a suite or a database (Roberts). All the items can be

assembled into item hierarchies. For example, the processes running on a server that is in

a data center or the processes that are streaming in an application within a group. The

Page 20 of 101

types of hierarchy will be system generated from the API plug in applications, which

local users have no right to change them. The relationships between items can also be

defined in other ways, such as process connections and data flows between processes. All

types of connections between items are rooted in process connection. For instance, when

two servers are connected to each other, it is actually the processes running on each

server that transmit information between each other, rather than the servers themselves.

The concept of process connection is very important because it reflects the dependency

between each item.

Each item has its unique id, which is used for the environment identification or

hierarchy inferring, a type and a collection of item attributes associated with it (Roberts).

For example, servers have attributes called CPU usage or disk size. Not all item attributes

are fixed. Some of them can be updated over time from the company‘s real system data

(Roberts). With the concept of an ‗abstract‘ item, Environment Cockpit can transmit

information between server and clients. The wire just needs to send a collection of items

without knowing what type of information it is transmitting. A list of abstract items and

their attributes was summarized and attached in Appendix B - a list of abstract items and

attributes.

Page 21 of 101

Existing applications and services in the eCommerce

environment

The information that the Environment Cockpit GUI displays is entirely gathered

from the API plug in applications, including Autopilot, BlackbirdMonitor, SamGUI,

StarGazer, TOCAdmin, Cab Admin, ITRS, RMDS, Syslog, RV, Proteus and so on

(Patel). RV is a messaging framework and Proteus is the most widely used alerts

monitoring tool. Below list a few other important applications that can potentially

provide information for the Environment Cockpit.

Heartbeat

A heartbeat is a broadcast to application monitoring tools about the life and death

of services. There are many kinds of heartbeats, like MF heartbeat and wire heartbeat.

MF heartbeat is used to help the discovery service identify the applications. Although a

Wire instance may support several services, only one heartbeat needs to be sent.

Heartbeat usually includes the application name and the specific services that are

included in the body of the message. MF heartbeat is broadcast on RV whereas a wire

heartbeat is a point to point TCP/IP message between the client and the server

(Heartbeat).

BMC and MQ

BMC is a MQ monitoring tool, known as Queuepasa in the bank. MQ is a queue

component to transmit data between different environments and systems. All the data put

in MQ will for sure reach its destination sooner or later. BMC is mainly used by

infrastructure team to check the MQ data transferring status and speed in the

environment. For example, if an alert is raised by the high latency of the data transferring

Page 22 of 101

process that used MQ component, such as from EFX to FXT, supporters can then explore

the specific MQ queue to check the work flow processing status, speed, data flow size

and other important information on BMC GUI. There are two types of MQ transmitting.

One is inter-application data transferring. Below is a graph to illustrate this type of

transfer. The graph shows an example of transmitting deal data from EFX to FXO

through MQ directly without duplicating the data (Storey).

EFX
including Bloomberg, TOC

and so on

Deal

Exporter

MQ Server

To FXT MQ
(in XML format)

D
ea

l
D

ea
l

FXT
(Primarily used by front

and middle office)

Importer

D
ea

l

FXO
(Primarily used by back

office settlement team)

Figure 7: Transmitting deal data from EFX to FXO (Storey)

Page 23 of 101

The second type of MQ data transmitting is called intra-application data

transferring. This involves duplicating data and distributing the information to different

places. Below is a graph to illustrate the data flow. As you can see, the deal data gets

duplicated and is transferred by MQ from FXT London to FXT New York, FXT

Singapore and FXT Tokyo (Storey).

FXT London

D
ea

l

Data Replication

MQ Server

MQ
(in XML format)

D
e

a
l

Deal

FXT NY

D
e
a
l

FXT Tokyo

Deal

FXT Singapore

Figure 8: Deal information data flow (Storey)

BMC has another functionality of monitoring transaction process. People can see

the specific timing of when a data flow get transmitted from one source to the other

Page 24 of 101

source. However this functionality has not been used very often by supporters yet

(Storey).

Figure 9: Snapshot of deal data transmitting in BMC I (Storey)

Page 25 of 101

Figure 10: Snapshot of deal data transmitting in BMC II (Storey)

ITRS

ITRS, a third party environment monitoring tool, is a very powerful application

and was already used by several teams within the bank. ITRS provides both hardware and

applications information. Furthermore, it allows users to customize a dashboard overview

of graphically displaying the environment elements that the users are concerned about.

The data on the dashboard overview will also update in the real time. This functionality

seems to be very similar to the Environment Cockpit requirements. However after the

team interacted with Sebastien Dubuisson, an expert on ITRS from Market Data Team,

we discovered that there is a very long learning curve of ITRS and in addition, the budget

is also another huge concern for the eCommerce APS group to adopt ITRS in a short

period of term (Dubuisson).

Page 26 of 101

SAM

SAM stands for Service Agent Manager to manage and monitor server-side

eCommerce processes. Sam provides a database of process descriptors which describe the

processes that run on different machines, a controlling process that manages the

processes schedule, a GUI for viewing and manipulating process descriptors, and an

agent process - SamSon that runs on each server to manage the individual process

lifecycle (Sam.).

Figure 11: Sam working diagram (Sam.)

Graph theory in the cockpit

Dots connected by lines comprise a graph. A ―dot‖ is called a vertex. A ―line‖ is

called an edge. The connecting edges between vertices indicate the relationship between

all the items. The way that dots and lines are presented makes up the layout of a graph

(West). In the Cockpit GUI solution, we defined a few basic classes - PocVertex,

Page 27 of 101

PoxEdge and PocGraph. In the PocVertex class, each item is assigned with an unqiue ID.

These unique IDs are identified in PocEdge for the connection use. When users move the

mouse over an item, four sticking rectangles that belong to the connector class will show

up. Each rectangle has a vertex inherited from PocVertex associated with it. When we say

connecting two items, it is actually the vertices encompassed in the rectangles that are

connected to each other.

Agile development

‗Agile Development‖ is an umbrella term for several iterative and incremental

software development methodologies such as Extreme Programming, Scrum and Lean

Development. Though different methods have their own approaches, they all share a

common rule of incorporating iteration and continuous feedbacks to develop a software

system. ―They all involve continuous planning, continuous testing, continuous

integration, and other forms of continuous evolution of both the project and the software.

As important, they all focus on empowering people to collaborate and make decisions

together quickly and effectively.‖ Agile methods break the whole projects into discrete

tasks and these tasks involve a software development cycle, including ―planning,

requirements analysis, design, coding, unit testing, and acceptance testing when a

working product is demonstrated to stakeholders‖ (Martin). However, in the case of our

project, we worked separately in different locations. Though we didn‘t really follow the

agile method rules that emphasize more face-to-face communications in the same office

because of the physical constraint, we had daily discussions with sponsors to make sure

http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Software_Design
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Acceptance_test

Page 28 of 101

that we were following the requirements of the users. Other than the daily conference

meetings with our sponsors, we also had our own discussions to assign daily independent

tasks and facilitate team spirit. The advantage of agile methods is to minimize the overall

risk and make the project more adaptable to customer requests quickly.

Layout algorithm

There are two types of layout algorithm commonly used. They are force-directed

algorithm and parallel algorithm. Force-directed algorithm is often used to draw general

graphs, with the goal of finding the minimum energy to represent the most aesthetically

pleasing drawings. This algorithm employs partitioning of the spatial domain, clever

initial positioning of vertices and multi-level approaches (Fruchterman and Reingold).

Parallel layout algorithm involves three approaches involving multi-level force-directed

graph layout algorithm, parallel simulated annealing algorithm, and graph and

visualization on display walls (Brent and Kung). The Environment Cockpit prototype

made use of force-directed algorithm that the graph# library brought in. However, with

this type of algorithm, the prototype encountered some technical difficulties that users

have to rearrange the layout to get a clear view. This resulted from the compound view

mechanism built on the prototype. Simply put, graph# restricted in computing local and

global attractive and repulsive forces between all the compound layers. Thus far, the

vertex positions could not be updated as accurately at once to reach an equilibrium state

that is to have all the attractive and repulsive forces between nodes balanced.

Consequently, nodes that are supposed to be attracted to each other may act repulsively

Page 29 of 101

on the graph, resulting in an unpleasant visual effect. This can be where the future

Environment Cockpit improves on.

Page 30 of 101

Development

Challenge

The scale of Environment Cockpit

In order to understand the purpose of the Environment Cockpit, it is necessary to

depict the environment numerically. EFX Flow Environment is used here as an example

for simple illustration. In this environment, there are more than 80 running machines

across 4 different regions, around 225 unique process applications, 450 processes and

numerous technologies. These technologies include two operating systems—Windows

and Linux, four programming languages — C#, C++, Java and Python and about 20

different middleware such as RMDS, MQ, RV, LQ2 and FQP. Additionally, as the

picture indicates, the complex data flow between each service collection makes it very

difficult for users to understand the environment situation at a glance.

Page 31 of 101

Figure 12: EFX flow environment display

Difficulties

Current Difficulties Supporting the Environment

First, the eCommerce APS supporters are currently using multiple applications to

manage the system, such as SAM, TOC and Proteus. These existing monitoring

applications all provide different perspectives to the environment and, therefore, take up

much of the screen. When all the applications cannot fit into a supporter‘s screen, he or

she needs to switch between applications, which decreases his or her efficiency.

Second, there is no easy way to view the overall health of applications and

services. Although the APS supporters have various monitoring tools to view different

Page 32 of 101

perspectives of the environment, there is no straightforward way for them to view the

overall system.

Third, there is no easy way to view information about where the servers are

located, overall servers‘ health and where firewalls are located. Also, the relationship

between processes is not displayed by any existing environment monitoring tool.

Although experienced supporters are familiar with the data flow and relationships within

the system, Environment Cockpit will increase their efficiency and provide a

representation of data flow. For new employees, it will provide a central point from

which they can learn.

Display Difficulties

The environment can be displayed in two different perspectives. The first view is

logical view, which displays the logical hierarchy relationship within the system, for

example, processes located in different service groups and service groups located in

different domains. The second view is the physical view, which demonstrates the

physical hierarchy of relationships .This includes processes located in different servers,

servers located in different zones, and zones located in different locations. In order to

show the most of the environment hierarchical relationships, the Environment Cockpit

combines both physical view and logical view together and displays both perspectives in

one graph. The graph in figure 13 is an example of combining physical and logical view.

Page 33 of 101

The physical view on this graph displays servers in different locations and

processes working on different servers. The logical view displays processes belonging to

different applications and the data flow between processes. This is only a very small

portion of the environment. There are actually more than 500 processes within the eFX

flow environment in the bank. There is information for all processes within physical and

logical view, therefore it is a diffult feat to display all this information clearly.

Figure 13 Logical view and physical view combined

Technical difficulties

First, it is not possible to retrieve all the logical relationships between processes

from the system, especially for database connections. For example, the program, electro,

is using an SQL query to get information from the database and there is currently no way

for the system to detect when the program is actually accessing the database. This leads

to the impossibility for the Environment Cockpit to create and remove the connections on

London NYServer 1

Process 2

Server 2

Process 3

Server 4

Server 3

Process 7

Process 6

CDPProcess 4 Process 8

BlackBird Process 5Process 1

Page 34 of 101

its GUI accordingly. Another example is that currently there is a list of wire service end

points available within the bank, but there is no mechanism to get information about

which clients or applications are actually connecting to which wire services.

Second, there are currently no plug-ins developed to get information from the

Wire, Sam, TOC and other applications, so developers don‘t know what information they

will bring to Environment Cockpit, what the format of the data is and how difficult it is to

integrate all the data.

Implementation difficulties

There are numerous monitoring applications out there to assist the APS supporters

with system management. All of these monitoring applications depict the system in

different ways, but there is currently no single application supporters can use exclusively

to gather all environment information. The Environment cockpit was designed to

compensate for this deficiency. Its most distinct feature is to centralize and integrate all

environment data collected from different existing tools such as, RMDS, RV, MQ, SAM,

SAMSON, and TOC. The integration of data from different resources makes the

Environment Cockpit more challenging to implement than the other monitoring tools.

Since the Environment Cockpit deals with a large amount of environment data,

the maintenance is difficult. To resolve maintenance issues, the Environment Cockpit

will utilize automation where appropriate. For example, when any team in the bank

Page 35 of 101

deploys a new process, it will automatically be informed and will display the update on

the GUI.

Strategy

Initial design ideas

The bubble view was one of the original ideas for the Environment Cockpit

proposed by Wells Powell. It was designed to display different elements in the

environment. As the

Figure 14 indicates, each bubble represents a network and within each network. Users

can view a list of machines with service, data flow, disk usage and other information

related to each machines.

Network2

Machine 1
1. Disk usage :

2. ...

CDP
1. Disk usage

2. ...

Revolution
1. Disk usage

2. ...

Machine 2
1. Disk usage :

2. ...

Machine 4
1. Disk usage :

2. ...

Machine 3
1. Disk usage :

2. ...

Machine 5
1. Disk usage :

2. ...

Network1

Machine 9
1. Disk usage :

2. ...

Machine 8
1. Disk usage :

2. ...

Machine 7
1. Disk usage :

2. ...

Machine 6
1. Disk usage :

2. ...

CDP
1. Disk usage

2. ...

Revolution
1. Disk usage

2. ...

Figure 14 the Bubble View

Page 36 of 101

The grid view was another original design idea of the Environment Cockpit

proposed by Huw Roberts. Similar to the bubble view, the grid view was also designed to

show all the elements in the environment but in a different way. As shown below in

Figure 15, the outside rectangles represent environment locations such as London and

Tokyo. The second largest rectangles divide the environment in different locations by

service groups such as CDP and Wibble. Within each service group, it contains many

booking processes. The colors red, yellow and green indicate how busy the processes are.

The color red, for instance, means that the process is handling a relatively large number

of bookings per second and indicates that the process is overloaded. The advantage of

this view is that it can fit the largest amount of information with the smallest space used

and shows the health condition of all the processes.

Figure 16 Grid View

LDN
CDP

booking1

booking2

...eaming1

...eaming2

booking3

booking4

...eaming3

...eaming4

...tor_360t ...tor_CNX

...eaming1

...eaming2

...eaming3

...eaming4

Wibble
booking1

booking2

...eaming1

...eaming2

booking3

booking4

...eaming3

...eaming4

...tor_360t ...tor_CNX

...eaming1

...eaming2

...eaming3

...eaming4

booking1

booking2

...eaming1

...eaming2

booking4

...eaming3

...eaming4

...eaming1 ...eaming3

Doobrey
booking3 booking1

booking2

...eaming1

...eaming2

booking4

...eaming3

...eaming4

...eaming1 ...eaming3

Doobrey
booking3

LDN
CDP

booking1

booking2

...eaming1

...eaming2

booking3

booking4

...eaming3

...eaming4

...tor_360t ...tor_CNX

...eaming1

...eaming2

...eaming3

...eaming4

Wibble
booking1

booking2

...eaming1

...eaming2

booking3

booking4

...eaming3

...eaming4

...tor_360t ...tor_CNX

...eaming1

...eaming2

...eaming3

...eaming4

booking1

booking2

...eaming1

...eaming2

booking4

...eaming3

...eaming4

...eaming1 ...eaming3

Doobrey
booking3 booking1

booking2

...eaming1

...eaming2

booking4

...eaming3

...eaming4

...eaming1 ...eaming3

Doobrey
booking3

TYO
CDP

booking1

booking2

...eaming1

...eaming2

booking3

booking4

...eaming3

...eaming4

...tor_360t ...tor_CNX

...eaming1

...eaming2

...eaming3

...eaming4

Wibble
booking1

booking2

...eaming1

...eaming2

booking3

booking4

...eaming3

...eaming4

...tor_360t ...tor_CNX

...eaming1

...eaming2

...eaming3

...eaming4

booking1

booking2

...eaming1

...eaming2

booking4

...eaming3

...eaming4

...eaming1 ...eaming3

Doobrey
booking3 booking1

booking2

...eaming1

...eaming2

booking4

...eaming3

...eaming4

...eaming1 ...eaming3

Doobrey
booking3

Figure 15 Grid View

Page 37 of 101

Graphing tool comparison

Below are the comparison results between different graphing tools after detailed

investigation into each of them

Graphing Tools Advantages Disadvantages

Nshape • able to drag items on the graph

• able to create template

• able to customize the size of the

view

• able to generate XML format of

image files that suit the project

needs

• only 10 basic shapes

• very complicated to create

shapes

Visio • able to select templates

• look very professional

• easy to add graph

• not possible to develop a

WPF or.Net based application

Ywork • plenty of documentation and

tutorial

• super nice automatic layout

• able to present overview and

detailed view at the same time

• too expensive to buy the

license

Page 38 of 101

• Convenient users control such as

expanding or collapsing nodes and

hovering over effects

QuickGraph • able to add shapes dynamically

•simple to code with

• not enough documentation or

tutorial

Graphviz • open source

• searching algorithms

• using Dot text language to define a

graph

• flexible and fancy views

• Reliable

• impossible to be directly

used without a viewer

Graph# • WPF based

• relatively more documentation

• completely free

• able to customize features

• not enough documentation

and tutorial

Table 1: Graph Tool Comparison

Page 39 of 101

Outcome

Project architecture diagram

To start with, it is important to demonstrate project architecture diagram and to

understand the information that feeds into the Environment Cockpit. As indicated by the

architecture diagram below, information travels a long way before it reaches the cockpit.

The blue boxes on the top of the graph are the existing applications that BNP ecommerce

team is using to analyze the environment. For example, HB provides process lifetime

information, ITRS provides hardware monitoring information, SAM provides processes

and services general information, and ADDM manages hardware specification

information. Because all these applications present information in different ways, they

have to be unified and managed on a common user interface that converts all kinds of

information display techniques into one that servers can identify. The API Plug in plays

the role of being the common interface, and it is a very important component in passing

all the information to the server. After the server gets the information, the data goes

through the wire environment that is used to transmit information between client and

server. Ultimately, the cockpit receives, organizes and displays the information on the

GUI.

Page 40 of 101

Project prototype

As the report stated previously, the banking environment is extremely large and

complex with a large number of applications, technologies, processes, servers and others

statistics concerned. Given the seven weeks of the project timeframe, it is improbable to

develop an application that incorporates all the environment information and meets the

entire functionality requirements. Therefore, the team decided to build a prototype to

explore different aspects of environment cockpit GUI designs, and investigate a few

important implementation technologies as a start up practice for the future development.

Based on the architecture diagram and the original design ideas proposed by the BNP

ecommerce groups, we summarized a list of functionalities that were intended to be

Server

 Client

Discovery

HB

ITRS

Sam

wire

Environment Cockpit

API Plug in

ADDM
MF

BAM+

ServiceN

ow

Figure 17 The Environment Cockpit architecture diagram

Page 41 of 101

implemented on the Environment Cockpit and these functionalities will potentially

revolutionize the way of how the existing monitoring tools manage the environment.

These new functionalities include alerting mechanism, data flow representation,

hierarchy relationship, logical and physical view filter, adding and deleting connections,

saving and loading files and displaying

detailed information of different

elements in the environment.

In the Environment Cockpit, we

successfully configured the wire

environment, established both server

and client sides, and enabled the

communication between the server and the

client. The cockpit prototype users need to make sure that they start the cockpit wire

service before they can run the cockpit prototype user interface program. The window in

figure 17 shows up after the wire service is established successfully. The client side is

embedded and used as a libraries reference to the prototype user interface development.

When users run the cockpit GUI, the cockpit client subscribes to the cockpit discovery

service automatically, and thus enables the communication between the client and the

server.

Figure 18 Wire service Window

Page 42 of 101

Figure 18 is the cockpit prototype GUI which consists of two tabs. One is the GFit

processes and servers view with the real data generated from the Gfit database while the

other is the Processes Collection View with dummy data that the team defined. We used

dummy data for two reasons. One is the time constraints of the seven weeks period,

which makes it impossible to put changes into production to collect all the environment

information from the existing monitoring tools; the other is that even if we get the

information from the production, there is still the technical difficulty of integrating all the

collected information into one universal presenting format that the cockpit server can

recognize and take in. Because of these reasons, we implemented the user interface with

the dummy data to illustrate the useful functionalities that the real environment cockpit

can possibly have in the future.

Figure 19 Cockpit Prototype snapshot I

Page 43 of 101

Page 44 of 101

Prototype functionalities summary

The tab view

Figure 20 Tab view demonstration

In the Environment Cockpit, tabs can be created by double clicking on the CDP

service collection. A new tab will appear to show all the processes within the CDP

service collection. Tabs can also be closed by clicking the cross button on the right side

of each tab. The leftmost small tab is the tabs overview, which shows the thumbnails and

overall condition of all the existing tabs (Figure 19). Users can enter each tab for more

information by double clicking its thumbnail.

Page 45 of 101

Abstract items and data flow representations

Figure 21 The cockpit prototype snapshot II

Figure 22The cockpit prototype snapshot III

Page 46 of 101

Each vertex in the Environment Cockpit represents an abstract item. An item, as

mentioned before in the Analysis chapter, can be any processes, process collections,

groups, domains, locations and servers. The shape and logo of each vertex are designed

to be easily identified as the type of an abstract item. The color indicates the health

condition of each domain, group and process. For example, as shown in Figure 21, the

red and yellow vertices represent the domains with more than 90% and 50% of alerts-

generating processes, respectively. The green vertices mean the domains are in a healthy

condition. Each edge represents the dataflow, the correlation and the dependency from

one process to the other process. The bidirectional edge stands for the two processes are

exchanging data. With the similar design idea to that of the vertices, the edges have

different colors and thickness set also to differentiate the connection types (such as RV,

MQ or Wire), the health condition of these connections and the data traffic flow. When

an alert on a certain process is raised, the Environment Cockpit gets informed from the

system. The vertex of the process and the service collection that contains the error

process flash red at the same time.

Page 47 of 101

Hierarchical relationships representations

Figure 23 Cockpit Prototype snapshot IV

There are two kinds of relationship for all the abstract items, including

hierarchical relationship and dataflow relationship. Hierarchical relationship is a

containment connection between abstract items. For example, 360TPricing process

belongs to 360T service collections; nycl00057274 server belongs to New York server

collections; and 360TPricing process runs on nycl00057274 server. The hierarchical

relationships are represented by means of compound boxes (Figure 22). Dataflow

relationship is demonstrated with arrow connections. For example, EFXMarkSe process

is pointed to 360TPricing, which takes market data from EFXMarkse. It is also very easy

to differentiate which items represent processes because only processes can have

dataflow relationships.

Page 48 of 101

Logical view and physical view filter

Hierarchical relationship is then classified into two groups--logical hierarchical

relationship and physical hierarchical relationship. Logical hierarchical relationship

demonstrates the processes‘ properties logically. For example, the RTFXPricing process

runs on the RTFX service collection. While physical hierarchical relationship describes

the tangible locations of processes. All of the relationships, consisting of the logical and

physical hierarchical relationship and dataflow relationship, can be displayed on the

cockpit GUI (Figure 22). However, as we have demonstrated in the Analysis chapter, it is

not very easy for users to quickly identify the relationships between items with physical

and logical views both present. Especially in a relatively large banking environment,

there are numerous processes running, and complex dataflow, which make it very

difficult for users to discover the underlying condition in the environment. To address

this issue, we implemented a filter that can allow users to choose which view they want

to see, logical (Figure 23) or physical (Figure 24), in order to fully understand what is

going on in the environment. Users can pick either ―Logical View‖ or ―Physical View‖

from the combo box on the toolbar.

Page 49 of 101

Figure 24 Logical view filter

Figure 25 Physical view filter—location view

Page 50 of 101

Adding and deleting different types of connections

As we have previously discussed in the Analysis chapter, it is not

possible to automatically retrieve all the logical dataflow

relationships from the system, especially for

database connections. Thus, for a better management of

the dataflow connections, Environment Cockpit

gives users the control to add and delete connections. Users can add

different types of connections, such as RV, Wire, MQ and unspecified, from the

connections type toolkit box on the left bottom side of the screen (Figure 25). The

dataflow connection can be selected as bidirectional, or unidirectional. Users can also

adjust the connection flow amount to stress how large the traffic amount is. With the

desired dataflow connection type and flow amount selected, users can then link the two

processes by clicking any one of the four square controls surrounding each process

(Figure 26). As shown in Figure 27 below, the unidirectional and small amount wire

dataflow from FXCurrenexMMCantor2 process to EFXMonitorAgent process, the

unidirectional and large amount RV dataflow from FXCurrenexMMCantor2 process to

EEFXIntelHedge-4Intel process and the bidirectional and large amount RV dataflow

between EEFXIntelHedge-4Intel process and EfxCdpBok process were manually added

by the users.

Figure 21 Figure 26

Connecti

on Type

Figure 27

Connectors

Page 51 of 101

Figure 28 Cockpit Prototype Snapshot V

Figure 29 Connection pop up box Figure 30 Warning message box

Users can also delete any dataflow by hovering over and then right clicking the

connection that they would like to remove. A context menu box will show up. If the users

choose the option of ―Delete the connection,‖another message box that writes ―Are you

sure you want to delete the connection‖ will pop up to confirm users‘ action (Figure 28).

If the users choose ―yes,‖ the dataflow connection will then be successfully removed

Page 52 of 101

from the canvas. The whole graph will re-layout automatically again according to the re-

layout algorithm. However, users do not have the right to delete any system generated

dataflow connections. When they try to delete a system generated connection, a warning

box of ―Oops, you can‘t remove a system generated connection‖ will appear to prevent

them from doing so because system generated connections are surely correct (Figure 29).

Importing and exporting graph files

The changed graph can be

saved by clicking the save

button on the toolbar (the

third button from the left in Figure 30). The modifications will then be serialized and

transmitted to the cockpit server. On the opposite, if users choose to reload the display,

(the second button from the left in Figure 30), the changed graph will be de-serialized and

reloaded from the cockpit server into the cockpit prototype GUI. The reloaded graph may

not have the exact same layout as saved before. This is caused by the limitations of

graph# libraries that restricted re-layout algorithm and should be improved in the future

implementation of the Environment Cockpit. The system only button (the first button

from the left in Figure 30) is used for generating system only graph without showing any

changes that the users make.

Detailed information and log files display

When users left click

Figure 31 Load and Save button

Figure 33 Detailed Information

Figure 32 Log Information

Page 53 of 101

on a process or service collections vertex, the detailed information box at the bottom of

the GUI will be updated, showing different versions, locations, machines and schedules

of the clicked process (Figure 31). Users can also right click on each vertex to see the log

information (Figure 32) of the process. However, at the moment, log file only contains

dummy data since we have not yet built any plug-ins to retrieve the log information from

the system. When the users hover over on vertices or connection lines, a yellow tooltip

box will appear showing brief information about different vertices and edges.

Zoom box

At the right side of the GUI display, users can

control the percentage axis at the top of the zoom box

(Figure 33) to expand and diminish the size of the graph.

In addition, the zoom box also provides a thumbnail of the

whole graph. The framed small black box is used to

signify the part that the user is zooming into.

Double click vertices

Service Collections, Domains and Groups Vertices are double-clickable and can

then be expanded to their containing items collections.

User stories

User story I – tracing alerts

Figure 34 Zoom Box

Page 54 of 101

From the processes collection view

with dummy data, users can notice

that the CDP service is blinking

red (Figure 34). This means alerts

were just raised from the system. If users want to

troubleshoot the errors inside CDP service

collection, they can simply double click on the CDP services to view all the processes

within CDP service

collection. Since the

cockpit prototype does

not always generate a

perfect graph layout,

users can click on the

re-layout button to

generate a clearer

view.

Figure 35

Page 55 of 101

 From the overall view (Figure 35),

users can observe the environment in both

logical and physical perspectives. In logical

view, the cockpit GUI gives

information about which

processes are sitting in the

corresponding service

collection such as CDP, RTFX

and 360T. In the physical view, the GUI displays which processes are running in different

locations, like New York or London. The dataflow is already all over the place with a few

processes shown on the graph (Figure 37). Imagine there are many more processes and

much more complex data flow in the real world. The view that combines both physical

view and logical view gives too much information for users to handle. Furthermore, as

users, they can hardly find out why alerts were generated and how these alerts were

related. In order to investigate more about the cause of these alerts, users can utilize the

built-in filter to separate out the information they are not concerned about and gain a

better knowledge of the information they care about. If users choose ―logical view‖

(Figure 36), all the processes will be relocated into different service collections. Similarly,

if users switch to ―location view‖ (Figure 37), all the processes will be relocated into

different locations. From the location view, it is obvious that all the processes in New

Figure 36 Logical View

Figure 38 Physical View

Figure 37 Overall view

Page 56 of 101

York are red. This means that the New York servers have something going wrong and

generate these alerts.

User story II – adding connections

As the APS supporters, if they discover that

there should be a small amount wire data

flowing from FXCurrenexMMCantor2

process to EFXMonitorAgent process but

this connection is not detected or displayed

by the cockpit prototype. The supporters can

then manually add the connection by selecting ―Connection Type‖ as ―Wire‖ and then

click on the two processes. A connection will be added on the graph (Figure 38).The new

connection information will be transmitted into the cockpit server to be saved and

distributed throughout all the other users.

User Story III – Deleting Connections

As the APS supporters, if

they decide that there

shouldn‘t be any dataflow

connections from

EFXMarkSe process to

360TPricing process,

they can just delete the

connections by right

Figure 33 Figure 39 Adding Connection

Figure 40 Delete Connection

Page 57 of 101

clicking on the data flow line. However, since the connection between

EFXMarkSeprocess and 360TPricing process is system generated, users don‘t have the

right to delete them manually. A pop up warning box will appear to remind the supporters

that this connection cannot be removed (Figure 38).

User story IV – Exploring real data

From the GFit processes and servers View (Figure 41), if the

APS supporters want to dig out why Monza domain (red on the

graph) is in a seriously ill condition, they can double click on the

―Monza‖ domain, and enter the two groups, ―CORE‖ and

―MONZA‖ within the ―Monza‖

domain. As Figure 40 indicates,

both ―CORE‖ and ―MONZA‖ groups are red too. If the supporters double click on the

―MONZA‖ group, all the processes within the group (Figure 41) will

show up in red, meaning every item within ―MONZA‖ group is

generating alerts. This indicates the whole Monza system is down.

Figure 36

Figure 42 Gfit Processes and Servers

Figure 41 Group

View of Monza

Page 58 of 101

Cockpit prototype

implementation strategy

The Environment Cockpit prototype uses WPF as its major coding platform. We

implemented both of the GUI and the back end sides, using xaml and C# programming

language respectively. The Wire and graph# are the two major technologies used in the

prototype. The Wire, an in-house developed middleware tool, and protocol buffer are

applied to transmit information between the cockpit server and clients. Graph#, a WPF

platform based library, is employed to construct the GUI display.

The two major concepts developed in the cockpit prototype are the idea of

abstract item and server with plug-ins. As mentioned before in the Analysis section, an

abstract item can be any process, server and service collections. Each item was assigned

with a unique ID, type and different attributes. In this way, the wire can transmit

information between the server and clients without knowing what type of information it

is transmitting. Server with plug-ins can provide a common interface for all the

information generated from the different existing applications.

Coding analysis

Two open source libraries

We utilized two online open source libraries downloaded from the CodePro

website. They are FabTab, a very popular tab view library, and graph#, a WPF platform

supported library based on GraphViz that provides a powerful and fundamental graph

Figure 41: Double click on “Monza”

Page 59 of 101

drawing resource for the cockpit prototype. Graph# includes more than ten layout

algorithms with one compound layout algorithm, the one that the cockpit prototype is

currently using. Although the compound layout is not ideal and sometimes doesn‘t

produce a perfect layout, graph# is still a pioneer library that can provide the technology

for compound vertices. However, since graph# cannot manage the compound vertices

and update the graph at the same time, the team revised the Graphsharp.control library to

make graph# better fit into the cockpit prototype. In the future, the Environment Cockpit

development team is recommended to keep track of the development of graph#, a

powerful and free graphing tool.

Three self-implemented libraries

We implemented three library packages with about 1146 lines of code. The

package consists of GFitDataBase, Service and Client packages. GFitDataBase is a

library connecting to the Gfit database and retrieving real life data of the processes and

servers basic information from the database. Service library is made up of

MockItemSource and LittleCockpitService as two major classes to create dummy data

and set up the wire discovery service to transmit both the dummy and real data that

GFitDataBase library produces. The dummy data mocks the future ideal data generated

from the system. Client is a library creating the wire client to subscribe the dummy data

and the real data from the wire discovery service.

One test package

We also implemented a test package with about 90 lines of code. The test package

consists of one major test to check if the wire is installed correctly. This is a very useful

package during the debugging process because it can analyze whether the error is caused

by the wire or by the cockpit prototype GUI.

Page 60 of 101

Two builds

There are two builds within the cockpit prototype, including

WireServiceStartUpConsole (26 lines of code) and the LittleCockpit builds.

WireServiceStartUpConsole should be run at first to register the cockpit wire service.

Users can then run the client side, which is the LittleCockpit build to boot the cockpit

prototype GUI.

The Little Cockpit GUI code analysis

Little Cockpit GUI includes four folders, which are GraphBits, Images, Resources

and ViewModels folders, five windows and seven separated classes.

GraphBits contains 470 lines of code, including PocEdge, PocVertex and PocGraph

scripts, which define the customized vertex, edge and graph, respectively so that each

control can bear many self-implemented attributes. For example, in the cockpit prototype,

a vertex has not only ID as one of its basic attributes, but also health condition, status,

color and double clickable as the other added-on attributes. After processes and processes‘

attributes are transmitted from the wire, they are then translated into different color and

shape of vertices to be displayed on the GUI. Images folder contains image files used in

the cockpit prototype. Resources folder defines the style of almost all of the UI elements

within the cockpit prototype and provides some useful templates and brushes. The

resources folder, with around 1900 lines of code in total, contains the style scripts of

expander, scrollbar, scrolling viewer, slider, toolbar, toolbox, tooltip and zoom box, a

brushes library with different colors and gradients, and most importantly, a DesignerItem

xaml markup that defines the style of vertices and edges. By using data binding provided

by WPF, the cockpit prototype binds different attributes of vertices and edges to different

vertex color or shapes and edge thickness.

Page 61 of 101

MainwindowViewModel C# script with a total of 1135 lines of code is the part

that connects the backend data to the view. To be more specific,

MainwindowViewModel‘s main functionality is to produce the view of the graph with

the backend data. With the data transmitted from the wire, MainwindowViewModel

calculates how many vertices there should be to be put on the canvas, and determines the

attributes of these vertices. MainwindowViewModel also provides methods of producing

different types of view, for example, loadlogicalview method will ignore the physical

locations aspect of the processes and only display the logical belongings while

loadLocationview method will only focus on the location aspect of different vertices.

Five windows include CDPMainWindow (437 lines of code),

DummyProcessCollectionMainWindow (111 lines of code), GFitWindow (494 lines of

code), InfoLog (60 lines of code) and MainWindow (240 lines of code). The

MainWindow window utilizes FabTab library to set up a basic tab view and then adds

DummyProcessCollectionMainWindow and GFitWindow for the ―Processes Collection‖

and the ―GFit Processes and Servers‖ tabs, respectively, within the prototype GUI. When

users double click on the CDP service collection vertex, they trigger the

CDPMainWindow window to show up in a new tab and the infoLog window is triggered

by right clicking on the ―Show Log information‖ option on each vertex.

Each of the seven separated classes plays a very important role in the cockpit

prototype. Connector class (125 lines) implements the connector control around each

vertex. This class incorporates a mouse clicking event control function that can memorize

the last two clicked vertices and add the edge between them. MoveThumb class (182

lines) allows vertices to be movable and resizes the canvas according to the whole

Page 62 of 101

vertices layout. In addition, MoveThumb class implements the functionalities of left

button clicking to update the detailed information box and double clicking to dig into a

deeper level of the graph. Singleton class (49 lines) is another crucial class to expose

several essential entities so that they can be used globally, for example, the previously

clicked vertex, the current clicked vertex, the main window and so on. PocSerialzeHelper

class (92 lines) is to facilitate the save and reload process and

EdgeRouteTopathConverter (134 lines) is used to draw the arrow head shape of the

connections. Toolbox (29 lines) and Zoom box (117 lines) classes implement the toolbox

and zoom box functionalities respectively.

Within the past seven weeks, the team learned WPF, C# and xmal by themselves,

worked with graph#, the wire and FabTab libraries and then implemented around 5000

lines of code. At the end of the project, they successfully realized several crucial

functionalities, such as filter, connection management and alerting system within the

cockpit prototype GUI, and proved the idea and feasibility of the Environment Cockpit.

Because of the size of the code, it is not feasible to attach all of the cockpit prototype

code in this report. Thus only several important pieces of sample code are demonstrated

in Appendix A.1 – Cockpit Prototype Code and a small piece of the serialized cockpit

item is illustrated in Appendix A.2 – Serialized Cockpit Item

The Environment Cockpit GUI

In order to define a clearer Environment Cockpit GUI design for future

implementation of the real Environment Cockpit, the architecture group and our team

Page 63 of 101

actively interacted with UX team and the APS team supporters. The UX team and our

team came up with the following GUI design.

Figure 43 UX team Gui Design I

From figure 42, on the top of the toolbar, the Environment Cockpit is currently

showing FX Global Environment. The green boxes indicate the health of each service

collection and the lines demonstrate the dataflow. From the toolbar on the top, users can

choose to view different layers of information, such as processes status or processes

connection status. Users can also click on ―Edit‖ button to add and remove connections

within the graph. In the bottom of the GUI, users can view the alerts grouped by

difference source, process group, application, or type and also the alerts log that shows

the history record of the alerts. From the graph canvas, users can tell the blackbird service

is going wrong with one red box. Users can then double click on the service collection to

get a detailed logical view about why the Blackbird service is giving error. From the

Page 64 of 101

processes view below in figure 43, it is clear that the red connection of the data flowing

from the RMDS is actually giving error information into the Blackbird process.

Figure 44 UX team Gui Design II

From the top right hand side, users can also switch to the physical view of the

Blackbird services collection (Figure 44). The middle panel shows different black boxes

of servers or server collections sitting in grey boxes of zones within London or New York

locations. From the toolbar on the top, users can filter out different types of connections

by picking ―All connections,‖ ―Manual Connections,‖ ―System Connections,‖ tabs. In the

bottom, users can view the detailed information of servers that the Blackbird service

collection is running on, which includes location, zone, memory, CPU and disk space of

Page 65 of 101

the servers. If the users double click on a server collection, for example, Nirvana Servers

Collection, the bottom detailed information box will be updated to the servers‘

information that is only related to the Nirvana Servers Collection.

Figure 45 UX team Gui Design III

The Environment Cockpit proof of concept

The Environment Cockpit is designed by the architecture team and our team to fill

in the blanks of the current existing monitoring tools and to accommodate various

requirements from the APS supporters. Within all the functionalities proposed in the

Environment Cockpit, developers were especially concerned with the functionality of

giving users the right to add and delete connections. Developers generally doubted that

Page 66 of 101

the users will actually take the time to add and delete connections and maintain the

Environment Cockpit dataflow by themselves. Through many interviews and discussions,

there were several APS supporters confirmed that they would like to see and utilize this

functionality; however, there were also opposed voice from others. Thus, we strongly

recommend to investigate more and to collect more precise users‘ responses regarding to

this functionality.

Except the main functionalities described in the Environment Cockpit GUI

section above, several other functionalities were very popular among the APS supporters

and it will be very beneficial to consider the implementation of them in the future. First is

placing layers on vertices. For the APS supporter, the most important information that

matters to them is the status of applications and the status of alerts. Thus showing these

two parts of information straightforwardly by placing extra information layers on top of

each vertex within the Environment Cockpit will be very useful. Second is dynamic alerts

notification. Because users usually customize several filters to focus on the areas of the

environment that they are interested in, they will often neglect the health condition and

alerts in the other part of the environment. Thus, it is recommended to have a small spot

in the GUI to indicate the health condition and the alerts happening in the part of the

environment other than the users‘ focus area. Third is automation. The Environment

Cockpit is going to include enormous complex data of the whole environment and the

maintenance of this giant data entity is for sure going to be problematic. Because of this,

the Environment Cockpit is designed to use automation as much as possible. For example,

whenever a team deploys a new process, the Environment Cockpit should get informed

and display the newly added process at real time.

Page 67 of 101

Some other user stories were also depicted by the APS supporters and developers,

who expressed the hope for the Environment Cockpit to have these abilities in the future.

One user case is to have detecting ability of ineffectiveness in the dataflow. For example,

if process A locating in London acquires data from process B in New York, while there is

process C in London offering exactly the same service as process B, it is quite obvious

that using process C will remove the data transmission overseas and, as a result, improve

efficiency. The environment cockpit should be able to display, detect and highlight this

kind of inefficiency for users so that users can make improvements of the environment

dataflow. The other user case is to show server resource usage within the system. For

example, if there are several processes providing the same service and only one of these

processes is actually requested by many other clients, this process will be way overloaded

and the speed of computing will decrease; while the other processes providing the same

service are just left idle. The Environment Cockpit should again have the ability of

detecting and demonstrating this kind of inefficiency in the system and alerting users

about it.

Throughout the requirements collection period, our team not only gathered

suggestions specifically for the environment cockpit, but also pulled together some other

ideas of improving the monitoring system in the bank as a whole. For example, the

existing tools name the same applications and processes differently and this is very

confusing for users when they want to evaluate the same process across different

platforms. Thus, there is an urge demand to have a unified application name within the

system across all the monitoring platforms. The unified status type of the application is

also recommended because different tools display different types of status for the

Page 68 of 101

processes. The current alert message was also said to be not accurate and straightforward

by the APS supporters. Thus, developers are highly suggested to write good alert

message for their products.

The technology of Graph# was proven to be a cheap, useful, appealing and

suitable for the Environment Cockpit through the prototype development. However, there

are a couple points that need to be noticed by future developers. First, Graph# is still

under development. The current version used in the cockpit prototype is the most recent

Oct 2011 version and future developers should follow the Graph# Code Project

homepage to retrieve the updated version with more methods. Second, as we have

mentioned in the prototype section before, Graph# does not always generate a perfect

graph layout with compound boxes. Thus, efforts can be made to improve the existing

compound graph layout algorithm in graph#. Third, when people save graph, they expect

to reload the exact same layout as the saved graph. Therefore, the Environment Cockpit

in the future should have the ability of disabling the automatic layout algorithm imposed

by Graph#.

Through the seven weeks‘ work, the Environment Cockpit is proven to be not

only a powerful monitoring tool and highly expected by users, but also feasible in

implementation through the development of the prototype. As the progress of the

Environment Cockpit continues after the leave of our team, the cockpit developers can

refer to the cockpit prototype for some useful technology, such as Graph# and the Wire.

They can also implement according to the architecture diagram and follow the GUI

design illustrated in the above Outcome section. They can consider the other user

requirements collected by our team and keep users actively involved throughout their

Page 69 of 101

implementation of the Environment Cockpit to create a well-designed, popular and

powerful monitoring tool.

Page 70 of 101

Methodology

A major difficulty of the project was the long distance development between the

two WPI team members. Qiu worked in the BNP Paribas London site while Linda

worked in the BNP Paribas New York site. The time difference and the communication

difficulties at first obstructed the project progress. The major communication tool used in

the bank, Windows Communicator, took some time to be set up in New York. The first

several meetings were spent resolving technical difficulties involving international

conference calling. In addition, Qiu and Linda had to overcome the time difference to

work together on the project. The mid-project presentation and one final presentation

were successful although the two team members were in different countries.

The first few days of working on the project, we familiarized ourselves with the

internal environment monitoring software such as Sam, BlackBird, TOC and so on. Then,

we met with the APS group to learn about the limitations of the existing applications. The

aim was to gain a full understanding of the existing monitoring tools in order to better

design the Environment Cockpit.

Since the Environment Cockpit is a start up project in the bank, the first task was

to define the project scope and gather user requirements. We had a few meetings with the

stakeholders and different teams, including the APS group and the architecture team, to

discuss what features they would like to include in the cockpit and their ideas on the

implementation of the project in the future. Although we were in different locations, we

Page 71 of 101

still adopted the Agile development working method as the project proceeded. On a daily

basis, we managed to speak to our sponsors to ensure the functionality requirements and

project scope suited business needs. Meanwhile, we held daily discussions in order to

separate daily tasks , and discuss about development strategies and implementation plans.

These frequent communications greatly helped project development and allowed the

project to be adaptable to the ongoing client requests.

Soon after the project scope was cleared, we started implementing the user

interface prototype. The goal was to create visuals that are practical and useful in

accordance with functionality, but also pleasing to the user. This required not only

excellent coding skills, but also the use of a proper graphing tool. The team investigated

numerous graphing technologies such as Nshape, graphviz, Yworks, graph# and others.

Graph# turned out to be the best fit for the project though it was relatively new and there

was not much documentation available. The options were considered carefully given the

constraints of the limited project timeline and the restricted option of programming

languages (the programming languages were restricted to C# and WPF).

We encountered many technical challenges as the project went on. For example,

the physical view and logical view were difficult to combine and display graphically.

There was so much information that it was a struggle to create a user interface that was

both practical and thorough. The visual aesthetics of the user interface were limited by

practicality. As the Outcome chapter stated, data flow between different elements in the

environment would become messy and disordered with every piece of information

shown. To address this issue, we vigorously interacted with the architecture team in the

eCommerce group, brainstormed, experimented and finally discovered the solution of

Page 72 of 101

implementing a filter that would allow users to choose views. The views can be either

logical or physical. This solution was rather successful because it practically presented all

the important information without ruining the aesthetics of the GUI.

WPI student team also worked with the UX group for user interface design, and

outlined a solid proof of concept regarding how environment cockpit project could be

developed and who else it could benefit in the future. The future steps are to establish the

back end connection, develop environment control and implement UX group‘s user

interface design. A timeline of the implementation and workflow steps of the WPI

student team‘s project work is attached in Appendix C – Timeline.

Page 73 of 101

Conclusion

The seven weeks of working on the Environment Cockpit project was a fantastic

learning experience. We were honored to be given such a great opportunity to work with

so many intelligent and friendly people from a world-class top-notch bank. We were

extremely appreciative of all the given guidance, support and inspiration along the way.

The aim of the Environment Cockpit project was to deliver a business solution to

help supporters efficiently monitor and maintain the system. Inspired by the original idea,

bubble view and grid view, proposed by Wells Powell and Huw Roberts respectively, we

developed a user interface that could visually present all the environment information and

allow users to control, manage and maintain the environment. Environment Cockpit

centralizes all the environment information, provides a dashboard overview of the system

status, and displays the general health condition of the environment. In addition,

Environment Cockpit is able to display the complex data flow among all the elements,

which no other existing application currently does.

The Environment Cockpit can revolutionize the way supporters monitor the

environment. With the Cockpit, they do not have to open all the discreet existing

monitoring tools, fit them into a handful of screens, and analyze the environment‘s

overall health condition from all the complex and huge tables of existing tools. Instead,

they could just open up one application, the Environment Cockpit, view the system health

graphically, dig out the real cause of the alerts, understand environment dynamic, and

have better control of the system. Specifically, if anything in the environment goes

Page 74 of 101

wrong, alerts would be generated to inform the users. Users could quickly locate the

error, what caused the error, and quickly discover the other applications that the error

may affect. This was achieved by displaying two forms of information in the

Environment Cockpit— the physical view and the logical view. Depending on what

information they would like to know, users can choose which type of view they want to

see. Users are also given certain controls such as adding/deleting connections to monitor

system data flow and saving/loading files from the cockpit server. A log file, tooltip and

information box were also provided to reflect the system situation in different ways.

Upon the completion of the Cockpit prototype, we recommended a few steps that

the future Environment Cockpit development group could take to continue the project

and summarized the other user requirements that haven‘t been implemented in the

prototype or designed in the GUI, but were strongly expressed by the supporters. By

defining the project scope, investigating graphing tools, constructing the prototype, and

providing an implementation strategy for the future, WPI‘s student team intended to

initiate the huge environment cockpit project for the bank. Ultimately, the Environment

Cockpit will improve the supporters‘ efficiency and provide better assistance for

monitoring trading events.

Page 75 of 101

Acknowledgements

From BNP Paribas

• Wells Powell – Head of eComm Group

• Huw Roberts – eComm Architecture

• Sunai Patel – Configuration Management Lead

• Nicolas Wright - Configuration Management --New York

• Martin Gittins – Architecture Developer

• Daniel Slater – Architecture Developer

• Mohammed Abu Sharikh—Architecture Developer

• Nick Matterson – User Experience Team

• Emmanuel Philipon – Application Production Support

• Amine Bakkali Yedri – Application Production Support—New York

• Sebastien Dubuisson – Market Data Team

From WPI

• Professor Arthur Gerstenfeld—WPI School of Business

• Professor Daniel Dougherty— WPI Department of Computer Science

• Professor Xingming Huang—WPI Department of Electrical and Computer Engineering

• Professor Jon Abraham—WPI Department of Mathematical Science

Page 76 of 101

References

―The server.‖,Comer, Douglas E.; Stevens, David L. (1993). Vol III: Client-Server

Programming and Applications. Internetworking with TCP/IP. Department of Computer

Sciences, Purdue University, West Lafayette, IN 47907: Prentice Hall. pp. 11d.

ISBN 0134742222.

“Client‖ Wikipedia, Dec 20
th

. Web. ‹

http://en.wikipedia.org/wiki/Client_%28computing%29›.

Borysowich, Craig. "Overview of Dependency Diagrams." IT Communities - Share

Knowledge at Toolbox.com. 25 May 2007. Web. 29 Dec. 2011.

<http://it.toolbox.com/blogs/enterprise-solutions/overview-of-dependency-diagrams-

16493>.

“Developer Guide‖ Protocol Buffers Google Code, Dec 20
th

. Web. ‹

http://code.google.com/intl/zh-CN/apis/protocolbuffers/docs/overview.html›.

Roberts, Huw. ECommerce Cockpit Straw Man. Tech. 1.0st ed. London: BNP Paribas

ECommerce, 2011. Print.

Bucanek, Jame. Learn Objective-C for Java Developers. Apress, 2009. Print.

"Discovery Service." BNP Paribas Wiki. BNP Paribas London, 2009. Web. 26 Oct. 2011.

Patel, Sunai. Personal interview. Oct 30
th

. 2011.

Beal, Vangie. "What Is A Server Platform? ?? Webopedia.com." Webopedia: Online

Computer Dictionary for Computer and Internet Terms and Definitions. 28 Jan. 2005.

Web. 29 Dec. 2011.

<http://www.webopedia.com/DidYouKnow/Hardware_Software/2005/servers.asp>.

"The Wire." BNP Paribas Company Wiki. Web. Nov 15
th

. 2011. <

http://wiki.london.echonet/display/DC/Discovery+Service+Overview >

"Heartbeat." BNP Paribas Company Wiki. Web. Nov 15
th

. 2011.

Storey, Sean. Personal interview. Nov 30
th

. 2011.

http://en.wikipedia.org/wiki/Prentice_Hall
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0134742222

Page 77 of 101

Dubuisson, Sebastien. Personal interview. Nov 30
th

.2011.

"Sam." BNP Paribas Company Wiki. Web. Nov 15
th

. 2011.

West, Douglas B. Chaos: Introduction to Graph Theory. Prentice Hall, 2001. Print.

“Windows Presentation Foundation.‖ Microsoft, Dec 20
th

. Web. ‹

http://msdn.microsoft.com/en-us/library/ms754130.aspx›.

Martin, Robert Cecil. Agile Software Development: Principles, Patterns, and Practices.

Prentice Hall, 2003. Print.

Fruchterman, Thomas M.J. Reingold, Edward M. "Graph drawing by force-directed

placement" Software: Practice and Experience 21.11 (1991): 1129-1164. Print.

Brent, R.P. Kung, H.T. "A Regular Layout for Parallel Adders" IEEE Transactions on

Computers C-31.3 (1982): 260-264. Print.

Page 78 of 101

Appendix

Appendix A.1 – Cockpit Prototype Code

CockpitService.cs

using System;using System.Collections.Generic;

using System.Linq;

using System.Threading;

using Bnpp.Gfit.Proto.Wire.Samples;

using Bnpp.Gfit.Wire;

using Bnpp.Gfit.Wire.Entities;

using Bnpp.Gfit.Wire.Services;

using Bnpp.Gfit.Wire.Transport;

namespace QiuLindaService{

 class Program{

 private const string WireServiceName = "EfX.Wire.BlotterSample";

 private const int ChunkSize = 100;

 private readonly String name;

 private readonly ReaderWriterLockSlim rwLock = new ReaderWriterLockSlim();

 private WireServer wireServer;

 public QiuLindaService(String name)

Page 79 of 101

 {

 this.name = name;

 }

 private static void InitialisewireEnvironment(){

 if (WireEnvironment.Current == null)

 {

 WireEnvironment.Default.Location = "LON";

 WireEnvironment.Default.Environment = "Dev";

 WireEnvironment.Default.SubEnvironment = Environment.MachineName

+ Environment.UserName;

 WireEnvironment.Default.Initialise();

 this.wireServer = new WireServer(WireServiceName);

 this.wireServer.SetMessageHandler<GetQiuLindaSubscription>(this.HandleQiuL

indaSubscription);

 this.wireServer.Error += (s, error) => Console.WriteLine("WireListener

Error:" + error.Exception);

 this.wireServer.Start();

 }

 }

 private void HandlePingPongSubscription(GetPingPongSubscription message,

Channel channel)

 {

Page 80 of 101

 this.rwLock.EnterReadLock();

 do

 {

 GetPingPongSubscription name = new GetPingPongSubscription();

 Console.WriteLine("Received " +

GetpingPongSubscriptionMessage.Message)

 channel.SendMessage(name);

 }

 finally

 {

 this.rwLock.ExitReadLock();

 }

 }

}

CockpitServerStartupConsole.cs

 using System;

 using Bnpp.Gfit.Proto.Wire.Samples;

 using Bnpp.Gfit.Wire;

 using Bnpp.Gfit.Wire.Entities;

 using Bnpp.Gfit.Wire.Services;

 using Bnpp.Gfit.Wire.Transport;

Page 81 of 101

namespace QiuLindaService{

 class Program

 {

 static void Main(string[] args)

 {

 InitialiseWireEnvironment();

 using (var server = new QiuLindaService())

 {

 server.SetMessageHandler<PingPong>(HandlePingPongSubscription);

 server.Start();

 server.handlePingPongSubscription();

 Console.WriteLine("Press return to exit");

 Console.ReadLine();

 }

}

EdgeControl.xaml

<Style TargetType="{x:Type graphsharp:EdgeControl}">

 <Setter Property="Template">

 <Setter.Value>

 <ControlTemplate TargetType="{x:Type graphsharp:EdgeControl}">

Page 82 of 101

 <Grid DataContext="{Binding RelativeSource={RelativeSource

TemplatedParent}}" >

 <Path

 MinWidth="1"

 MinHeight="1"

 ToolTip="{TemplateBinding ToolTip}"

 x:Name="edgePath">

 <Path.Stroke>

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Edge.Type"/>

 </Path.Stroke>

 <Path.StrokeThickness>

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Edge.Thickness"/>

 </Path.StrokeThickness>

 <Path.StrokeDashArray>

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Edge.IsDashed"/>

 </Path.StrokeDashArray>

 <Path.Data>

 <PathGeometry>

 <PathGeometry.Figures>

 <MultiBinding Converter="{StaticResource

routeToPathConverter}">

Page 83 of 101

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Source.(graphsharp:GraphCanvas.X)" />

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Source.(graphsharp:GraphCanvas.Y)" />

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Source.ActualWidth" />

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Source.ActualHeight" />

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Target.(graphsharp:GraphCanvas.X)" />

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Target.(graphsharp:GraphCanvas.Y)" />

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Target.ActualWidth" />

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Target.ActualHeight" />

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="RoutePoints" />

 <Binding RelativeSource="{RelativeSource TemplatedParent}"

 Path="Edge.IsBidirectional"/>

 </MultiBinding>

 </PathGeometry.Figures>

 </PathGeometry>

 </Path.Data>

 </Path>

Page 84 of 101

 <Grid.ContextMenu>

 <ContextMenu ItemsSource="{Binding

RelativeSource={RelativeSource TemplatedParent}, Path=Edge.Commands}">

 <!--<ContextMenu ItemsSource="{TemplateBinding Vertex, }">-->

 <ContextMenu.ItemContainerStyle>

 <Style TargetType="MenuItem">

 <Setter Property="Command" Value="{Binding}"/>

 <Setter Property="Header" Value="{Binding

SimpleCommandText}"/>

 </Style>

 </ContextMenu.ItemContainerStyle>

 </ContextMenu>

 </Grid.ContextMenu>

 </Grid>

 </ControlTemplate>

 </Setter.Value>

 </Setter>

 <Setter Property="graphsharp:GraphElementBehaviour.HighlightTrigger"

 Value="{Binding RelativeSource={RelativeSource Self},

Path=IsMouseOver}" />

 <Setter Property="MinWidth"

 Value="1" />

 <Setter Property="MinHeight"

 Value="1" />

 <Setter Property="Background"

Page 85 of 101

 Value="Red" />

 <Setter Property="Foreground"

 Value="Silver" />

 <Setter Property="Opacity"

 Value="0.5" />

 <Style.Triggers>

 <Trigger Property="graphsharp:GraphElementBehaviour.IsHighlighted"

 Value="True">

 <Setter Property="Foreground"

 Value="Black" />

 </Trigger>

 <Trigger Property="graphsharp:GraphElementBehaviour.IsSemiHighlighted"

 Value="True">

 <Setter Property="Foreground"

 Value="Yellow" />

 </Trigger>

 <MultiTrigger>

 <MultiTrigger.Conditions>

 <Condition

Property="graphsharp:GraphElementBehaviour.IsSemiHighlighted"

 Value="True" />

 <Condition

Property="graphsharp:GraphElementBehaviour.SemiHighlightInfo"

 Value="InEdge" />

 </MultiTrigger.Conditions>

 <Setter Property="Foreground"

Page 86 of 101

 Value="Red" />

 </MultiTrigger>

 <MultiTrigger>

 <MultiTrigger.Conditions>

 <Condition

Property="graphsharp:GraphElementBehaviour.IsSemiHighlighted"

 Value="True" />

 <Condition

Property="graphsharp:GraphElementBehaviour.SemiHighlightInfo"

 Value="OutEdge" />

 </MultiTrigger.Conditions>

 <Setter Property="Foreground"

 Value="Blue" />

 </MultiTrigger>

 </Style.Triggers>

 </Style>

Page 87 of 101

ClientTest.cs

Page 88 of 101

Brushes.xaml

Page 89 of 101

DesignerItem.xaml

Page 90 of 101

Connector.cs

Page 91 of 101

EdgeRouteToPathConverter.cs

Page 92 of 101

Singleton.cs

Appendix A.2 – Serialized Cockpit item

<?xml version="1.0" ?>

- <ArrayOfCockpitItem xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

- <CockpitItem>

 <id>LONS00109273</id>

 <type>Server</type>

- <Attributes>

- <Attr>

 <attributeKey>Application</attributeKey>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 93 of 101

- <attributeValue>

- <AttrValue>

 <attributeValueValue>Revolution</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

- <Attr>

 <attributeKey>Description</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>Revolution HA External Nirvana LIVE</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

- <Attr>

 <attributeKey>Env</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>Prod</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 94 of 101

- <Attr>

 <attributeKey>Agent_status</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>agent is alive</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

- <Attr>

 <attributeKey>Location</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>LON</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

 </Attributes>

 </CockpitItem>

- <CockpitItem>

 <id>reuters-autoquote-k1bpqq.us.net.intra</id>

 <type>Server</type>

- <Attributes>

- <Attr>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 95 of 101

 <attributeKey>Application</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>Reuters Autoquote</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

- <Attr>

 <attributeKey>Description</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>NY MDFD Reuters Keystations-K1BPQQ</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

- <Attr>

 <attributeKey>Env</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>Prod</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 96 of 101

 </Attr>

- <Attr>

 <attributeKey>Agent_status</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>agent is alive</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

- <Attr>

 <attributeKey>Location</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>NYK</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

 </Attributes>

 </CockpitItem>

- <CockpitItem>

 <id>nycs00057562</id>

 <type>Server</type>

- <Attributes>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 97 of 101

- <Attr>

 <attributeKey>Application</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

- <Attr>

 <attributeKey>Description</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>Xiphias Swap</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

- <Attr>

 <attributeKey>Env</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>Dev</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 98 of 101

 </Attr>

- <Attr>

 <attributeKey>Agent_status</attributeKey>

- <attributeValue>

- <AttrValue>

 <attributeValueValue>agent is alive</attributeValueValue>

 <attributeValueType>String</attributeValueType>

 </AttrValue>

 </attributeValue>

 </Attr>

Appendix B – Items List and Attributes

Items Items Attributes

Environment  Name

 Function/Owner

 Hardware Location

 Name in Config

 Share

 App server

 DNS

 Cube1/Cube2

Server  Usage

 OS

 Location

 Server

 Cores

 Memory

Process  Status

 Status Change Time

 Enabled

 Version

 modifiedBy

file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml
file:///D:/WallStreetProject/unzipped%20items/requirements/code/GfitData.xml

Page 99 of 101

 TimeModified

 Monitored?

 Process Descriptor History

 Invocation History

 Status History

 Log

 Service history

Process

descriptor

 Name

 Sub Environment

 Group

 Location

 CommandLine(Name of Service)

 Is service?

 Machine

 Schedule

 RetrySchedule

 KillAfter

 Is Wire Service

 Mf Service Id

 Mf Heartbeat Subject

 Working Directory

Alerts  Type

 Subject

 State

 Creation Time

 Last Modified Time

 Severity

 Instance number

 Login

 Date

 STAR LON/ STAR TYO/STAR SIN

 Version

 Owner

 Server Name

 Description



Heartbeat

 Subject

 Server Name

 Server id

 Process name

 Service Type

 Expected HBs

 Received HBs

 Last HB

Page 100 of 101

 Status

Appendix C – Timeline

10/24/11(Monday)-10/28/11(Friday) Get familiar with the exisiting

monitoring tools, set up communication

devices , request all the potentially used

softwares, investigate graphing tool

technology and gather user

requirements

10/31/11(Monday)-11/4/11(Friday) MileStone1: Define the scope of

environment cockpit

11/7/11(Monday)-11/10/11(Thursday) MileStone 2:Configure the Wire

environment

11/10/11(Thursday)-11/15/11(Tuesday) MileStone 3: Build basic frame of

environment cockpit user interface

prototype

11/16/11(Wednesday) - 11/ 21/11(Monday) Milestone 4: Add simple arrows

Report: Background first draft

11/21/11(Monday) Finish arrow toolbox

11/22/11(Tuesday) – 11/23/11(Wednesday) Finish adding different types of arrows

11/24/11(Thursday) -11/25/11(Friday) Milestone 5: Delete arrows

Report: Background finished, Current

difficulties first draft

11/28/11(Monday) - 11/29/11(Tuesday) Finish Pop up box

11/30/11(Wednesday) Milestone 6 : Show information in the

detailed information box

Page 101 of 101

12/1/11(Thursday) -12/2/11(Friday) Organize code

Finish save and load , design user interface

with UX team

Report: Current difficulties finished,

Outcome and methodology first draft

12/2/11(Friday) Finish the project requirement!!!

12/5/11(Monday) – 12/9/11(Friday) Refine codes &add additional features

Finish Filter ,tab view, compound view

improve the overlook look of the user

interface

Report: Finish Report first draft.

12/12/11(Monday) – 12/14/11(Wednesday) Wrap up presentation

Report: Finish Report by 12/14/11

