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Abstract 
 

We have explored and tested the behavior of Monte-Carlo Search Algorithms in both 

artificial and real game trees. Complementing the work of previous WPI students, we 

have expanded the Gomba Testing Framework; a platform for the comparative 

evaluation of search algorithms in large adversarial game trees. We implemented and 

analyzed the specific UCT algorithm PoolRAVE by developing and testing variations 

of it in an existing framework of Go algorithms. We have implemented these algorithm 

variations in computer Go and verified their relative performances against established 

algorithms. 
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1  Background  

 

1.1  Introduction   

Almost every aspect of the world can be modeled as a sequence of actions and their 

effects. It is through this model that we can understand our surroundings and what actions 

to take. From our innate understanding of cause and effect we can extrapolate the 

conclusions of science and mathematics. By searching through our knowledge of possible 

events and their branching outcomes we may predict and gauge our actions and future 

environment with varying degrees of accuracy. It is also this law of cause and effect that 

allows Artificial Intelligence systems any ability for prediction and behavior. 

Through artificial systems of actions and states, many modern artificial intelligence 

algorithms search for solutions to problems by computing through a series of predictions 

and assessments. Modern intelligence systems can essentially be considered as search 

algorithms, though instead of searching for a website on Google an AI search algorithm 

might try to find the ideal move in a game of Chess or Go. Games are especially 

interesting in developing AI, as they are provably finite but too large to completely store, 

making them ideal testing grounds. AI algorithms often use games as benchmarks for 

performance and springboards into many more practical applications, such as automated 

car navigation or air traffic control.  

The goal of our project is to research and improve current search algorithms in the 

context of large game trees, specifically within the game of Go. For most conventional 

problems searches are almost trivial. The search space is loaded and the given object to 
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find is defined and requested. After traversing the search space the requested object is 

either found or a confirmation of it not existing in the search space is returned.  

Large game trees, on the other hand, are situations that have so many possible actions 

that one cannot resolve the outcome of every single one. Even visiting all of the actions 

and assessing them even once can be a challenge for games with sufficiently large 

branching factors. Also, the objective for a large game tree – finding a winning sequence 

of moves – is not defined initially, and is only fully defined when (and if) the game 

concludes with a victory. Such a situation is much different than simply finding a word in 

a large collection of documents or locating a website through Google. Our situation 

requires more adaptive and efficient solutions in order to be solved even close to 

optimally. We consider both artificial game tree systems, like Gomba [1], and actual 

game tree systems, like Fuego [2], as testing frameworks for our explorations. We have 

expanded the functionality of both frameworks to implement the latest Monte-Carlo 

search strategies, and have tested these strategies extensively to show the comparative 

performance of both artificial and actual game trees as well as the actual performance of 

these new algorithms with other established ones. 

 

 

1.2  Go 

Go is a board game for two players with more than a 2,000 year history.  It is still a 

popular game around the world today.  The rules of Go are simple, two players put stones 

on the Go board in turn to enlarge their own territory and try to capture the opponent’s 
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stones at the same time.  However, it is hard to play well. A good move needs to foresee 

other future moves, to predict its opponent’s possible moves, to interact with stones in 

distance, to allow tactical loss for a current move, to keep the whole board in mind while 

fighting locally, and other strategies that involve the overall game. 

Victory in a Go game is different from other board games. In a Chess game, it ends 

when one of the players captures his opponent’s king. However in a Go game, no certain 

move will trigger the game to end immediately. It requires a series of good moves 

through the game play to earn points and enlarge territory.  Usually at the conclusion of a 

Go game, victory is defined by counting the pieces and its territory for both players. A 

win by 0.5 or 1 position is very common. 

The rules of Go look simple but require rich strategy to play well. For many years 

Computer Go still could not beat a professional Go player, and none currently can 

consistently beat one. It remained to be a challenging topic for many Computer Go 

researchers. The size of a Go board ranged from 9x9 to 19x19, which is much larger than 

a chess board. The possible moves of Go, or branching factor of a game tree is so large 

that it is impossible for computers to calculate the best move. The most advanced 

Computer Go so far can reach the master level only in a 9x9 board [3]. Many new 

techniques are yet to be discovered in the field of Computer Go. 
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1.3  Current Search Algorithms 

While researching the current landscape of algorithms for assessing large search trees 

we made every attempt to be as comprehensive as possible. From the most established 

algorithms (UCT [4]) and their recent variants (UCT-RAVE [5]) to nontraditional 

approaches (Neural Networks [6] and Genetic Programming [7]), almost all were 

considered. With each algorithm we also researched any past application to Go game 

trees specifically. Fortunately, the ubiquity of Go as a performance testing platform led 

us to Go-based experiments for every algorithm that we found.  

 

 

1.3.1  Monte-Carlo Tree Search (MCTS) 

The idea of using Monte-Carlo algorithms in the context of Computer Go was first 

proposed by Bernd Brügmann in 1993 [8]. Monte-Carlo Methods are widely used in 

simulating physical and mathematical systems, which rely on repeated random sampling 

to compute the result.  Brügmann posed the question: “How would nature play Go?” [8].  

This idea attracted more and more attention after it appeared, and the experimental results 

on a 9x9 Go board were surprisingly efficient. 

Monte-Carlo Tree Search (MCTS) is a best-first search algorithm based on Monte-

Carlo methods. The basis idea of MCTS is built on the playout. A playout is a fast game 

of random moves from the start to an end of the game. A win-rate and node visits count 

statsitics are kept by nodes of a game tree.  
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The algorithm of MCTS can be divided into separate steps of selection, expansion, 

simulation, and backpropagation (Fig 1.).  After reaching the end of a game play (a leaf 

node), node visit count and win ratio value is updated along the path. This whole process 

is repeated numerous times, and the final action chosen is the node which was explored 

most among all the children nodes.  

 

Figure 1 Outline of a Monte-Carlo Tree Search [9]. 

 

 

1.3.2  Upper Confidence Bound (UCB) 

The Upper Confidence Bound method is not a tree search method in itself, though the 

basic principle of it when applied to trees (known as UCT) is the current dominant 

algorithm in large game trees. The basic model of UCB search is to find the optimal 

choice in a given set of choices, each with random payoffs, with or without exploring all 

choices [5]. Also referred to as the “Multi-Armed Bandit” problem, it is similar to a near-

infinite row of slot machines, each with a different payout, that you may select in any 
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order for as many times as possible with the intention of finding the slot machine with the 

best payout.  

UCB uses finite-time regret to keep track of the average of rewards for each of the K 

visited machines and selects the next slot machine i with the best upper confidence 

bound  which is a function of the average rewards for that machine plus a hand-tweaked 

variable              that decays over the number of attempts.    then needs to simply 

select the highest of these values.   

          
  {     }

{ ̅                      }  

      √
     

 
 

Here  ̅          is the known average payout for slot machine i at time t and      is the 

chosen bias sequence, or the tweaked variable that decays over time. In this case      

gives preference to unexplored machines, though it averages out as time t grows larger 

and more nodes are visited, which gives eventual preference to the machine with the 

highest payout.   

This allows UCB much initial exploration while eventually converging towards the 

optimal choice as the number of attempts approaches infinity [4]. This characteristic of 

convergence is very important, as it allows searches that cannot be completed in real time 

(due to the size of the search area or the nature of the scoring values) to be stopped 

prematurely and yet still produce an answer within range of the optimal one. 
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1.3.3  Upper Confidence Tree (UCT) 

UCT (Upper Confidence bounding applied to Trees) is an algorithm which applies the 

multi-armed bandit algorithm (UCB1) to trees; consider each node as a bandit and its 

child nodes as arms.  It was developed by Levente Kocsis and Csaba Szepesvari in 2006 

[4]. It balances the trade-off between the deep searches of high win-rate moves and the 

unexplored moves by applying UCB1.  UCT is a simple but effective form of MCTS. 

However, instead of sampling the child nodes uniformly as the regular MCTS does, this 

algorithm tries to sample actions selectively to reduce the infeasible planning time for 

large branching factor trees [4].  It descends into the children nodes by applying UCB1 

until it finally reaches a terminal, or a leaf node. 

 

    
             √

       

      
 

               
 

    
       

 

  After a playout, it updates the value of the nodes visited (actions played) iteratively 

from the leaf to the root.  

 

                    

                          
 

        
[              ] 
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Here           is the action value function for all (state, action) pairs; the initial value 

             ,         ;         counts the number that action   was selected 

from state  ;       ∑        . 

The UCT algorithm is robust in three ways; it can stop at any time of the algorithm, it 

can smoothly handle uncertainty by computing the mean of the value of all the children 

weighted by the number of visits, and it builds a tree asymmetrically so that it explores 

more often in the moves that provide more rewarding outcomes [10].  UCT is guaranteed 

to converge to the optimal move if enough time is given.  It was first used in MoGo [11] 

and significantly improved the playing strength of Go algorithms.  Presently almost every 

top Go playing algorithm draws from the design of UCT in some way. 

 

 

1.3.4  Rapid Action Value Estimation (RAVE) 

The weakness of the UCT algorithm is that only the first move of a playout determines 

which node’s values and counts are updated which results in slow learning. Rapid Action 

Value Estimation (RAVE) is a heuristic algorithm which updates the value of all episodes 

in which an action a is selected at any subsequent time [11, 12].  It is an extension of 

basic UCT but varies in that it updates the values across multiple states, rather than 

maintains the value on a per-action-state basis.  AMAF (all moves as first) is a general 

name for this type of heuristic [13].  In RAVE, the action values are updated for every 

state and every subsequent action following that state (Fig 2). 

 

                        



15 

 

                                
 

          
[                  ] 

Here            is the rapid value estimate for action   in state  ;         counts the 

number of times that action   has been selected at any time following state  . 

 

Figure 2 Nodes updated using UCT RAVE. 

The value of the bolded nodes are updated along the path in UCT RAVE. 

 

 

The UCT RAVE algorithm has proved to be extremely effective in Go with high 

learning speed, low variance at the beginning, and correct move convergence [11].  The 

success of this algorithm suggests that the value of moves could often be at least partially 

independent of the order in which they are played. 
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1.3.5  Genetic Programming (GP) 

Genetic Programming, succinctly, is the automatic generation of programs for 

fulfilling a given task [7]. Like Genetic Algorithms, Genetic Programs undergo a process 

of generation, mutation, selection, and breeding to automatically improve them. However 

unlike Genetic Algorithms, which only alter simple variable parameters, Genetic 

Programs alter deeper patterns of behavior, and some variations of GPs can alter the 

behavior of itself. Similar to the evolution of a species, Genetic Programs are created 

with internal variations, or mutations, to their behavior. From these variating individuals, 

all are assessed by some predefined heuristic, and those that pass assessment are kept for 

further generations of assessment and mutation.   

In the Go codebase MoGo, Hoock and Teytaud have developed Bandit-Based Genetic 

Programming (BGP), which rather than starting with a genetic program completely from 

scratch, starts with the MoGo codebase and introduces additional patterns to evaluate [7]. 

Since the performance of algorithms is difficult to prove outside of testing their culling 

heuristic was based on the statistics of simulated games. 

While the use of genetic programming holds promise in Go, the amount of time 

required to simulate and evaluate the generated programs to any notable degree easily 

surpassed our project deadline given our resources. Furthermore, while it would have 

been intriguing to implement a technique that differed so completely in behavior from 

our other algorithms, the dynamic nature of Genetic Programs did not coincide with the 

structure of our existing codebases, which are described in Section 2. 
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1.3.6  Neural Networks (NN) 

The use of Neural Networks, like Genetic Programming, is another biologically 

inspired approach to algorithms [14]. The advantage of Neural Networks is the ability to 

function in the same observable way as a biological brain, finding hidden patterns in an 

environment and concluding on actions on potentially the same level as a human. An NN 

is a collection of artificial neurons, usually nodes (“neurodes”), connected together in a 

way to allow the learning of a specific function or task [14]. Neurodes themselves can be 

very simple, as one neurode needs only to know how to behave towards the neurodes that  

it is immediately connected to. While this sounds almost too simple to work, the 

performance of an NN is a result of the emergent behavior caused by the interaction 

between its neurodes. With certain neurodes receiving input from an environment and 

sending signals to other neurodes based upon that input, collectively these neurodes 

produce sophisticated actions as a result of the state of all neurodes, even from very noisy 

data. With enough processing power a NN is currently the best AI solution to finding and 

evaluating patterns in an environment [14]. 

Implementations of Neural Networks in the context of Go, such as NeuroGo [6], have 

been made with nominal success. Since Go positions are so difficult to evaluate due to 

the sheer number of outcomes, it would seem obvious that NNs could outperform other 

algorithms in that task by finding patterns in the stones that other algorithms couldn’t see. 

Previously processed games were fed to NeuroGo in order to teach it game behavior 

more quickly, as is customary for most Neural Networks, vastly improving the NN’s 

performance compared to untaught NNs. After such preparation NeuroGo was compared 

against traditional Go algorithms.  
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While there has been research in Neural Networks in the context of Go, their 

usefulness in Go and other large search trees are quite limited. The advantage of Neural 

Networks as assessment algorithms lies primarily in their ability to recognize patterns. 

Their disadvantage is the amount of time and resources needed to asses and find these 

patterns, which is magnified under the sheer amount of board assessments required in 

large Go trees. Added with time limits to searches within the tree, even parallelized, 

neural networks provide almost no advantage over most algorithms in their current 

structure [6]. From these disadvantages it was concluded that Neural Networks were not 

pursuable for this project. 
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2  Existing Codebases 

 

2.1  Gomba 

2.1.1  Artificial Game Trees 

In a real Go game, the optimality of a move cannot be calculated in advance; 

determining when a game has terminated is slow; heuristic evaluations of non-terminal 

states are both slow and inaccurate [1].  A Computer Go program generally takes an hour 

to finish a game even on a very powerful hardware. For researchers who want to test new 

algorithms and conduct statistical analysis with sufficient size, it is infeasible to use real 

game trees. Also, a result from a real game tree is not how good an algorithm is. It is 

actually a relative winning rate compared to its opponent algorithm. Therefore, the 

information gathered from a real game tree is not accurate and will take an extremely 

long time. 

Artificial game trees attempted to give solutions the problems described above. They 

are used to test new search algorithms before applying them to a real Go game [4], with 

faster speed and better heuristics. The parameters (branching factor, depth, etc.) of an 

artificial game tree can be easily modified according to testing needs and the testing 

results of an algorithm do not depend on any opponent algorithms. 

In this report, we used Gomba [1], an Artificial Game Tree testing framework 

developed by WPI students Daniel Bjorge and John Schaeffer in 2010, and enhanced 



20 

 

more features such that it could be a better and more accurate testing tool for other 

researchers.  

 

 

2.1.2  Features of Gomba 

Gomba was developed by Daniel Bjorge and John Schaeffer from WPI in 2010 [1].  It 

is an artificial game tree framework for testing the performance of different Go 

algorithms. The tree generation algorithm was able to determine minimax-equivalent 

search entirely, significantly increased the searching speed and provided feasible 

solutions to test algorithms against trees that were previously too large to consider at all.   

Some features of Gomba include: 

 Lazy State Expansion 

 Deterministic State Expansion 

 Pseudorandom State Expansion 

 Predetermined State Optimality 

 Fast Action Simulation 

 Fast Termination Evaluation 

 Fast Heuristic Evaluation 

 Go-Like Action-Reward Distribution 
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2.1.3  Weakness of Gomba 

In the previous version of Gomba the choice of actions that led to good and bad 

outcomes was purely random. This violated an important assumption behind how UCT 

RAVE worked. The reason that UCT-RAVE outperformed regular UCT was that it 

maintained a global knowledge of the moves and updated the statistics of all the moves 

along the path selected, as explained in section 1.3.4.  However, the Gomba game tree did 

not have such global knowledge (transposition table [15]) so that the testing result of 

UCT RAVE vs UCT was not precise. In the previous Gomba framework however, the 

UCT RAVE actually performed worse than regular UCT algorithm because UCT RAVE 

added a lot of noise at the beginning of the search.  

 

Figure 3 UCT RAVE win rate in the original Gomba framework 

 

As Figure 3 shows above, when we increased the equivalence parameter k, the 

performance (win rate) of UCT RAVE became worse. This was because when evaluating 

a Game State node, the UCT RAVE value was decided by a linear combination of both 

regular UCT and RAVE values.  
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The smaller the equivalence parameter k was, the more similarly UCT RAVE behaved to 

regular UCT. Because the actions were generated randomly and lacked consistency (e.g. 

action 1 in depth 3 was a good move, but in depth 5 it suddenly turned into a bad move); 

this violated the way that UCT RAVE worked as described in section 1.3.4.  

In this project, we modified the Gomba testing framework such that it maintained a 

global knowledge of the moves so that it could better simulate a real Go game. This was a 

continuation from last year’s MQP. 
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2.2  Fuego 

The Fuego Codebase is an open-source collection of C++ libraries of existing Go 

algorithms widely used in the Go Artificial Intelligence community. It was originally 

developed in 2009 by Markus Enzenberger and Martin Mueller and the most recent 

version – which we used – is version 1.1 and was released in 2011. Widely regarded as 

one of the top Go Codebases, Fuego is most notably known for being the first artificial 

Go system to defeat a 9-Dan professional Go player on a 9x9 size Go board, which 

occurred in August 2009. 

 

2.2.1  Architecture of Fuego 

Fuego contains several substructures of varying abstraction, allowing the 

implementation of algorithms to be straightforward and generic without being lost in the 

semantics of Go specifically. It has only one external library, Boost, which it uses for the 

significant amount of random number generation required in most UCT algorithms as 

well as unit tests.  

Fuego is automatically documented online using a Doxygen-type formatting originally 

intended for Javadocs. The generated result is acknowledged to be unintuitive [16] and 

entire projects in the past have been undergone to simply describe the process that Fuego 

uses to build and implement its searches [16]. Fuego is also built to handle multithreading, 

which significantly improves performance although it makes approaching the framework 

– as well as implementation – all the more difficult. 
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Fuego uses the Go Text Protocol (GTP) [15] as the accepted base for communicating 

between processes, allowing it to play against algorithms implemented in other 

frameworks and even other programming languages, such as GnuGo[16] or MoGo[17]. 

This communication is usually handled through a third process that arranges games, 

which in our case was GoGui-TwoGtp, one of the Java executables of the GoGui 

standalone [18].  

 

Figure 4: The Fuego Dependency Tree 

The GTP protocol, as well as other unique Fuego commands, is at the lowest level 

library (GtpEngine) and not dependent on any other library. Above that is the SmartGame 
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library, containing the utility classes for multiple games and where most of our 

implementation occurred. Above SmartGame are the Go-specific classes in the Go library 

that handles the basic Go-related rules, and below that is the GoUct library, which 

handles the behavior for UCT through the GoUctPlayer class, where the remainder of our 

implementation happened. The main application for Fuego, FuegoMain, allows for a GTP 

protocol from GoUct to other processes or a human player. 

To give a brief example; let us say we want to give the command to generate a move 

for the black player (or “genmove b” in GTP). The command would first be parsed in 

the GtpEngine library where most commands (including ours for generating a move) are 

registered. GtpEngine would then pass the command to the GoUctPlayer class in the 

GoUct library, where the type of search (which we predefined at the beginning of runtime)  

would be determined and begun. GoUct would call the Search function in the 

SgUctSearch class in the SmartGame library, which would in turn start the thread and 

game initialization. It is within SgUctSearch where the game tree is expanded, assessed, 

and eventually pruned. It was also within the SmartGame library where we carried out 

the majority of our implementations, though most of the lower level thread handling was 

not touched.   

There are of course exceptions to this traversal, as Fuego allows for several 

implementations of UCT searches that implement node and move assessment in many 

different ways. Most, however, follow this model. 
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3  Gomba 

 

3.1  Additions to Gomba 

3.1.1  Modification of tree generation algorithm 

As stated in Section 2.1.3, the weakness of the existing Gomba framework was that it 

lacked the property of consistency between the actions (moves) along the Game Tree. To 

better simulate a Go game tree, modifications were made which are discussed in the next 

three sections. 

 

3.1.2  Addition to searchData field 

Two fields which recorded the estimated value and number of visits were added. 

These two fields were maintained in the searchData data structure in a Game State, which 

specifically remembered the statistics of UCT RAVE.  

When evaluating a Game State, we calculated the upper confidence bounds by mixing 

the regular UCT value and RAVE value by a linear combination of the two values.  

     
              √

       

      
 

        √
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Here parameter   is the bias. The equivalence parameter   controlled the number of 

episodes of experience when both estimates were given equal weight.  

As the above formula suggested, we needed the Gomba testing framework to 

remember statistics from both UCT and RAVE algorithms and mix them together as the 

final evaluation value. Therefore, we decided to add two new fields under searchData 

data structure in a Game State to record the RAVE statistics, separate from the regular 

UCT statistics. 

 

 

3.1.3  Correlation and consistency among actions 

As stated in Sec 2.1.3, the moves’ outcomes were purely random in the existing 

Gomba framework such that no correlation existed among the moves. This lack of 

consistency affected the accuracy of the testing results for UCT RAVE and other 

variations of AMSF heuristics.  The success of the UCT RAVE algorithm suggested that 

the estimate of a move was partially dependent on the order of the moves. This meant 

that for the same moves in different depths of a game tree, they should be related to each 

other, rather than purely random. The original Gomba framework violated this 

assumption. 

We introduced a new tree generation algorithm to include consistency in Gomba 

framework. This algorithm used the nodes one level up as standards, rearranged the 

statistics for the child nodes so that the children followed the distribution of their parents.   

The algorithm worked as follows: 
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Algorithm 1 Define the correlation when generating a new Child Node 

 1 getChild(action): 

 2 if  state.children[action] is not defined: 

 3 state.children[action] := generateChild(action) 

 4 return state.children[action] 

 5 

 6 generateChild(action): 

 7 childState.depth := state.depth + 1 

 8 childState.player := OtherPlayer(state.player) 

 9 childState.prng.seed := GetNthRandom(state.childSeed, action) 

  10 childState.childSeed := childState.prng.nextSeeed() 

  11 childState.difficulty := prn.varyDifficulty(state.difficulty) 

  12 

  13 childState.winner := state.winner 

  14 

  15 if((currentDepth == 0)||(currentDepth == 1) || (action == 0)) 

  16 return childState 

  17 else 

  18 NodeAsStd1 := getParent.getChild(action - 1) 

  19 NodeAsStd2 := getParent.getChild(action) 

  20 NodeToCompare := getChild(action - 1) 

  21 

  22 if((((NodeAsStd1.difficulty < NodeAsStd2.difficulty) && 

  23             (NodeToCompare.difficulty < childState.difficulty))|| 

  24 

  25             ((NodeAsStd1.difficulty > NodeAsStd2.difficulty) && 

  26             (NodeToCompare.difficulty > childState.difficulty)))&& 

  27 

  28 prng < givenProbability) 

  29 

  30 Swap the Seed 

  31 Swap the RNG 

  32 Swap the difficulty 

  33 Swap the winner 

  34 Swap the childSeed 

  35 Update the ForcedChild in the ParentNode 

  36 Swap the ForcedWinner 

  37 

  38 return childState 

 

 

Line 7 to Line 11 was the original code when generating a new Child Node. We 

eliminated some code for deciding the winner in Line 13. The major bulk of modification 

was from Line 15 and later.  

The algorithm took four different nodes:  

 A newly generated node, N, with index (action); 
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 A sibling node of N, NodeToCompare, with index (action – 1) 

 Two nodes from one level up of the game tree, with corresponding indices. 

NodeAsStd1with index (action – 1) and NodeAsStd2 with index (action). 

These two nodes were set as standard. 

Every time we generated a new Node N, the algorithm grasped the relevant 

information (difficulty of the Game State) from the above four nodes, compared them, 

and then decided whether to swap the information between N and NodeToCompare by 

the given probability.  

First we checked if the four nodes met the swap criteria. That is, we looked up and 

compared the difficulty of the four nodes. Because the game tree is a mini-max game tree, 

your adversary always wants to minimize your gain. So if we want a minimized value in 

depth d, then in depth (d-1) we want the value to be maximized. As illustrated in figure 4, 

the difficulty of Std1 is less than the difficulty of Std2 in depth (d-1).  In depth d, the 

difficulty values were the reversed value because the two nodes were minimizing nodes. 

Even the shown value was 0.4 and 0.6, they actually meant -0.4 and -0.6.  Therefore we 

wanted to swap the value of the two nodes.  

Now the swap condition was met, then we decided whether to swap the values of node 

N and nodeToCompare based on a probability. If the given probability was 1, then we 

swap every time, this would result the actions are 100% correlated; If the given 

probability was 0.5, we swap the values of the nodes by 50% chance, the actions were 50% 

correlated; If the given probability was 0, then we did not swap the values at all – then 

the game tree behaves exactly as the original game tree, the actions are purely random 
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(Line 28).  By adding this “givenProbability” parameter, we could control the correlation 

level between moves. 

 

 

Figure 5  Algorithm 1 illustration 

 

We were interested in seven statistics in a Game Tree node. These values were listed 

from Line 30 to Line 36.   

The first value we swapped was the difficulty of the two nodes. The difficulty 

measured how the difficult was this node for each player to win. The closer to 0, the 

easier it would be for player 0 to win, and vice versa.  We used the difficulty as the main 

factor of the correlation among the moves. That is, if move 1 was an easier win at depth 4, 



31 

 

then in depth 10, it would also be relatively easier to win. Therefore, when we decided to 

swap the nodes, the first value to swap was the difficulty. 

 

The values Seed, RNG, and ChildSeed were basically some random numbers used for 

generating the child nodes. Because we wanted the moves in the artificial game tree to be 

correlated with each other, we also wanted this property to be persistent among their 

child nodes. Therefore, when we decided to swap two nodes, we swapped the Seed and 

all related random number generators as well.   

Winner was the predetermined minimax winner from this Game State node, where 

both players were to play out the rest of the game tree optimally. If this Game State node 

required all children to be a particular Winner value, it would be this value. If the value 

was NEITHER, the choice would not be forced. The values of Winner and ForcedWinner 

thus also need to be swapped because they were related to a win state of a given node.  

The value of ForcedChild was tricky. If this node will requires at least one child to be 

of a particular Winner value for the sake of minimax tree construction, this value is the 

action of the random child that would be forced to that value.  Now the children of a node 

were not random anymore because we swapped them upon generation based on the 

difficulty. Therefore, the ForcedChild would also change. But the change happened in the 

parent, not in the child node itself. So we could not simply swap this value as the other 

six values described above. We need to go to the parent and update the value in the parent 

node.  
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After all the seven values were swapped and updated, we return the child node 

requested. This “polished” child node was not purely random any more, and correlations 

were introduced between it and all its sibling nodes.  

 

3.1.4   Lazy State Expansion 

The existing Gomba artificial game tree expanded and generated only one child node 

(Game State) at a time when needed.  In the new version of Gomba, we wanted the same 

action to be consistent in the game tree.  To guarantee this property, we used the 

algorithm proposed in the previous section.  However, with the modification above, the 

searcher (search algorithm) might look into the node (Game State) statistics before the 

difficulty and win-rate values were updated (swapped).  When a searcher saw the 

information of a Game State, it would actually be looking at the old information before it 

was swapped. The testing result would be wrong. 

To prevent such a situation, we modified the node generation algorithm such that 

when the tree decided to descend to a new child node, it expanded all the siblings of that 

node as well. Upon generation, the tree compared and swapped the difficulty and win 

probability values when necessary. 

 

Algorithm 2 Modified Lazy State Expansion 

 1 getChild(action): 

 2 if  state.children[action] is not defined: 

 3 for (i=0; i<NumChildren; i++) 

 4 if state.children[i] does not exist 

 5 state.children[i] := generateChild(i) 

 6 

 7 return state.children[action] 
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This new tree generation algorithm also had weaknesses. It required more memory and 

took more time than the original design because it expanded all children of a node, 

especially when the branching factor was very large.  Though this new method was less 

“lazy” than the original generation algorithm, it was still “lazier” than expanding the 

whole game tree. In order to maintain the global knowledge of the actions, we had to 

compensate some part of the memory management.  

 

Figure 6 Comparison of lazy state expansions 
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3.2  Experiments in Gomba 

Our experiments were compared for the maximization of two metrics; win-rate and 

average difficulty. The first is the algorithms’ performance in maximizing optimal win 

rate, which measures how quickly an algorithm can consistently choose moves which are 

minimax-optimal. The second metric is the average difficulty of the moves that the 

algorithm chooses.  

This value of average difficulty corresponds with the difficulty of a tree node in the 

artificial game tree.  It measures how likely each player is to win when a path is chosen 

starting from its parent node. A value close to zero means that it is easier for the current 

player to win in this game state, satisfying our goal that the difficulty value be as low as 

possible. This is not the same as optimal win rate, and in fact minimizing the difficulty 

level can sometimes even be at the cost of a worse optimal win rate. This can often occur 

in adversarial search, as it is often the case that making it harder for your opponent to find 

good moves is as valuable as finding good moves yourself.  

 

 

3.2.1  Comparison of Old and New Gomba Game Tree 

The old Gomba testing framework only updated the statistics of a node locally.  For 

example, if we selected action 1 at depth 4, only one corresponding node’s value would 

be updated. The old Gomba testing framework ignored a global view of the action in all 

depths. It was sufficient to provide a decent testing result for most roll-out Monte-Carlo 
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based algorithms, such as the UCT algorithm. However, for AMAF algorithms which 

relied on a global view of all the moves, the old testing framework seemed to be deficient.   

We modified the Gomba testing framework using the two tree generating algorithms 

proposed in Section 3 while the basic UCT algorithm was used as a control group. We 

plotted and compared the performance of the UCT RAVE algorithm in both the old and 

the new Gomba testing framework to see if the new testing framework with global 

knowledge would improve the performance of the UCT RAVE algorithm. 
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Figure 7 Win rate for old and new Gomba framework 
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Figure 8 Average difficulty for old and new Gomba framework 
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The above figures plotted and compared the performance (average difficulty and win 

rate probability) using the previous version of Gomba framework (left) and the modified 

version (right).  UCT RAVE is represented by blue dotted lines while regular UCT is 

represented by red solid lines. The modified version of Gomba used the two algorithms 

proposed in this paper (Section 3.1.3 and section 3.1.4), which added correlations 

between the moves.  We expected this new property of the game tree would improve the 

performance of UCTRAVE.   

In Figure 7 there was strong evidence that the win rate of UCT RAVE was improved 

in the new Gomba framework over the old version, though in Figure 8 there was not a 

very significant difference between the average difficulty between UCT RAVE and 

regular UCT. However, we could still see that the average difficulty for UCT RAVE is 

lower than the value of regular UCT as we expected.  While our measure of the 

performance of UCT RAVE still could not exceed the regular UCT this is different from 

what Gelly et al. observed in a real game tree [11]. Even though the performance of UCT 

RAVE was not as good as the performance of the regular UCT as we expected, there was 

still a certain level of improvement in the new Gomba framework.   

 

3.2.2  Gomba tree with different equivalence parameters 

When evaluating a node, the upper confidence bound is calculated using a linear 

combination of the regular UCT value and the RAVE value.  Section 3.1.2 discusses the 

RAVE value in further detail. 
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.  How the two values are mixed is based on equivalence parameter k. In this section, 

we tested how the equivalence parameter affected the performance of the UCT RAVE 

algorithm.  

 

 

Figure 9 Different Equivalence Parameter Settings 

 

 

As the above figure presented, the equivalence parameter k did impact how the UCT 

RAVE algorithm performed, but it was similar to using the old version of Gomba 

framework – the smaller the k is, the closer the UCT RAVE is to regular UCT. Even 

though our Gomba testing framework is improved, there are still some hidden factors 

which have not yet been discovered that seem to affect the correlations, making the UCT 
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RAVE value still act as “noise” to the regular UCT.  No other direct conclusion of the 

equivalence parameter k could be drawn from the result.   

 

3.2.3  Gomba Tree with Different Correlation Settings 

As stated in section 3.1.3, we wanted to have control of the level of correlation within 

the artificial game tree. We tested the performance of UCT-RAVE in different levels of 

correlations (0%, 50%, and 100% respectively) and we could see a small trend of change 

from the 0% correlation to the 100% correlation.  If we only look at the first and third 

graph in Figure 10, the change is obvious.  

 

Figure 10 UCT RAVE performance using different correlations 

 

 

3.2.4  Summary 

In this project, we tested the how well the modified version of the Gomba testing 

framework supported the algorithms relying on move transpositions, namely the UCT-
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RAVE algorithm.  As shown by our results we improved the accuracy of the testing 

framework from the previous version of Gomba. The level of correlation in an artificial 

game tree also affected the performance of the AMAF algorithms. The Gomba testing 

framework is still under development and more areas still need improvement in order to 

better support AMAF algorithms and meet the expected result.  
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4  Fuego 

 

4.1  Additions to Fuego 

4.1.1   PoolRAVE 

PoolRAVE (or RAVE(Pool)) is a UCT-based search that functions almost identically 

to basic UCT-RAVE. Developed by Teyatud et. al. in 2010 [5]. The algorithm’s main 

difference is that it bypasses Monte Carlo Search entirely. As the game plays, the unused 

previous moves with the highest calculated RAVE values are stored in a “pool” of a 

determined size. Before a Monte Carlo search is run, within a certain probability a move 

is instead chosen at random from the pool of the recently visited node. The attraction of 

this algorithm was mainly its ability to recycle old moves and to bypass the expensive 

Monte Carlo search, significantly reducing the amount of time to reach a conclusion.  

A visualization of the hypothetical performances of basic UCT-RAVE and 

RAVE(Pool) is shown in  Figure 11. In it you can see that under the correct 

circumstances RAVE(Pool) can arrive at the same conclusion as basic RAVE with much 

less time. While basic UCT-RAVE always requires a time of amount T to perform 

Monte-Carlo search, RAVE(Pool) can perform the task  with similar results at a time of 

amount t, which is equivalent to the time required to accessing a single random member 

of a list (which is comparatively instantaneous). 
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Figure 11 : Performance Difference Between RAVE(Pool) and Basic RAVE 

 

Implementation of PoolRAVE required a simple bypass of the regular functionality of 

Fuego, in addition to the inclusion of a pool for the stored move values which could be of 

varying predetermined size. The Boost library was used to handle the randomized 

selection of the action, which needed to be normally distributed according to Teytaud [5].  

While PoolRAVE provides a significant improvement over basic RAVE in terms of 

time it is not without its caveats, as the pool may stagnate given a long enough time 

between when the pool is filled and the pool is drawn from. In other words; a move taken 

from the pool might have been used already between the time when it was allocated into 

the pool and when it was picked. A used move in Go, in many cases, makes it illegal to 

play again in the immediately following moves due to an illegal Ko or the simple fact that 
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the space on the board is already occupied. The likelihood for a certain pool to stagnate 

relies on a number of factors, though primarily it is determined by the probability p that 

the pool will be drawn from next and the move score concurrency of the game being 

played. Move score concurrency being the propinquity of the scores between the top 

moves that are shared by the two opponents.  

As the behavior of Go makes most good 

moves that you find also good moves for your 

opponent if your opponent made them, and 

the pool is to be always filled with moves 

with the highest RAVE value, the error of 

illegal moves being in the pool occurred with 

enough frequency for it to significantly affect 

the algorithm’s performance. Resultantly, the 

specific solution we would choose for 

encountering a stagnant pool would also 

greatly affect the algorithm.  

Teytaud’s description of PoolRAVE is not 

specific on how to select from a stagnant pool, 

nor was he specific on what his personal solution 

was [5]. As a result we independently developed and implemented several variations of 

PoolRAVE with different behaviors based around the occurrence of an illegal move 

being picked from the pool. 

 

Figure 12 : An Example of a 

Stagnant Pool 
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4.1.2  PoolRAVE(Pass) 

The easiest solution to encountering an illegal move selected by the pool would be 

simply for the algorithm to pass its turn. This provided the promptest behavior, and was 

similar to Fuego’s basic approach towards error checking after running plain RAVE. 

While promptness is not a specific enough criterion to quantify or measure, it is 

nevertheless important in many real world and testing contexts that involve time-critical 

decisions. This promptness did mean, however, that the solution would give our opponent 

several more free moves and advantages early-to-midgame. The advantage to the 

opponent would eventually minimize later within each simulated game, however, and 

would also give the opponent the lowest amount of time to ponder. It was decided that 

testing was required to conclude PoolRAVE(Pass)’s performance. 

 

4.1.3   PoolRAVE(PersistPass)  

The next solution after simply passing on an illegal move would be to check the entire 

pool for a legal move and return the first one. This solution eliminates Teytaud’s 

requirement of normal distribution for selecting the move randomly in the pool, though 

the manner in which the pool is generated and maintained (inserting and replacing the top 

moves as they are encountered) provides significant randomness. This approach reduces 

the number of passes given to the opponent, as the likelihood of every move in the pool 

being illegal is exceedingly rare under normal circumstances. However, given the proper 

heuristic values; for example a very low probability of selecting from the pool or a very 

small pool size, the encounter could easily become very likely. PoolRAVE(PersistPass) 

gives us similar advantages to PoolRAVE(Pass) during late-game, and tries to remove its 
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early-and-midgame disadvantages by being more thorough with move selection from the 

pool.  

 

4.1.4  PoolRAVE(SmartPersist) 

PoolRAVE(SmartPersist) follows the behavior of PoolRAVE(PersistPass), though 

instead of passing after all moves in the pool are found illegal, simply runs through the 

basic RAVE behavior to find a move. This approach completely eliminates the pass 

disadvantage of PoolRAVE(Pass) and PoolRAVE(PersistPass) at the cost of additional 

processing time for potentially checking the entire pool for legal moves. Furthermore, 

late-game behavior becomes weakened when PoolRAVE(SmartPersist) is compared to 

PoolRAVE(Pass) and PoolRAVE(PersistPass). During portions of the later part of the 

game where the best move is to pass, PoolRAVE(Pass) and PoolRAVE(PersistPass) will 

quickly (though naively) arrive at this conclusion, where PoolRAVE(SmartPersist) must 

perform a full search of the tree before concluding the same thing. The approach of 

simply performing a full search after the initial move in the pool was found to be illegal, 

or PoolRAVE(Smart), was considered, though the additional processing time required for 

a full search made any advantage of skipping the remaining moves in the pool negligible. 

 

4.2  Experiments in Fuego 

In order to properly compare the effectiveness of the implemented algorithms a 

common comparison was needed. GnuGo 3.8 at difficulty level 6 was used for its 

compatibility with the Go Text Protocol (GTP), which allows the two programs to 
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exchange moves easily and efficiently. It was also picked due to its use in the works of 

Schaeffer and Bjorge of last year, so our results may be compared easily with theirs. 

In order to properly compare the effectiveness of the implemented algorithms a 

common comparison was needed. GnuGo 3.8 was used at difficulty levels 6 and 7 for its 

compatibility with the Go Text Protocol (GTP), which allows the two programs to 

exchange moves easily and efficiently. It was also picked due to its use in the works of 

Schaeffer and Bjorge of last year, so our results may be compared easily with theirs. 

A slight modification was made to Fuego during the testing phase in addition to our 

implementations of the algorithms. We found during initial test runs against GnuGo that 

Fuego was prematurely resigning with a very high frequency and not giving useful results. 

While Fuego’s method of determining resigns was provably optimal under normal 

circumstances, we felt that our algorithms may be causing improper conclusions. The 

default resign threshold was therefore increased appropriately, allowing our algorithms a 

more thorough playthrough and more conclusive results. The tradeoff to this, however, 

was that it took much longer for simulated games to be played and resulted in less 

experiments being possible in a fixed time. 

   

4.2.1  Basic Fuego vs GnuGo 

Basic Fuego was compared to GnuGo 3.8 at Difficulty level 6 for 1000 simulated 

games at default UCT-RAVE values in order to compare to the results of the previous 

year. Due to improvements in Fuego since the results of Schaeffer and Bjorge, basic 

Fuego was also compared to GnuGo level 7 for 1000 games to coincide with our own 

results. 
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Figure 13: Current Fuego performance against varying levels of GnuGo 

  

Already we have a significant improvement over last year’s best results, which were 

with basic UCT at 5 seconds per move [1]. It is important to note that having a longer 

time to calculate moves did not produce a significant improvement in Fuego’s already 

impressive win percentage, and as the GnuGo level increased more time actually resulted 

in slightly decreased performance. This counter-intuitive result can be justified by the 

behavior of different difficulty levels of GnuGo as well as server-side interference. 

 While GnuGo performs the same task as Fuego, it operates much differently. 

Rather than using a specific Monte-Carlo search, GnuGo generates many moves from 

several different move generators at runtime. Multiple generators allow GnuGo to create 

moves quickly and evaluate them based on the given situation [1]. Opening moves, for 

example, are difficult to create initially as you have the entire tree to traverse. Using pre-

stored responses to the first few opening moves allows for much faster performance. The 

set levels of GnuGo affect the generation and assessment of these moves, making it react 
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to specific situations less or more appropriately. Thusly, GnuGo set at a lower level could 

perform more poorly on average against every type of game-playing AI but could have 

factors that make it better against Fuego specifically in that circumstance. 

In order to describe server-side interference a brief description of our server cluster 

is required. SZTAKI allows its researchers the use of large clusters of machines for faster 

results in their testing. Tests that are run on this cluster, each called a “job,” are submitted 

and monitored by a separate process called a submission system which notifies you when 

a job has finished and what machines on the cluster are available to you. It was learned 

during testing that our submission system, Condor, was not the only submission system 

on the SZTAKI cluster, which made the resources that Condor stated as available 

different from those which were actually available. Depending on additional activity on 

the cluster at the time of simulation the processes run by Condor could potentially be 

much more inefficient and inaccurate. Many times the processes would simply grind to a 

halt and Condor would cancel them when only partially finished. This was a phenomenon 

which Condor could not manage or compensate for, and is regarded as unavoidable noise 

in the results. Regardless of such noise or other interference, it is nonetheless 

communicated here that that basic Fuego performs slightly better against higher levels of 

GnuGo when given shorter time to think. 

   

4.2.2  PoolRAVE(Pass)  

PoolRAVE (Pass) was understandably the weakest of the tested algorithms. Any Go 

algorithm that has a larger likelihood to pass on a move will undoubtedly perform weaker 

than one that finds a move with any semblance of assessment. Even with very low 
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selection probability and a modified resign threshold the win percentage was zero against 

level 7 GnuGo.  

 

 

 

PoolRAVE (Pass) 
Pool Size 1 

Basic Fuego 
(No Pool) 

 p = 0.1 0.0 0.864 

p = 0.3 0.0 0.864 
Win Percentage vs. Pool Selection Probability p (10s/move) 

It was clear that PoolRAVE(Pass) was not going to be a very good algorithm 

regardless of parameters. There was an intrinsic flaw in its strategy. We felt, however, for 

the sake of completeness that we test it at least twice at a pool size of one. The results 

were so discouraging that we continued immediately to PoolRAVE (PersistPass). 

 

4.2.3  PoolRAVE(PersistPass)  

Pool size had much greater influence on PoolRAVE(PersistPass) than its predecessor. 

Rather than pass if the first selected move is invalid, the algorithm iterates through each  
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item in the pool until it finds a  move that can be played, making larger pool sizes much 

less likely to cause the lethal passes that occurred in PoolRAVE(Pass). Rather than 

compare the pool selection probability, we chose to explore pool size to a greater degree 

since pool size would be a much more significant factor in performance. We kept the 

selection probability p constant at 0.1 and varied with pool sizes of size 1, 5 and 10.  

 

 

 

PoolRAVE(PassPersist) 
(p = 0.1)   

Basic Fuego 
(No Pool) 

Size 1 0.34313 0.864 

Size 5 0.32222 0.864 

Size 10 0.29490 0.864 
Figure 14 Win Percentage vs. Pool Size (5s/move) 

 

PoolRAVE(PersistPass) shows a clear advantage over the nothing that was 

PoolRAVE(Pass), winning almost a third of its games on average. An interesting 

occurrence to note would be how the win percentage decreases as our pool size increases. 
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One would think that at a low probability of pool selection a larger pool size would help 

avoid the passing of a turn. It would appear, however, since the move is randomly drawn 

from the pool by normal distribution that there is a larger probability of drawing a less-

than optimal move if the pool contains more moves. Granted these results were only 

found for a single probability whose effect, though assumed less important than pool size, 

is still unexplored.   

  

4.2.4  PoolRAVE (SmartPersist)  

PoolRAVE(SmartPersist) was our most thoroughly tested of the three variations. We 

knew that Teytaud had already implemented PoolRAVE in MoGo, but had used a pool 

selection probability of 100% and focused on pool sizes ranging from five to sixty [5]. 

We decided to explore smaller pool sizes at varying pool selection probabilities. We 

tested against GnuGo level 7 with varying selection probabilities and pool sizes ranging 

from one to ten. 
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SmartPersist 
(Pool  Size 1) 

SmartPersist 
(Pool  Size 5) 

SmartPersist 
(Pool  Size 10) 

Basic Fuego 
(Not Graphed) 

p  = 0.1 0.052577 0.019588 0.038144 0.864 

p  = 0.3 0.02268 0.010309 0.013402 0.864 

p  = 0.5 0.015464 N/A N/A 0.864 

p  = 0.7 0.013388 0.002088 N/A 0.864 

p  = 0.9 0.01134 0 0 0.864 
Figure 15 Win Percentage vs Pool Selection Probability p (5 sec/move) 

 

While only a few data points were able to be collected due to time constraints, an 

interesting phenomenon emerged. It would appear from the data that there is a nonlinear 

correlation between pool size and win percentage. Simply having more moves stored 

does not improve the performance of the picked move, making a relatively effective pool 

size a difficult number to find.  
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4.2.5  Score Correlation between Consecutive Moves 

In addition to analyzing the performance of specific algorithms in Fuego, broader 

exploration was made into computer Go behavior. As Go games progress, many moves 

are analyzed again and again, while only a few are selected. If there was a better way to 

show how these moves were incrementally altered, or if they were altered at all, more 

efficient move selection algorithms could be performed. This could allow for more 

effective exploration of relevant moves and better score updating for computer Go 

applications.  

Finding and storing the estimated values of non-selected moves was not supported in 

Fuego, so we altered basic Fuego to print out all of the immediately available moves (and 

their estimated values) that Fuego looked at during a single turn to an external file. This 

process was then repeated in a game where two copies of the altered Fuego played 

against each other and printed out their non-selected moves for a variable number of turns 

as they played, resulting in several files of data. These files were then read by a separate 

program that we wrote in the Processing scripting language[16], which displayed the 

score of each of these non-selected moves on a 9x9 Go game board for each file. This 

allowed us to visually analyze the variation between moves as opponents updated their 

scores and explored moves more completely, giving us insight towards the details of the 

performance of an algorithm. 

 

  



55 

 

 
Figure 16: Score Estimate Correlations of Consecutive Moves of a Single Game of Go 
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th

 move (19
th

 actual move), Top-Right: White’s 10
th 

move (20
th

 actual move),  

Bottom-Left: Black’s 11
th 

move (21
st
), Bottom-Right: White’s 11

th 
move (22

nd
)) 
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4.3  Summary 

In this project, we implemented the PoolRAVE algorithm in Fuego and tested 

variations of its behavior against established benchmarks. The performance of Fuego has 

improved since the work of Schaeffer & Bjorge, and while our variations were not 

comparable to that improvement, we still supplied several insights to the details of Rave-

Pool performance in Fuego.  We also developed a new method of how to explore move-

score correlation so that the intricacies of algorithm behavior could be better understood.  

Further exploration is always necessary, and the many untested parameter settings of 

PoolRAVE are no exception. Higher resolution into smaller pool selection probabilities 

could lead to interesting further results, as well as large pool sizes. PoolRAVE still has 

the potential to be a very useful iteration of UCT-RAVE, which is itself a very successful 

algorithm, and such potential should not be ignored. 
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5  Conclusions  

5.1  The Gomba Testing Framework 

The first major contribution of our project was our improvement of the accuracy of the 

Gomba Testing Framework, specifically for algorithms which rely on move 

transpositions.  The Gomba Testing framework now keeps and updates a global 

knowledge of the moves in the Game State nodes, along with the correlations between 

the moves which are considered as a new property of the Gomba tree.  Gomba is an open, 

simple framework to allow for the testing of massive game trees, and though it is still 

under development we hope that it will be a useful tool for future research into the 

performance of new search variants.  

 

5.2  Fuego 

Fuego is already an established framework which has long since proven its usefulness, 

and our contribution to it was to simply build upon that recognition. Our implementation 

of PoolRAVE(Pass), PoolRAVE(PassPersist), and PoolRAVE(SmartPersist) brought 

useful insight into the use of smaller move pools as a method to improve game 

performance.  

Additional exploration into the parameters of the existing algorithms is always a noble 

pursuit. Though it is a niche area, exploration into how condor activity affects test results 

would certainly help fortify or rebuke findings that occurred within its system. Also, 
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further analysis of Move Correlation would be beneficial to the understanding of move 

exploration and to the implementation of better move recycling. 

  

5.3  Future Work 

While the Gomba testing framework using the new tree generation algorithm 

improved the performance of the AMAF algorithms (UCT RAVE) at a certain level, the 

result did not meet our ambitions. The conclusion from Gelly et al. indicated that the 

UCT-RAVE algorithm always outperformed the regular UCT algorithm in a real Go 

game  [11],  and the optimal value of the equivalence parameter would be around 100.  

 

Figure 17 Winning rate of UCT-RAVE vs UCT [11]. 
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Though our testing result using the modified Gomba testing framework improved the 

performance of UCT RAVE algorithm at a certain level and also suggested that the 

optimal value of the equivalence parameter was around 100, the overall performance of 

UCT RAVE was still inferior to the regular UCT algorithm. The exact reason causing 

this problem was unclear. We thought there might be hidden factors other than the values 

suggested in section 3.1.3 that we didn’t discover which could affect the correlation 

between the moves.  

Some potential future work includes: 

 Continue work on correlation between the moves. In this project we adjusted 

the structure and improved the Gomba testing framework on AMAF-type 

algorithms at a certain level.  However, there was still potential improvement 

in the testing framework itself. 

 

 Find possible factors that may relate to the correlation between the moves. In 

this modified version of Gomba framework, we did not use a transposition 

table to remember the global statistics of the moves. Instead, we let the Game 

State nodes remember the information itself and swap the values when 

necessary. We were not clear whether this may affect the correlations, but one 

thing for sure was that there were other factors which we had not discovered 

yet that were also related to the correlation of the moves. Identifying these 

factors would allow more effective move transposition and improve the 

accuracy of the testing framework.   
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 Use Fuego to explore how PoolRAVE improves compared to the number of 

simulations per move, rather than a flat time limit per move. 

 

 In this project, we mainly focused on the AMAF type of algorithms (UCT 

RAVE) which relied on the move transpositions. It would be also valuable to 

adjust the structure of testing framework to test other new types of search 

algorithms for future research.   
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Appendix A: Gomba Experiment Parameters 

Our experiments used Condor cluster graciously provided by MTA-SZTAKI.  We 

used many runs of many trials each to provide statistically sufficient results.   The 

parameter listings that follow are divided into related sets. For details on how the 

parameters defines the resulting experiments, see Appendix B. 

 

Set 1: Comparative on different equivalence parameters 

 2000 trials 

 100,000 iterations 

 0 base difficulty 

 Algorithms 

o UCT (1.1 FPU) 

o UCT RAVE (1.1 FPU, 1 equivalence parameter) 

o UCT RAVE (1.1 FPU, 5 equivalence parameter) 

o UCT RAVE (1.1 FPU, 10 equivalence parameter) 

o UCT RAVE (1.1 FPU, 100 equivalence parameter) 

o UCT RAVE (1.1 FPU, 1000 equivalence parameter) 

 Tree sizes: 

o Branching factor 30, depth 6 

 

Set 2: Comparative on level of correlations 

 2000 trials 
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 100,000 iterations 

 0 base difficulty 

 Algorithms 

o UCT RAVE (FPU 1.1, 100 equivalence parameter, 0 correlation) 

o UCT RAVE (FPU 1.1,  100 equivalence parameter, 25% correlation) 

o UCT RAVE (FPU 1.1,  100 equivalence parameter, 50% correlation) 

o UCT RAVE (FPU 1.1,  100 equivalence parameter, 75% correlation) 

o UCT RAVE (FPU 1.1, 100 equivalence parameter, 100% correlation) 

 Tree sizes: 

o Branching factor 30, depth 6 
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Appendix B: Gomba Developer’s Primer 

The Gomba search framework is freely available for general use under the Apache 2.0 

license. A current copy can be found at http://www.apache.org/licenses/LICENSE-2.0. 

The source for the project can be found at Worcester Polytechnic Institute Library e-

Project Catalog.  This developer’s primer is written by Daniel J. Bjorge and John N. 

Schaeffer from last year’s MQP [1]. We included it here for the convenience of the reader.  

 

Using Gomba 

The general syntax to simulate trials with the Gomba framework is as follows: 

gomba-mqp <options> <algorithm_1> [<alg_param_1>[,<alg_param_2>]… ] 

<algorithm 2> 

Some common Gomba options include: 

-n: Number of trials (distinct trees) to test the algorithms against. 

-i: Number of the iterations to run each algorithm for. 

-b: The branching factor to construct the tree with. Non-terminal nodes will have this 

many children. 

-d: The depth of the generated tree (the largest distance from any node to the root). 

-B: The difficulty bias. This may be any floating point number. Zero means “no bias”, 

lower means better for the minimizing (starting) player, and higher means worse for the 

starting player. 

Algorithm options are specific to each algorithm. The included algorithms which are 

based on RolloutMonteCarlo will generally have at least two parameters, the first two 

http://www.apache.org/licenses/LICENSE-2.0
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being the simulation policy effectiveness and the reward propagation constant. Those 

based on UCT will generally have at least a third, the first play urgency constant.  

 

Example 

gomba-mqp -n100 -i100000 -b2 -d20 random uct0,1,1.1 uct0,1,10000 

This would run 100 trials of 100000 iterations each on a tree of branching factor 2 and 

depth 20. The results would compare a purely random search and two UCT searches, one 

with a first play urgency value of 1.1 and one with no first play urgency (represented by 

the massive FPU value of 10000). 

 

Parsing Results 

Gomba outputs a series of comma-separated-value text les named <algorithm>.dat for 

each algorithm specified as input. Each of these files contains one line per iteration. Each 

line contains the following values from its respective iteration: 

1. The number of trials in which an optimal move was chosen 

2. The sum of the difficulties at each chosen node 

3. The total number of tree nodes expanded 

4. The total number of elapsed clock cycles 

Each of these values is simply the sum of the respective value from each trial. This 

was chosen over using averages primarily to ease the merging of multiple output files -  it 

allows for multiple runs of the program with the same parameters to be combined simply 

by adding the values in the output les component-wise, which is very useful in splitting 

jobs across nodes in a computing cluster. 
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The data files can be parsed and analyzed by any program which can read CSV text 

files. We primarily used the R statistical programming language to generate the statistics 

used in this report, and have included several example R scripts in the scripts directory of 

the Gomba source tree. Like the framework itself, these are released under the Apache 

2.0 license and may be freely used under its terms and conditions. 

 

Adding Search Algorithms 

The general strategy for the introduction of a new algorithm into the existing code-

base is as follows: 

1. Create a new class which derives from the SearchAlgorithm class, located in 

search/SearchAlgorithm.h. We recommend that variants of existing algorithms derive 

from those existing algorithms where feasible. In particular, the RolloutMonteCarlo 

class, on which most of the algorithms presented in this report are based, provides a 

great deal of groundwork code which is shared between all algorithms using a Rollout-

based Monte-Carlo strategy. This includes, for example, most UCT variants. We 

highly recommend using the existing variants (such as UCT) as examples, and we also 

highly recommend checking the documentation within the RolloutMonteCarlo class 

for descriptions of how to modify the parts of the algorithm your particular variant 

changes. However, if you are implementing a truly novel new algorithm, it is only 

necessary that it adhere to the function documentation specified by the 

SearchAlgorithm interface. 
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2. Register your class in the algorithms/AllAlgorithms.h header. You can do this by 

calling any of the registration macros available from search/AlgorithmRegistration.h 

in between the BEGIN_REGISTER_ALGS; and END_REGISTER_ALGS; calls. Use 

the existing registrations as a template. The most common usage pattern for a search 

algorithm with a constructor that takes K arguments is 

REGISTER_ALG_K(string_name, ClassName), which will allow the framework to 

map a command line algorithm specication of the form “string_name1,2,...,K” to a 

search algorithm constructed with the call “Class-Name(1, 2, ..., K)”. 

 

3. Recompile the Gomba framework with your new algorithm in place. 

 

4. Run the resulting executable (by default, “gomba-mqp”) with the command 

line algorithm specification you deined by registering your algorithm. For example, if 

your algorithm class MyAlgorithm has a constructor of two arguments which you 

registered in step two with “REGISTER_ALG_2(myalg, MyAlgorithm)”, you can 

start a simulation with the command “gomba-mqp myalg0,1”. You can use whatever 

parameters you like for myalg (they are treated as doubles), run it against any other 

algorithms in the framework (others of your creation or any of the standard included 

ones), and modify any of the standard framework parameters (-n, -b, -d, etc.) for the 

run. In short, after registration, it is treated exactly like any one of the standard 

included algorithms. 
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Appendix C: Fuego Experiment Parameters 

 

The following experiments used the Condor cluster provided by MTA-SZTAKI.  The 

listings are divided into related parameter settings and organized by order of appearance 

in the report. Both Black and White results are given not for verbosity but to note the 

number of games lost to error. The test opponent is GnuGo level 7 unless otherwise noted. 

Time per move is measured in seconds. 

Basic Fuego (RAVE) 

Opponent Time per 

Move 

Number of Games Wins for 

Fuego 

Wins for 

GnuGo 

% Wins 

for Fuego 

GnuGo 6 5 1000 866 134 86.6 

GnuGo 7 5 1000 877 123 87.7 

GnuGo 6  10 1000 885 115 88.5 

GnuGo 7 10 1000 864 136 86.4 

 

PoolRAVE (Pass) 

Pool Size Pool Prob. Time per 

Move 

Number 

of Games 

Wins for 

Fuego 

Wins for 

GnuGo 

% Wins 

for Fuego 

1 0.1 10 1000 0 153 0 

1 0.3 10 1000 0 916 0 

 

PoolRAVE (PersistPass) 

Pool 

Size 

Pool 

Prob. 

Time per 

Move 

Total 

Games 

Wins for 

Fuego 

Wins for 

GnuGo 

% Wins for 

Fuego 

1 0.1 10 510 175 311 0.343 

5 0.1 10 450 145 304 0.322 

10 0.1 10 373 110 259 0.294 
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PoolRAVE (SmartPersist)  

Pool 

Size 

Pool 

Prob. 

Time per 

Move Games 

Wins for 

Fuego 

Wins for 

GnuGo 

% Wins for 

Fuego 

1 0.1 5 970 51 919 0.052577 

1 0.3 5 970 22 948 0.02268 

1 0.5 5 388 6 382 0.015464 

1 0.7 5 971 13 958 0.013388 

1 0.9 5 970 11 959 0.01134 

       5 0.1 5 970 19 951 0.019588 

5 0.3 5 970 10 960 0.010309 

5 0.7 5 958 2 955 0.002088 

5 0.9 5 901 0 901 0.0 

       10 0.1 5 970 37 933 0.038144 

10 0.3 5 970 13 957 0.013402 

10 0.9 5 970 0 970 0.0 

       1 0.1 10 1000 52 948 5.2 

10 0.5 10 997 5 991 0.5015 

 

Move Concurrency  
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