
GRAPH DECOMPOSITIONS AND MONADIC SECOND ORDER LOGIC

by

Jonathan D. Adler

A Project

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Applied Mathematics

May 2009

APPROVED:

Dr. William Martin, Advisor

Dr. Daniel Dougherty, Advisor



Abstract

A tree decomposition is a tool which allows for analysis of the underlying tree struc-
ture of graphs which are not trees. Given a class of graphs with bounded tree width,
many NP-complete problems can be computed in linear time for graphs in the class.
Clique width of a graph G is a measure of the number of labels required to con-
struct G using several particular graph operations. For any integer k, both the class of
graphs with tree width at most k and the class of graphs with clique width at most k
have a decidable monadic second order theory. In this paper we explore some recent
results in applying these graph measures and their relation to monadic second order
logic.



Acknowledgments

I would like to thank my advisors Professor William Martin and Professor Dan
Dougherty for their guidance in writing this paper. I would also like to thank my
parents for stressing the importance of a good education, and the residents of 26
Lancaster Street Apartment 3 for keeping me sane while I pursued a good education.



Contents

1 Introduction 1

2 Tree Decompositions, k-Expressions, and Finding Them 3
2.1 Tree Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Clique Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Algorithms for Finding Tree Decompositions and k-expressions . . 7

3 Logic Background 9
3.1 Fagin’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Interpretations 15
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Decidability of the Theory of Monadic Second Order Logic on Bi-
nary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Arnborg, Lagergren, and Seese 22

6 Seese’s Conjecture 25

7 Examples 28
7.1 Example of Dynamic Programming Using Tree Decompositions . . 28

7.2 Example Interpretation from a Graph of Bounded Tree Width to a
Binary Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Concluding Remarks and Open Problems 37

i



Chapter 1

Introduction

The concept of tree decompositions is a powerful tool in the field of graph theory.
Introduced by Robertson and Seymour in 1984, a tree decomposition of a graph
allows for the analysis of the underlying tree like structure of the graph. Many of
the dynamic programming techniques used on trees can be used on classes of graphs
with bounded tree widths. Originally, tree decompositions were used by Robertson
and Seymour to prove the graph minor theorem. In 1988 Courcelle showed that for
a fixed k, problems that can be written as logical statements in monadic second order
logic could be solved in linear time on graphs with tree width less than or equal to
k. Arnborg and Lagergren also proved this independently in 1991. They also showed
that the theory of monadic second order logic is decidable for the class of graphs with
tree width less than or equal to k. So given a monadic second order logic sentence σ,
whether or not σ is true for all graphs of tree width no greater than k is decidable.

The similar concept of clique-width was introduced by Courcelle in 1997. Rather
than looking at the underlying tree like structure of the graph, the clique-width of
a graph measures the amount of vertex labels needed to construct the graph using
a particular set of graph operations. For a fixed integer k, given a monadic second
order logic sentence σ and a graph G with clique width less than or equal to k (as
well as the sequence of graph operations needed to construct the graph), whether σ

true for G can be determined in linear time. And similarly to tree-width, for the class
of graphs with clique-width no greater than k the theory of monadic second order
logic is decidable. Seese made a conjecture equivalent to the following: if a class
of graphs C has decidable monadic second order theory, then C has bounded clique
width. The conjecture remains open but it has been found to hold for special cases
such as classes of planar graphs.

The paper is organized as follows: Chapter 2 introduces the definitions and main
theorems of tree width and clique width. Chapter 3 introduces logic and specifically

1



monadic second order logic which will be the focus of the later chapters. Chapter 4
introduces the notion of an interpretation and the connection between monadic sec-
ond order logic and binary trees. Chapter 5 proves that the model checking problem
can be computed in linear time for classes of graphs with bounded tree width by
using interpretations. Chapter 6 discusses Seese’s Conjecture and it’s connection to
clique width. Chapter 7 shows several examples of the techniques discussed in the
paper, and Chapter 8 dicusses open problems in the field.

2



Chapter 2

Tree Decompositions, k-Expressions,
and Finding Them

2.1 Tree Decompositions

There are many instances of problems which are trivial to solve on the class of trees;
for example the 2-coloring problem. The question arises of if we can find classes
of graphs which are not trees but have many of the similar underlying properties of
trees. This can be done by finding the tree decomposition of a graph, which is defined
as follows: Let G be a graph, let T be a tree, and let V = (Vt)t∈V (T ) be a set of vertex
sets of G indexed by vertices in T , so Vt ⊆ V (G) for each vertex t of T . The pair
(V ,T ) is called a tree decomposition provided the following conditions hold:

1. For each v ∈V (G) there is some t such that v ∈Vt ;

2. For each edge (v1,v2) ∈ E(G) there is some t such that v1,v2 ∈Vt ;

3. If v ∈ Vt1 and v ∈ Vt2 then v ∈ Vi for all vertices i on the path between vertices
t1 and t2 in T .

An example of a graph and a tree decomposition of the graph is shown in Figure
2.1. Trees have the special property that they have no cycles; removing any edge
from the graph separates the graph into two components. This allows for dynamic
programming algorithms to be used on trees. Again if we take 2-coloring of the
tree we can start by arbitrarily coloring a vertex, we then color the adjacent vertices
based only on what the previous vertex has already been colored. We repeat this
process until the entire tree is 2-colored. With tree decompositions we would want to

3



Figure 2.1: A graph and a tree decomposition of the graph.

utilize similar dynamic programming concepts, mainly that to solve a problem for a
vertex subset we only have to consider adjacent vertex subsets in the tree of the tree
decomposition. The following two theorems illustrate why this is possible:

Theorem 2.1.1. Let G be a graph and (V ,T ) a tree decomposition of G. If (t1, t2)
is an edge in T then let T1 and T2 be the components of T − (t1, t2) containing t1 and
t2 respectively. Removing Vt1 ∩Vt2 from G separates G into two subgraphs that are
disconnected from each other: the induced subgraph G1 with V (G1) =

(⋃
t∈T1

Vt
)
\

(Vt1 ∩Vt2), and the induced subgraph G2 with V (G2) =
(⋃

t∈T2
Vt

)
\ (Vt1 ∩Vt2).

Proof. By contradiction. For G1 and G2 not to be separated they must share a vertex
or there must be an edge connecting the two graphs. Let a ∈ V (G) be a vertex in
both G1 and G2 but not in Vt1 ∩Vt2 . Then a ∈ Vx for some x ∈ V (T1) and a ∈ Vy for
some y ∈ V (T2). But since T is a tree, the path between x and y contains t1 and t2.
Thus a ∈Vt1 ∩Vt2 ; this is impossible. Let b be a vertex in G1 and c be a vertex in G2
with (b,c) an edge in G and b,c /∈ Vt1 ∩Vt2 . Since (b,c) is an edge there must be a
vertex z ∈ T such that b,c ∈Vz by the definition of tree decomposition. Without loss
of generality assume z ∈ T1; since c is in G2 and therefore is in a vertex set Vy for
some y in T2, c must be in all of the vertex sets Vt on the path between z and y. This
path must include t1 and t2 so c ∈Vt1 ∩Vt2 .

Theorem 2.1.2. For any W ⊆ V (G), either there exists a t ∈ T such that W ⊆ Vt or
there are vertices w1,w2 ∈W and an edge (t1, t2) ∈ E(T ) such that the removal of
Vt1 ∩Vt2 from G separates w1 from w2.

Proof. For any given edge (x,y) in T exactly one of the following must occur:

4



1. there exists w1 and w2 in W such that the removal of Vx∩Vy separates w1 from
w2;

2. vertex set W falls entirely in Vx∩Vy;

3. vertex set W falls entirely into one of the two components of, say Gx and Gy,
of G separated by the removal of Vx∩Vy.

If for any edge in T one of the first two conditions occurs then the theorem holds, so
assume that for all edges in T the third condition holds. Orient each edge (x,y) with
the direction pointing towards x if W ⊆V (Gx) and orient the edge with the direction
pointing towards y if W ⊆ V (Gy). Once all the edges have an orientation, since T
is a tree there must be some vertex z in T with no edges oriented away from it. No
element of W can fall in any of the vertex sets labeled by vertices in T adjacent to z
since z has no outward edges. Thus for each k adjacent to z let Gk

z be the component
of the induced subgraph created by the removal of Vk ∩Vz containing W . It can be
seen that

⋂
k Gk

z ⊆Vz and thus W ⊆Vz.

So the removal of any edge of the tree of a tree decomposition separates the original
graph. Also any two vertices in the original graph either share a vertex set in the tree
decomposition or there exists an edge (x,y) in the tree decomposition such that the
removal of Vx∩Vy separates the two vertices. Thus we have the properties of a tree
we want captured in the tree decomposition. However now our dynamic program-
ming techniques will require the analysis of each individual vertex subset of the tree
decomposition. For a given graph G there may be many different tree decomposi-
tions, in fact there will always be one: the trivial tree decomposition ({V (G)},K1).
Since we need to analyze each vertex subset which may have no special properties,
the smaller the cardinality of the vertex subsets the better the tree decomposition.

Definition 2.1.1. The width of a tree decomposition (T,V ) is max{|Vt |−1 : t ∈ T}.
The tree width of a graph G is the minimum width of any possible tree decomposition
of G.

The reason for the subtraction of 1 in the definition of width is to allow trees them-
selves to have a tree width of 1. Tree width can now be considered as a measure of
how similar to a tree the graph is; by having a higher tree width the graph has large
components which are not similar to trees. Throughout this paper we will be con-
cerned with classes of graphs with bounded tree width, these are classes of graphs
where all of the graphs have some underlying tree like structure. This is further seen
in the following corollary:

5



Corollary 2.1.3. The vertices of any complete induced subgraph must be contained
in some member of V and therefore twd(G)≥ α(G)−1.

The notion of tree width was introduced by Neil Robertson and Paul Seymour for
use in the graph minor theorem. A quasi-ordering is a relation that is reflexive and
transitive. Given a set X and quasi-ordering�,� is a well-quasi-ordering if for every
infinite sequence x0x1x2 . . . of elements of X there exists an i < j such that xi � x j.
This is equivalent to saying that there does not exist an infinite antichain of elements
of X nor a strictly decreasing sequence of elements of X .

Let G be a graph containing vertices x and y which are connected by an edge e. The
graph G′ created by the edge contraction of e is the induced subgraph of G with x, y,
and e removed and a new vertex z inserted which is adjacent to exactly the vertices
that are adjacent to x and y in G. Graph H is a minor of graph G if it can be obtained
from G by a combination of edge deletions and edge contractions.

Theorem 2.1.4 (Robertson and Seymour). The set of finite graphs are well-quasi-
ordered under the minor relation.

This extremely deep theorem was a major breakthrough in the field of graph theory,
more so than even the four color theorem. The proof was over 500 pages in total and
relied heavily on bounded tree width. For a further analysis see [10].

2.2 Clique Width

The notion of tree width is not the only method of measuring special properties of a
graph that allow for dynamic programming techniques. The notion of clique width
characterizes graphs based on the number of colors needed to create the graph using
certain graph operations, which we define as follows:

Let C be a countable set of labels. We define the following symbols to denote opera-
tions on graphs:

1. A nullary symbol a for every label in C.

2. A unary symbol ρa→b for each a, b, pair in C with a 6= b. This symbol repre-
sents relabeling all vertices labeled a with label b.

3. A unary symbol ηa,b for each a, b, pair in C with a 6= b. This symbol represents
adding an edge between each vertex pair in the set
{(x,y)|“x has label a”, “y has label b”}.

6



4. A binary symbol ⊕. This symbol represents the disjoint union of two graphs.

Let C ⊆ C . The set T (C) is the smallest set of graphs satisfying the following condi-
tions:

• for any xi ∈C, the graph with a single vertex labeled xi is in T (C);

• for any t1, t2 in T (C), the graph t = t1⊕ t2 is in T (C);

• for any t1 in T (C), and any xi,x j be in C, t = ρxi→x j(t1) is in T (C);

• for any t1 in T (C), and any xi,x j be in C, t = ηxi,x j(t1) is in T (C).

The clique-width of a graph G is defined as:

Cwd(G) := min{|C| : G ∈ T (C)}.

A k-expression is a string of symbols from the set
{a,b, . . . ,ρa→b,ρb→c, . . . ,ηa,b,ηb,c, . . . ,⊕} with {a,b,c, . . .} ∈C requiring the use of
at most k labels, but without any restriction on the length of the string.

With tree width there exist exponential time algorithms that, upon input of a graph
G, will output a tree decomposition with width h where h is the tree width of G. Cur-
rently, no such algorithms exist for clique width, and the best result is the following:

Theorem 2.2.1 (Courcelle). [18] For all k∈N there exists an O(n9 log(n)) algorithm
that given a graph of clique-width k outputs a (23k+2)-expression for G, where n is
the number of vertices in G.

Theorem 2.2.2 (Courcelle). For any graph G, cwd(G)≤ 2twd(G)+1 +1.

It is clear that there is no way to bound tree width as a function of clique width since
the class of cliques have clique width bounded by 2 and unbounded tree width. Thus,
having bounded tree width is a stronger requirement than having bounded clique
width.

2.3 Algorithms for Finding Tree Decompositions and
k-expressions

Since classes of graphs with bounded tree width and bounded clique width have
special properties, it makes sense to look at the time complexity of questions asking
for the widths of graphs. The following results have been discovered.

7



Theorem 2.3.1 (Arnborg). The following problem is NP-complete:

INPUT: A graph G and an integer k

QUESTION: Is the tree width of G bounded by k?

Theorem 2.3.2 (Bolaender). Fix an integer k. The following problem can be solved
in linear time:

INPUT: A graph G

QUESTION: Is the tree width of G at most k? If so, what is a valid tree decom-
position of G with width at most k?

Note the difference between the two theorems. Given a graph as input and computing
its tree width takes exponential time if P 6= NP. However, if we fix a natural number
k and ask if the graph has tree width less than k we can find a solution in linear time
on the number of vertices and edges in the graph. The distinction here is that in the
first theorem the k is part of the input to the question while the question in the second
theorem fixes k beforehand. In fact one exponential time algorithm to find a tree
decomposition of a graph G would be to run the second algorithm with k = 1, k = 2,
and so on until a valid tree decomposition is found.

Theorem 2.3.3 (Fellows). The following problem is NP-hard:

INPUT: A graph G and an integer k

QUESTION: Is the clique width of G bounded by k?

This algorithm only answers the question of if a k-expression of graph G exists, it
does not actually provide a valid k-expression. Currently no algorithm exists to find
a valid k-expression for graph G with cwd(G) = k except in the cases where k < 4.

8



Chapter 3

Logic Background

While some problems such as k-coloring may be easier on graphs with bounded tree
width or bounded clique width than they are on graphs in general, this may not be
true for every problem. It is beneficial to have a way of classifying problems based on
their formation as a logical sentence. Thus we need to introduce the notion of graphs
as relational structures, and problem as logical sentences about those relational struc-
tures.

Definition 3.0.1. A language L is a set of relation symbols and function symbols
each with a non-negative integer arity. A structure of language L is an ordered pair
〈U,R,F〉 where U is a non-empty set called the universe, R is a set of relations on U
indexed by the relation symbols in L and with corresponding arity, and F is a set of
functions indexed by the function symbols in L with corresponding arity. For f ∈ F
with arity n, f : Un→U .

Definition 3.0.2. Let X be a set of variables and let F be a set of functions with
F0 ⊆ F the set of functions of arity 0. The set T (X) of terms of type F over X is the
smallest set such that:

• X ∪F0 ⊆ T (X),

• if p1, . . . , pn ∈ T (X) and f is a function in F with arity n, then f (p1, . . . , pn) ∈
T (X).

Definition 3.0.3. Let L = 〈R,F〉 be a language, let v be the set of individual variables,
let V be the set of relation variables, and let W be the set of functional variables. The
atomic formulas of type L are precisely the expressions of the form:

• an expression r(t1, t2, ..., tn) where r is a relational symbol in L with arity n and
each ti is a term of type F ∪W over v;

9



• an expression t1 = t2 where t1 and t2 are terms of type F ∪W over v;

• an expression T1 = T2 where T1,T2 ∈V ∪W ∪L ;

• an expression T (t1, . . . , t j) where for all 1≤ i≤ j we have ti ∈ v, T ∈ (V ∪L),
and the arity of T is j.

Definition 3.0.4. The second order formulas of type L (we abuse notation and ab-
breviate this as L) are elements of the smallest set of expressions using the sym-
bols L ∪ v∪V ∪W ∪{∃,∧,¬,=} containing the atomic formulas and satisfying, for
Φ1,Φ2 ∈ L , x ∈ v, and X ∈V :

• ¬Φ1 ∈ L

• Φ1∧Φ2 ∈ L

• ∃xΦ1 ∈ L

• ∃XΦ1 ∈ L

A language of relational structures is a language without any function symbols. For
the rest of this paper, save section 4.2, we will deal only with languages of relational
structures. The set of first order formulas of type L is the subset of the second order
formulas of type L that do not contain relation variables. The set of monadic sec-
ond order formulas of type L is the set of second order formulas where all relation
variables have arity 1. The set of second order existential formulas of type L (SO∃)
are the second order formulas of the form ∃V1∃V2 . . .∃Vnφ where Vi is a second order
relational variable and φ is a formula containing no quantification over set variables.

For a variable v in Φ say v is bound in Φ if it lies within the scope of a quantifier.
Any variable that is not bound is free. A sentence is a formula containing no free
variables. For a model M and sentence σ we write M |= σ when model M satisfies
σ, for which a definition can be found in [5]. For a formula δ in language L and a
relational structure G of L define G(δ) as the relation {(a1, . . . ,an)|ai ∈ G and G |=
δ[a1, . . . ,an]}.

Throughout this paper we are specifically concerned with graphs as relational struc-
tures. For our purposes, a graph will be definied as a relational structure in one of
two ways. The first method is for a graph G to be defined as relational structure with
universe A (containing all of the vertices and edges of G), unary predicates V and
E, and binary predicate R. The set V is exactly the set of vertices of the graph, the
set E is exactly the set of edges, and R(x,y) holds if x is a vertex and y is an edge
with x as an end. For vertices a and b of G that are adjacent we often abbreviate

10



∃z(R(a,z)∧R(b,z)) as adj(x,y). For many graph problems we may need additional
unary predicates over elements of the graph, so we use P1, . . . ,Pn (or as below, Y ,P,
and B) for those sets. Defining graphs in this manner allows us to quantify over both
vertices and edges if we so desire. Monadic second order sentences of graphs of
the form 〈V,E,R〉 are MS2 sentences. We may refer to MS2 sentences as simply MS
sentences.

Alternatively, a graph will be defined as a relational structure with universe V , and
binary predicate “adj” (adjacent). The set V is exactly the set of vertices, and for a
and b in V , adj(a,b) holds if and only if a and b are adjacent. Monadic second order
sentences of 〈adj〉 are MS1 sentences; they quantify over vertices or sets of vertices
only.

The model checking problem is defined as follows:

INPUT: A language L , an MS sentence φ of L , and a graph G which is a
structure of L

QUESTION: Does G |= φ?

This problem is nontrivial: for infinite graphs there is no possible way to check every
possible mapping of the vertices and edges of the graph to the variables in the sen-
tence. If we restrict the problem to finite graphs we can test every possible mapping
to see if any provide a valid solution, but even this takes exponential time.

Many graph properties can be expressed in second order monadic logic. For example,
here is a sentence σ such that for a graph G, G |= σ if and only if G is 3-colorable:

σ := ∃Y∃P∃B
(
∀x

(
x ∈V →

(
((x ∈ Y )∧ (x /∈ P)∧ (x /∈ B))

∨ ((x /∈ Y )∧ (x ∈ P)∧ (x /∈ B))∨ ((x /∈ Y )∧ (x /∈ P)∧ (x ∈ B))
))
∧

∀x∀y
((

x ∈V ∧ y ∈V ∧ adj(x,y)
)
→

¬
(
(x ∈ Y ∧ y ∈ Y )∨ (x ∈ P∧ y ∈ P)∨ (x ∈ B∧ y ∈ B)

)))
The graph G with unary relation P satisfies the sentence ψ if and only if the vertices
of P are a dominating set:

ψ := ∀x(x ∈V → (∃y(y ∈V ∧ y ∈ P∧ adj(x,y)))∨ x ∈ P)

Let G be a graph with V (G) = {v1,v2, . . . ,vn}. A monadic second order sentence φ

such that for all graphs H, H |= φ if and only if H has G as an induced subgraph is

11



the following:

φ := ∃x1∃x2 . . .∃xn

( ∧
1≤h≤n

(xh ∈V )
∧

1≤ i, j ≤ n

(vi,v j) ∈ E(G)

adj(xi,x j)

∧
1≤ l,m≤ n

(vl ,vm) /∈ E(G)

¬adj(xl,xm)
∧

1≤ p,q≤ n

p 6= q

xp 6= xq

)

Similarly, we can construct a MS sentence π to describe if a graph H has graph G as
a minor. Again let V (G) = {v1,v2, . . . ,vn}.

π :=∃X1∃X2 . . .∃XN(
∧

1≤i≤n

(∀x ∈ Xi(x ∈V )∧ “Xi is connected”)∧

(∀v(v ∈V ⇒ “v is in at most one of Xi”))∧∧
1≤ i, j ≤ n

(vi,v j) ∈ E(G)

∃a∃b((a ∈ Xi)∧ (b ∈ X j)∧ adj(a,b)))

Intuitively, this sentence states that G is a minor in the following manner. There must
exist a way to group connected vertex subsets of H, such that there exists a bijection
between the vertex subsets and V (G), each vertex of H is in at least one vertex subset.
Also for vertex subsets X and Y of H mapped to vertices x and y in G, if x and y are
adjacent then there must exist an edge between a vertex in X and a vertex in Y . This
shows that G is a minor since the edges between vertices in the same vertex subset
are the contracted edges, if there is not an edge between x and y then all of the edges
between vertices of X and Y are deleted, and any deleted vertices are not mapped into
vertex subsets.

The MS validity problem is defined as follows:

INPUT: A language L , an MS sentence φ of L and a class C of structures of
language L

QUESTION: For all C ∈ C , is it true that C |= φ?

The MS validity problem is different than the previous problems since the input is
a sentence and the difficulty lies in finding if all structures satisfy φ, whereas the
model checking problem gave a structure and sentence as input and the difficulty lied

12



in seeing if the specific structure satisfied the sentence. The monadic second order
theory of K is the set of all MS2 formulas that are true for all graphs in K, abbreviated
as TH2(K). The theory is decidable if there exists an algorithm that, given an MS
sentence σ will determine if σ ∈ TH2(K) in finite time. A class of structures K of
language L has decidable second order theory if and only if the validity problem
is decidable for every monadic second order sentence φ of language L . A class of
structures K of language L is MS definable if there exists an MS sentence σ such that
a graph G is in K if and only if G |= σ.

3.1 Fagin’s Theorem

In his 1974 Ph.D thesis, Fagin proved a deep connection between logic and com-
putability. Specifically he showed a link between sets recognized by nondetermin-
istic Turing machines and sets of structures definable by second order existential
sentences. See [15] for a definition of Turing machine.

Theorem 3.1.1. (Fagin) The set of all properties that are computable in polynomial
time by a nondeterministic Turing machine (NP) is exactly the set of all properties
that can be expressed as second order existential sentences.

A sketch of the proof is provided. To show SO∃ ⊆ NP we need to show that for any
second order existential sentence σ there exists a nondeterministic polynomial time
Turing machine N that accepts a binary encoding of a structure if and only if that
structure satisfies σ. Let A be an input structure of language L with |A | = n and
let σ = ∃R1 . . .∃Rkφ with each variable Ri having arity ri. All N does is, for each
Ri, is encodes all possible ri-tuples. This can be done in polynomial time with a
nondeterministic algorithm (for each a ∈ |A | it nondeterministically chooses to en-
code a 0 or a 1). Once this is complete we have a structure A ′ over a new language
L ′ = L ∪{R1, . . .Rk}. We have to check that A ′ |= φ with a nondeterministic polyno-
mial time Turing machine, but since φ is a first order query it can be shown that we
may compute this by a deterministic log space Turing machine [15].

To show NP ⊆ SO∃, we need to show that for a given Turing machine N that takes
binary encodings of structures as input, there exists a sentence Φ such that the Turing
machine accepts a structure A if and only if A |= Φ. Explicitly, Φ := ∃C1 . . .∃Cg∃∆φ

where φ is a first order formula and (A ,C̄,∆) |= φ if and only if (C̄,∆) is an accepting
run of N on A . Specifically, let the alphabet of the tape be Γ = {γ1, . . . ,γg} and Ci(s, t)
holds true if at location s and time t the tape has symbol γi. Since our tape only has
at most nk− 1 locations on the tape that are not blank, we can code each Ci as a 2k
unary relations with s and t each being binary encodings of a natural number less

13



than nk. Since N is a nondeterministic Turing machine without loss of generality we
can assume it will make one of two possible choices. The relation ∆(t) holds for t if
the machine chooses “1” at time t and it does not hold if the machine chooses “0” at
time t. The first order formula φ is then a statement describing the rules of the Turing
machine, such as both given time s and location t, Ci(s̄, t̄) and C j(s̄, t̄) cannot hold for
i 6= j.

14



Chapter 4

Interpretations

4.1 Definition

Let L1 and L2 be monadic second order languages over classes of structures K1 and
K2. It would be useful if it were possible to express sentences in L1 as sentences in
L2 along with a mapping from structures in K1 to structures in K2 such that a model
in K1 satisfies a sentence in L1 if and only if the mapping of the model satisfied the
equivalent sentence in K2. With that, one would be able to use the knowledge of L2
to answer questions about the original language.

Let α be a formula with one free variable, let ε be a formula with two free variables,
and for each Ri relation in L1 let γRi be a formula with ri free variables where ri is the
arity of Ri. An interpretation I is the sequence of formulas (α,γR1, . . . ,γRk ,ε).

For each formula σ of L1 a formula for σI of L2 is defined inductively:

• (x ∈ X)I := ∃y(ε(x,y)∧ y ∈ X)

• (x = y)I := ε(x,y)

• (Ri(x1, . . . ,xn))I := ∃y1, . . . ,yn

((∧n
j=1 ε(x j,y j)

)
∧ γRi(y1, . . . ,yn)

)
for each Ri

in L1

• (Φ1∧Φ2)I := ΦI
1∧ΦI

2

• (¬Φ)I := ¬ΦI

• (∃xΦ)I := ∃x(α(x)∧ΦI)

• (∃XΦ)I := ∃X(∀x ∈ X(α(x))∧ΦI)

15



Let G be a structure of language L2 with G(ε) an equivalence relation such that for
each relation Ri in L , G(ε) is congruent over the elements G(α) with respect to G(RI

i ).
We define the structure GI of language L1 as the structure with universe G(α)/G(ε)
and for each relation Ri we have RGI

i = G(RI
i )/G(ε).

Let K1 and K2 be classes of relational structures corresponding monadic second order
languages L1 and L2. K1 is interpretable into K2 if there is an algorithm algorithm A
to find the relations α,ε,γR1, . . . ,γRl such that:

G∼= (A(G))I

where I is the intrepretation (α,ε,γR1, . . . ,γRl). In addition, K1 is linear time inter-
pretable if A runs in linear time with respect to the size of the universe of G.

Theorem 4.1.1. Let L1 and L2 be languages and let K1 and K2 be classes of struc-
tures of the languages L1 and L2 respectively. Let Φ be a sentence in L1, let I be a
interpretation of K1 onto K2, and let G be a structure of K2.

GI |= Φ if and only if G |= Φ
I

Proof. First, we want to show that G(ε) partitions G(α) such that the congruence
of formula G(ΦI) is preserved. Specifically let bi ∈ G(α) and all B j ⊆ G(α) with
(. . . ,bi, . . . ,B j, . . .) ∈ G(ΦI). For all ci ∈ G(α) with ε(bi,ci) and for all C j ⊆ G(α)
such that for c j ∈C j it holds that for ε(c j,b j) with b j ∈ B j, we have that
(. . . ,ci, . . . ,C j, . . .) ∈ G(ΦI) as well. We can show this using induction over ΦI ,
which falls immediately from the inductive definition of ΦI . Next we need to show
that for all
(. . . ,bi, . . . ,B j, . . .) ∈ G(ΦI) it holds that (. . . , [bi], . . . , [B j], . . .) ∈ GI(Φ) where [bi]
is the congruence class containing bi. Again, this can be shown inductively by the
construction of ΦI . Once this is shown then we have our result.

An interpretation from K1 to K2 allows us to apply knowledge of the model checking
problem of K2 to K1 as shown by the next theorem:

Theorem 4.1.2. Let L1 and L2 be languages and let K1 and K2 be classes of struc-
tures of the languages L1 and L2 respectively, and K1 is interpretable into K2. If
the model checking problem is decidable for K2 then the model checking problem is
decidable for K1.

Proof. Given a structure G ∈ K1 and a sentence φ ∈ L1 an algorithm for determining
if G |= φ is as follows. Let A be the algorithm that interprets K1 into K2. Find
A(G) ∈ K2 and φI and check if A(G) |= φI (which we know takes finite time since

16



the model checking problem is decidable for K2). If A(G) |= φI then G |= φ, otherwise
G 6|= φ.

With the concept of an interpretation we can also answer questions about decidability
of theories. Let L1 and be L2 languages, let K1 and K2 be classes of structures of
languages L1 and L2 respectively, and let I an interpretation from language L1 to L2
with the property that for every G ∈ L2 there exists an H ∈ L1 such that GI ∼= H, and
for every J ∈ L1 there exists an M ∈ L2 with MI ∼= J. Then THL1(K1) is interpretable
into THL2(K2). Rabin proved the following result:

Theorem 4.1.3. If THL1(K1) is interpretable into THL2(K2) and THL2(K2) is decid-
able then THL1(K1) is decidable as well.

If one were to find an MS interpretation from a class of graphs to the class of binary
trees then the original class would have both a decidable theory and a model checking
algorithm that could be done in linear time. The decidability of the theory monadic
second order logic on classes of graphs with bounded tree width relies heavily on the
work done by Rabin.

4.2 Tree Automata

A tree is a graph with no cycles. A rooted tree is a tree where one vertex is labeled
as the root. The children of a vertex v in tree T with root r are all of the vertices
adjacent to v whose distance from r is greater than that of v.

A non-deterministic finite tree automaton (NFTA) is a quintuple M = (Q,Σ,δ,Q0,A)
where Q is a set of states, Σ is an alphabet with arities ρ(Σ), A is a subset of Q known
as the accepting states, Q0 is a subset of Q known as the start states, and δ is known
as the set of transition rules with δ⊆ {Qρ(σ)×σ×Q|σ ∈ Σ}.
A deterministic finite tree automaton (DFTA) is a NFTA which has exactly one ele-
ment in δ of the form (q1,q2, . . . ,qρ(σ),σ,q) for combination of q1,q2, . . . ,qρ(σ) ∈ Q
and σ ∈ Σ, and |Q0|= 1.

A binary deterministic finite tree automaton is a DFTA where each σ in Σ has arity
2.

Let M be an NFTA and let T be a rooted tree where each vertex is labeled with
an element of Σ with an arity greater than or equal to the number of children of the
vertex. An execution of M on T is a relabeling of the vertices where the empty
tree has a label q0, and a vertex with label s and children assigned labels l1, l2, . . . , ln
respectively gets the new label q with (l1, l2, . . . , ln,s,q)∈ δ. An execution is accepted

17



if the root is relabeled with an element of A. M accepts T if there exists an accepting
execution of M on T . Note that in the case of DFTA there is exactly one execution
of M on T .

Definition 4.2.1. Tree language L(M ) recognized by M is the set of all trees that
are accepted by M .

Property 4.2.1. Let M be a deterministic finite tree automata with alphabet Σ. Test-
ing if L(M ) = /0 can be done in linear time; testing if L(M ) is the set of all terms of
Σ can also be done in linear time.

An alternative mathematical definition of tree automata exist using algebras. A finite
Σ-algebra is a finite structure of language Σ. Let Σ be a set of functional symbols
with exactly one constant 2 and let A be a unary relation. The Σ∪ {A}-algebra
M is equivalent to the deterministic finite tree automata M = 〈|M |,Σ,δΣ,2M ,AM 〉,
where δΣ = {(q1, . . . ,qn,σ,q)|σ ∈ Σ∧ρ(σ) = n∧ qi ∈M ∧ q = σ(q1, . . . ,qn)}. For
each term t of Σ we associate an element of |M | inductively using the method:
σ(q1, . . . ,qn)M = σM (qM

1 , . . . ,qM
n ). A term t is accepted by M if and only if tM ∈ A.

Let A and B be two Σ-algebras. A Σ-algebra homomorphism from A to B is a map
γ : A→ B such that:

• for all function symbols f ∈ Σ of arity n and all a1, . . . ,an ∈ A,
γ( f A(a1, . . . ,an)) = f B(γ(a1), . . . ,γ(an));

• for all relation symbols r ∈ Σ of arity n and all a1, . . . ,an ∈ A,
γ(rA(a1, . . . ,an))⇔ rB(γ(a1), . . . ,γ(an)).

An epimorphism is a homomorphism that is onto. If γ : A→ B is an epimorphism,
then B is the homomorphic image of A. Let Σ be a set of finitely many function
symbols including exactly one constant symbol 2 and a single unary relation symbol
R. Let G be a subset of the terms of Σ and let TΣ(G) be the algebra with relation
RΣ(G) = G.

Theorem 4.2.2. There exists a deterministic finite tree automaton M that recognizes
G if and only if TΣ(G) has a finite homomorphic image.

Proof. ⇐ Let MG = 〈Q,Σ,δ,Q0,A〉 be the DFTA that accepts G. Then the homo-
morphism γ which maps t ∈ TΣ to tMG is a homomorphism with a finite image.
⇒ Let γ be the homomorphism which maps TΣ(G) to a finite Σ∪{A}-algebra B. Then
the tree automata MG = 〈|B|,Σ,δ,2B,GB〉with δ = {(b1, . . . ,bn,σ,b)|σ∈ Σ∧ρ(σ) =
n∧bi ∈ B∧b = σB(b1, . . . ,bn)} is a DFTA which accepts TΣ(G).

For further information on the relation between DFTAs and Σ-algebras see [16].

18



4.3 Decidability of the Theory of Monadic Second Or-
der Logic on Binary Trees

Theorem 4.3.1 (Thatcher and Wright, 1968). [21] Let T be a tree and σ a monadic
second order sentence. A DFTA Mσ can be constructed so that M accepts T if and
only if T |= σ.

Proof. We present the proof for the case where T is a binary tree. To prove this we
will create a tree automata which recognizes the set of all binary trees which satisfy
σ. Let L(x,y) be the relation “x is a left child of y”, and let R(x,y) be the relation “x
is a right child of y”. For simplicity, we first take σ and apply transformation J by
replacing all singular variables with set variables in the following manner:

• (x ∈ Y )J := (X ⊆ Y )∧SING(X)

• (x = y)J := (X ⊆ Y )∧SING(X)∧SING(Y )

•
(L(x,y))J := L̂(X ,Y )∧SING(X)∧SING(Y )

= (“For all x ∈ X and for all y ∈ Y,L(x,y)”)∧SING(X)∧SING(Y )

•
(R(x,y))J := R̂(X ,Y )∧SING(X)∧SING(Y ) =

= (“For all x ∈ X and for all y ∈ Y,R(x,y)”)∧SING(X)∧SING(Y )

• (P(x))J := P̂(X)∧SING(X) = (“For all x ∈ X ,P(x)”)∧SING(X)

• (∃xΦ)J := ∃XΦ

• (Φ1∧Φ2)J := ΦJ
1∧ΦJ

2

• (¬Φ)J := ¬ΦJ

Note that⊆ and SING are both shorthand for monadic second order logic statements.
Thus we have a new MS problem σJ . We build a binary finite tree automata to solve
σJ by inductively creating automata to solve subformulas of σJ . We start with the
following tree automata:

19



P̂i(X)
l r Pi X δ

q1 - - - q1
- q1 - - q1
- - 0 1 q1
- - - - q0

A = {q0}

L̂(X ,Y )
l r X Y δ

q0 q0 1 0 q2
q2 q0 0 1 q3
q3 q0 0 0 q3
q0 q3 0 0 q3
q0 q0 0 0 q0
- - - - q1

A = {q3}

SING(X)
l r X δ

q0 q0 0 q0
q0 q0 1 q1
q1 q0 0 q1
q0 q1 0 q1
- - - q2

A = {q1}

X ⊆ Y
l r X Y δ

q1 - - - q1
- q1 - - q1
- - 1 0 q1
- - - - q0

A = {q0}

Σ = {0,1}(p+m) where p is the number of predicates and m is the number of free
variables. s0 is the initial state. In the charts above “-” denotes a wild card. The
automata for R̂(X ,Y ) is constructed in the same way as the automata for L̂(X ,Y ).
Using these rules, we inductively create larger subformulas in the following way:

20



• Let M = (Q,Σ,A,Q0,δ) be the automata recognizing φ. ¬φ is recognized by
M¬ = (Q,Σ,Q\A,Q0,δ)

• Let M1 = (Q1,Σ,A1,Q1,δ1) be the automata recognizing φ1, and
M2 = (Q2,Σ,A2,Q2,δ2) be the automata recognizing φ1. φ1∧φ2 is recognized
by M∧ = (Q1×Q2,Σ,A1×A2,(Q1,Q2),δ∧) where δ∧((sa,sb),(sc,sd),a) :=
(δ1(sa,sb),δ2(sc,sd))

• Let M = (Q,Σ,A,Q0,δ) be the automata recognizing φ. ∃Xφ is recognized by
M :=(2Q,Σ,A∃,Q0,δ∃), where δ∃(Ql,Qr,a) := {δ(ql,qr,b)|b∈Σ,ql ∈Ql,qr ∈
Qr,and b = a for all bits not representing X}, and A∃ := {Q|Q∩A 6= /0}.

Corollary 4.3.2. The MS model checking problem on the set of all trees is decidable
and can be preformed in linear time.

Proof. Let σ be a sentence and let T a be tree. Construct Mσ using 4.3.1, if Mσ

accepts T then T |= σ, otherwise T 6|= σ. Both the construction of Mσ and running
Mσ on T can be done in linear time.

Corollary 4.3.3. The set of finite trees have a decidable MS validity problem.

Proof. Given MS sentence σ an algoritm for determining if σ is true for all trees is
as follows. let Tσ be the set of all trees with property σ and let M be the DFTA that
accepts Tσ. If there exists a run of M which does not accept then σ is not valid; this
can be checked in linear time because of 4.2.1.

Thus, by providing an interpretation from a language to the language of binary trees,
then model checking is decidable and the theory is decidable. Arnborg and Lagregern
proved this for the class of graphs of bounded tree width, as shown in the next chapter.
One final note, Rabin showed that the MS model checking problem and MS validity
problem are decidable for infinite trees using the language of two successor functions.

Let Σ = {0,1} and Σ∗ be the set of all finite words over Σ. The functions r0(x) = x0
and r1(x) = x1 are the successor functions, define the relation x 5 y ≡ ∃z(y = xz)
and the lexicographic total ordering x� y≡ x 5 y∨∃u∃v∃z(x = z0u∧ y = z1v). The
monadic second order theory over the structure 〈Σ∗,r0,r1,5,�〉 is called the second
order theory of two successor functions.

Theorem 4.3.4 (Rabin, 1964). The second order theory of two successor functions
is decidable.

21



Chapter 5

Arnborg, Lagergren, and Seese

Theorem 5.0.5 (Arnborg, Lagergren, Seese [1]). Fix an integer k. The MS model
checking problem for the class of graphs with tree width no more than k is decidable
and can be done in linear time.

The proof is structured as follows: first we define an algorithm for interpreting the
class of graphs with tree width no more than k into the class of labeled binary trees.
We then use the interpretation to find the equivalent MS-property for binary trees. We
then apply the technique of 4.3.1 to determine if the binary tree models the interpreted
sentence.

Theorem 5.0.6. Every class of graphs K with bounded tree width k is linear time
interpretable into a class of binary trees.

Proof. Let G := 〈A,V,E,P1, . . . ,Pp,R〉 ∈ K be a structure representing a graph with
tree width no greater than k. Let A the universe of the structure which contains all
the vertices and edges, let V ⊆ A containing only the vertices, let E ⊆ A containing
only the edges, let each Pi ⊆ A represent a labelling of the vertices and edges, and let
R be the relation R = {〈x,y〉 : “ the edge y has x as a vertex”}. Since G has bounded
tree width, we can find a tree decomposition with width k in linear time by 2.3.2.
Let (T,V ) be that tree decomposition. Construct T ′ by connecting to each t ∈ T
adjacent vertices vt for all v ∈ Vt and et for any edge connecting two vertices in Vt
with the rule that each edge must be represented exactly once. Now we construct
new unary predicates Pv := {av|v ∈V} and Pe := {ae|e ∈ E}. These predicates allow
us to distinguish the new vertices in T ′. Since the width of T is k, each Vt can have
at most k + 1 vertices. Thus there are at most

(k+1
2

)
pairs of vertices in each Vt .

Arbitrarily enumerate the pairs for each vertex set and for 1 ≤ i ≤
(k+1

2

)
define the

unary predicate Ri as follows. Ri is the collection of all a, b, and e where a and b are

22



connected by edge e in G and for some Vt with a,b ∈ Vt (a,b) was enumerated the
value i. For each Pj define P′j to be the set of all at where Pj(a) for the equivalent
a. By creating these new vertices in T ′ we may have created multiple at vertices
that represent the same vertex, so we take this into account when constructing ε.
To construct an ε which recognizes equivalent vertices we need additional unary
predicates. Since we have a tree width k, we can color the graph G using 2k + 2
colors by starting with any Vt and coloring all of its vertices colors C1 . . .Ck+1. Then
color all of the V ′t where (t, t ′) is an edge in T with colors Ck+2 . . .C2k+2 in a manner
that no color is shared by any vertex in Vt ∪V ′t . Repeat this process until the entire
graph is fully colored. We create new unary predicates PCi to represent the vertices
of each color.

We now define α,ε,γP1 , . . . ,γPp , and γR as follows:

• α(x) := “x has degree 1 in T’”

•

ε(x,y) :=(x = y)∨ (Pv(x)∧Pv(y)∧
∨

1≤i≤2k+2

(PCi(x)∧PCi(y)

∧ “there is a path between x and y where all of the internal
nodes are adjacent to a node satisfying PCi”)

• γV (x) := PV (x)

• γE(x) := PE(x)

• γR(x,y) := PV (x)∧PE(y)∧
(∨

1≤i≤k+1(Ri(x)∧Ri(y)
)

• For each Pi, γPi(x) := P′(x)

It is trivial to show that the construction is valid. It is important to note that the
number of unary predicates required to create the interpretation is bounded for all
input graphs since the tree width of the input graph is at most k. Note that T ′ is
still a tree, and if there are nodes with degree 2 in T ′ then each can be removed and
replaced with a single edge and the tree decomposition is still valid. Thus from now
on assume that T ′ has no vertices of degree 2.

We then interpret the tree T ′ into a binary tree. First create a new unary predicate
Pc in such a way that 2-colors the tree T ′. For each node in T ′ of degree d ≥ 3 do
the following: recursively replace each of these nodes with two nodes connected by
an edge, with one node having degree d− 1 and one having degree 3. Give both of

23



the nodes the same Pc value as the original node. For one of the nodes assign all
unary predicates besides Pc false and for the other assign the values exactly as was
assigned to the original node. After this process take one of the vertices with degree
1 and replace it with a node of degree 2 and a node of degree 1 in the same fashion.
Designate this new tree T ′′. All of the unary predicates are exactly the same as before,
all we need to do is define the edge relation in our new language. γa(x,y) := ((Pc(x)∧
Pc(y))∨ (¬Pc(x)∧¬Pc(y))∧ ( “There exists a path between x and y of one color”)).
Finally, we create a hierarchy of the nodes starting at the root and arbitrarily assign
each child node as either left or right. We interpret nodes being adjacent in the
previous tree as the one node being a child of the other.

Now the work for 5.0.5 is complete. Since we have an interpretation from the class
K of trees with tree width no greater than k to the class of binary trees, we can check
if T ∈ K satisfies MS sentence σ by applying the interpretation and then using the
model checking result from 4.3.1. A similar result holds for clique-width:

Theorem 5.0.7. [Courcelle] Fix an integer k. The MS model checking problem for
the class of graphs with clique width at most k can be solved in linear time.

Thus, if we fix k there is an algorithm such that if we are given a graph and its k-
expression we can solve MS1 problems in linear time. For classes of graphs with
bounded clique-width there is also an analogue to 5.0.5:

Theorem 5.0.8 (Courcelle). Let k be a fixed integer and let K be the class of graphs
with clique width no more than k. The MS1 theory of K is decidable.

24



Chapter 6

Seese’s Conjecture

Let L1 and L2 be monadic second order languages. An (L1,L2)-definition scheme is
a tuple of formulas ∆ satisfying the following properties:

• ∆ = (φ,ψ1, . . . ,ψk,(θw)w∈L1∗k)

• k ≥ 1,L1 ∗ k =
((

A, ĵ
)
|A ∈ L2, ĵ ∈ [k]ρ(A)

)
• φ ∈MS(L2,W )

• ψi ∈MS(L2,W ∪{x1}) for all i ∈ [k]

• θ(A, ĵ) ∈MS(L2,W ∪{x1 . . .xρ(A)}) for (A, ĵ) ∈ L1 ∗ k

Let S be a structure of L2 and let η be a mapping from the set of variables W to
elements of the structure S. A structure T ∈ STR(L1) with |T | ⊆ |S|× [k] is defined
in (S,η) (T = def∆(S,η)) if the following properties hold:

• S |=η φ;

• |T |= {(d, i)|d ∈ |S|, i ∈ [k],S |=η ψi[d]};

• For each A ∈ L1 : AT = {((d1, i1), . . . ,(dρ(A)), i(ρ(A)))
∈ |T |ρ(A)|S |=η θ(A,(i1,...,iρ(A)))[d1, . . . ,dρ(A)}.

The transduction defined by ∆ is the binary relation
D∆ := {(S,T )|T = def∆(S,η) for some W -assignment η}. A transduction is an MS
(definable) transduction if it is equal to some D∆ for some (L1,L2)-definition scheme

25



∆. A set of structures is tree-definable if it is the image of a set of trees under an MS
transduction. If a class of graphs is tree definable then it has a decidable MS1 theory.

Similar to an interpretation, these formulas allow us to create a structure of language
L1 from a structure of language L2. In fact a definition scheme is a generalization of
the notion of an interpretation, for any interpretation is also a definition scheme. All
of our previous results about interpretations from Chapter 4 hold for transductions as
well.

Conjecture 6.0.9. Seese’s Conjecture
Let K be a class of graphs. If K has a decidable MS1 theory, then K is tree-definable.

Courcelle, Engelfriet, and Oostrom [7] [11] showed that Seese’s conjecture is equiv-
alent to if K has a decidable MS1 theory, then K has bounded clique width. That is
to say that tree definability implies bounded clique width. If Seese’s Conjecture is
proven true then a MS recognizable class of graphs has decidable MS1 theory if and
only if it has bounded clique width.

A class of graphs K is tree definable if and only if the class of graphs can be repre-
sented by a vertex replacement grammar (written VR for short). Courcelle proved
that every VR set is a subset of the class of graphs with clique width less than k for
some k. Thus a class of graphs being tree-definable implies the class of graphs has
bounded clique width. See [6] for a further explanation of VR sets.

A class of graphs C satisfies Seese’s Conjecture (write SC (C)) if all of its subsets
having decidable MS1 theory are tree definable. Clearly if a class of graphs has
bounded clique width then it trivially satisfies Seese’s Conjecture. Other special
instances of the conjecture have been proven as well.

Theorem 6.0.10 (Seese [19]). Let K be a class of graphs. If for each planar graph
H there exists a planar G ∈ K such that H is a minor of G, then the TH2(K) is
undecidable.

Corollary 6.0.11. The class of planar graphs satisfy Seese’s Conjecture

Proof. Let K be a class of planar graphs. For K to have a decidable MS1 theory, there
must exist a planar graph H that is a forbidden minor of K. Robertson and Seymour
proved that for every planar forbidden minor H, there exists a natural number nH
such that the tree widths of the graphs of K are bounded by nH . Thus K has bounded
tree width and there exists a transduction from them to the class of trees (as shown in
5).

Seese also proved that Seese’s Conjecture holds for classes of graphs with a decidable
MS2 theory. The class Uk of uniformly k-sparse graphs is the class of finite graphs

26



which have the property that every finite subgraph has the number of edges in the
subgraph bounded by k times the number of vertices in the subgraph. Courcelle
proved that any MS2 formula can be translated into an equivalent MS1 formula for
these classes of graphs, thus the class Uk satisfies Seese’s Conjecture.

Let C and D be two classes of graphs. We say D reduces to C with respect to Seese’s
Conjecture if we can prove D satisfies Seese’s Conjecture by assuming C satisfies
Seese’s Conjecture. An MS coding of C onto D is a pair of functional MS transduc-
tions (φ,ψ) with the ψ being the inverse of φ. If there exists an MS coding of D onto
C then D reduces to C. If there exists an MS coding from C onto Uk then C satisfies
Seese’s Conjecture. The concept of reduction only makes sense because the image of
a set of graphs with bounded clique width under an MS transduction have bounded
clique width as well. Several types of graphs have been found to reduce to each other
so that if any one of them satisfies Seese’s Conjecture then all graphs satisfy Seese’s
Conjecture, and thus the conjecture is proven.

Theorem 6.0.12 (Courcelle [9]). The following types of graphs all reduce to each
other with respect to Seese’s Conjecture:

1. Undirected Graphs

2. Bipartite undirected graphs

3. Chordal Graphs

4. Split Graphs

5. Directed Graphs

6. Directed Acyclic Graphs

27



Chapter 7

Examples

7.1 Example of Dynamic Programming Using Tree De-
compositions

In this section we will show how for a given graph G and a tree decomposition 〈V ,T 〉
with width at most k, the weighted independent set problem can be solved in linear
time.

The weighted independent set problem states that:

INPUT: A graph G, a weighting function τ : V (G)→N , and an integer c

QUESTION: Is there a set of pairwise adjacent vertices A ⊆ V (G) such that
∑τ(a)a∈A ≥ c?

To solve this problem, we need to use a special type of tree decompositions. A nice
tree decomposition is a tree decomposition that has one vertex labeled as the root and
each vertex i in T falls into one of the following categories:

• Leaf: i is a leaf in T and |Vi|= 1;

• Join: i has exactly two children, j and k, and Vi = Vj = Vk;

• Introduce: i has exactly one child j and there exists a vertex in G such that
Vi = Vj∪{v};

• Forget: i has exactly one child j and there exists a vertex in G such that Vi =
Vj \{v}.

28



If G has a tree decomposition of width at most k then G has a nice tree decomposition
with width at most k as well, which can be found in linear time given the original tree
decomposition. Thus we assume that 〈V ,T 〉 is a nice tree decomposition.

The algorithm for the weighted independent set problem is as follows [3]: For each
i in T let Di be the set of all of the descendants of i in T and let i itself be in Di. We
construct a graph Gi =

⋃
j∈Di

Vj for each i. For each i in T we also construct a table
Ci of integers with an entry for each S⊆Vi. Since the width of the graph is at most k
we know that each table has at most 2k+1 entries. For each S ⊆ Vi, Ci(S) will be the
maximum weight of an independent set of Gi containing S. In the case that S is not an
independent set itself, Ci(S) = −∞. The Ci tables are computed by starting with the
leaves of T and working upwards. The values for each Ci table are computed from
the children of i in the following manner:

• If i is a leaf node: table Ci will have exactly two entries: { /0} and {i}. Entry
Ci({ /0}) = 0 and entry Ci({i}) = τ(i).

• If i is a join node: let j and k be the children of i. The power sets of Vi, Vj, and
Vk are all equivalent. Thus to compute Ci(S) we need to combine the values of
C j(S) and Ck(S). Since the value of τ(S) will have been added to both tables,
we ensure we do not double count it. Table entry Ci(S) =C j(S)+Ck(S)−τ(S).

• If i is an introduce node: Let v ∈V (G) be the vertex being introduced and let j
be the child of i in T . Exactly half of the entries of Ci will have v in the subset.
For any subset S that does not have v, Ci(S) =C j(S). For each subset S∪{v}, if
there exists an edge between v and any vertex w with w ∈ S, then Ci(S∪{v}) =
−∞. If there does not exist such an edge, Ci(S∪{v}) = C j(S)+ τ(v).

• If i is a forget node: Similarly to an introduce node, let v ∈V (G) be the vertex
being forgotten and let j be the child of i in T . Since we can partition the
subsets of Vj into pairs of S and S∪{v}, let Ci(S) = max{C j(S),C j(S∪{v})}.

Let r be the root of the nice tree decomposition T . Graph G has a weighted inde-
pendent set of size at least c if and only if maxS⊆Vr{Cr(S)} ≥ c. For a nice tree
decomposition with |V |= n, this algorithm takes time O(2kn).

Figure 7.1 shows a graph and a corresponding nice tree decomposition. Figure 7.2
shows the corresponding tables created by the algorithm.

29



Figure 7.1: Graph G and corresponding nice tree decomposition (V ,T ) of G

30



Figure 7.2: Tables generated by running the weighted independent set algorithm on
(V ,T )

31



7.2 Example Interpretation from a Graph of Bounded
Tree Width to a Binary Tree

For this example we show how to interpret a graph with a tree width at most 2 into a
binary tree described in Chapter 5. Let G be the graph with one unary predicate P1 as
seen in Figure 7.3. We are given an MS problem P as well however it is not relevant to
this discussion. Assume G is also given with tree decomposition T as seen in Figure
7.4; clearly twd(G) = 2. T ′ is constructed from T and is shown in Figure 7.5. Im-
mediately we can find the new unary predicates Pv = {a1,b1,c1,b2,d2, f2,b3,d3,e3}
and Pe = {g1,h1, i1, j2, l2,k3}. Since

(k+1
2

)
= 3, we require the unary predicates R1,

R2, and R3. To find these, we enumerate the pairs of vertices in each vertex set as

follows:

- V1 V2 V3
1 {a1,b1} {b2,d2} {b3,d3}
2 {b1,c1} {d2, f2} {d3,e3}
3 {c1,a1} { f2,b2} {e3,b3}

Figure 7.3: Graph G

Thus R1 = {a1,b1,h1,b2,d2, j2}, R2 = {b1,c1, i1,d3,e3,k3}, and
R3 = {c1,a1,g1, f2,b2, l2}. Also we have P′1 = {a1,b1,b2,b3,c1,e3}.
Since 2k+2 = 6 we have six colors with three colors in each of the two color groups
{1,2,3} and {4,5,6}. The graph coloring of G is shown in Figure 7.6, leaving the
following unary predicates:

• PC1 = {a1,e3}

• PC2 = {c1}

32



Figure 7.4: The tree decomposition of graph G

• PC3 = {b1,b2,b3}

• PC4 = {d2,d3}

• PC5 = { f2}

• PC6 = {}

We can now define T ′(α), T ′(ε), T ′(γP1), and T ′(γR) as follows:

• T ′(α) = {a1,b1,b2,b3,c1,d2,d3,e3, f2,g1,h1, i1, j2,k3, l2}

• T ′(ε) = the reflexive and symmetric closure of the following set:
{{b1,b2},{b2,b3},{b3,b1},{b1,b2}}

• T ′(γP1) = P′1 = {a1,b1,b2,b3,c1,e3}

• T ′(γR) = {(x,y)|PV (x)∧PE(y)∧
(∨3

i=1(Ri(x)∧Ri(y))
)
}

Our next step is to interpret T ′ onto T ′′. T ′′ is the rooted binary tree shown in figure
7.7. Our new relations are the following:

• T ′′(α)= {a1
1,b

1
1,b

1
2,b

1
3,c

1
1,d

1
1 ,d1

2 ,e1
3, f 1

2 ,g1
1,h

1
1, i

1
1, j1

2,k
1
3, l

1
1 ,11

1,2
1
1,3

1
1}. These are

all the vertices with superscript 1.

33



Figure 7.5: Tree T ′, constructed from the tree decomposition of G.

• T ′′(ε) = the reflexive and symmetric closure of the following set:
{{11,12},{12,13},{13,14}, . . .}. Any two vertices satisfy the relation if they
are the same or if there is a path between them of exactly one color.

• T ′′(Pi) = {x1|x ∈V (T ′)∧Pi(x)}

• T ′′(adj) = {(x,y)|∃εx,z1∃εy,z2(R(x,y)∨R(y,x)∨L(x,y)∨L(y,x))}

Once we take the MS problem P and convert it to a problem using T ′′(α),T ′′(Pi),
L(x,y), and R(x,y) we can construct the tree automata inductively using the rules de-
scribed in the previous section. Because the conversion process is creates a very long
sentence, for an example of tree automata construction we shall use the following
sentence:

∃x(P1(x))

We assume that there is only one unary predicate P1. While the sentence could not
have been created by using the construction from the original MS problem P, it better
illustrates the process.

The first step is to remove the individual variables by constructing an equivalent
sentence using only set variables. This sentence is

∃X(P̂1(X)∧SING(X)))

34



Figure 7.6: Graph G coloring using 6 colors.

We now inductively create the automata.

The automata for P̂1(X) has Q = q0,q1, Σ = {00,01,10,11}, A = q0, and for δ:
l r P1 X δ

q1 - - - q1
- q1 - - q1
- - 0 1 q1
- - - - q0

The automata for SING(X) has Q = {q0,q1,q2}, Σ = {00,01,10,11}, A = q1, and
for δ:

l r X δ

q0 q0 0 q0
q0 q0 1 q1
q1 q0 0 q1
q0 q1 0 q1
- - - q2

The automata for P̂1(X)∧ SING(X) then has Q = {q00,q01,q02,q10,q11,q12}, Σ =
{00,01,10,11}, A = q01, and some sample transitions in δ are as follows:

35



Figure 7.7: Rooted binary tree T ′′ with labels.

l r P1 X δ

q00 q00 0 0 q00
q00 q01 0 1 q12
q00 q02 0 0 q02
q00 q10 0 1 q11

...
...

...
...

...

The automata for ∃X(P̂1(X)∧SING(X))), the final automata, has

Q = {{q00},{q01},{q02},{q10},{q11},{q12}, . . . ,{q00,q01,q02,q10,q11,q12}}

Σ = {0,1}, representing if the current vertex of the tree is in the set P1

A = {{q01},{q01,q00},{q01,q02}, . . . ,{q00,q01,q02,q10,q11,q12}}

The automata has δ transitions of the form:
l r P1 δ

{q00} {q10,q01} 0 {q01,q10,q11,q12}
{q00} {q02} 1 {q02}
{q00} {} 1 {}

...
...

...
...

36



Chapter 8

Concluding Remarks and Open
Problems

We have seen throughout this paper the expressive power of tree decompositions and
k-expressions. By using interpretations and transductions to map a class of structures
K1 of language L1 into a class of structures K2 of language L2, we find that many
of the properties of K2 hold of K1, and tree decompositions and k-expressions both
provide the basis for mapping functions. One field of research is to rather than using
classes of graphs with bounded tree width or clique-width, find a different measure
and use it to make a transduction into a class of structures that are more conve-
nient. Other measures currently exist, such as branch width and rank width, which
are used on matroids and directed graphs respectively. Although if Seese’s conjecture
is proven, then we would know that any class of graphs with decidable MS1 theory
has bounded clique width. Thus, bounding other graph measures and proving that
classes of graphs with that bounded measure have decidable MS1 theory would not
be necessary since those classes of graphs would also have bounded clique width. Of
course, if an interpretation from the class of all graphs into a class of graphs with de-
cidable MS theory could be found, then P=NP would be proven since the dominating
set problem is NP-complete and can be written as a MS sentence.

37



Bibliography

[1] S. Arnborg, J. Lagergren, D. Seese, Easy Problems for Tree-Decomposable
Graphs, in Journal of Algorithms 12, 308-340, 1991.

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding em-
beddings in a k-tree, in SIAM J. Algebra Discrete Methods 8 (1987), 277-284.

[3] H. Bodlaender and A. Koster. Combinatorial Optimization on Graphs of
Bounded Treewidth, in Computer Journal (to appear).

[4] H. Bodlaender. A linear time algorithm for finding tree-decompositions of
small treewidth, in SIAM Journal on Computing, 25:1305-1317, 1996.

[5] S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Millenium
Edition. http://www.math.uwaterloo.ca/ snburris/htdocs/ualg.html

[6] B. Courcelle, Structural Properties of Context-Free Sets of Graphs Generated
by Vertex Replacement, in Information and Computation 116 (1995), 275-
293.

[7] B. Courcelle, J. Engelfriet, A logical characterization of the sets of hyper-
graphs defined by hyperedge replacement grammars, Mathematical Systems
Theory 28 (1995) 515552.

[8] B. Courcelle, and S. Olariu. Upper Bounds to the Clique-Width of Graphs, in
Discrete Applied Mathematics 101 (2000): 77-114.

[9] B. Courcelle, and S. Oum. Vertex-minors, monadic second-order logic, and
a conjecture by Seese, in Journal of Combinatorial Theory Series 97-1: 91-
126, 2007.

[10] R. Diestel. Graph Theory. 3rd. Springer, 2006.

[11] J. Engelfriet, V. van Oostrom, Logical description of context-free graph-
languages, Journal Computing System Sciences 55 (1997) 489503.

38



[12] M. Fellows and F. Rosamond. Proving NP-Hardness for Clique-Width I:
Non-Approximability of Sequential Clique-Width, in Electronic Colloquium
on Computational Complexity. 80 (2005).

[13] M. Fellows and F. Rosamond. Proving NP-Hardness for Clique-Width II:
Non-Approximability of Clique-Width, in Electronic Colloquium on Com-
putational Complexity, 81 (2005).

[14] P. Hlineny, S. Oum, D Seese, and G. Gottlob. Width Parameters Beyond Tree-
Width and Their Applications, in Computer Journal (to appear).

[15] N. Immerman. Descriptive Complexity. New York: Springer-Verlag, 1998.

[16] D. Kozen. Automata and Computability. 3rd Edition, New York: Springer,
1997.

[17] M. Rabin. Decidability of second-order theories and automata on infinite
trees. Bulletin of the American Mathematical Society, 74-5:1025-1029, 1968.

[18] S. Oum and P. Seymour. Approximating clique-width and branch-width, in
Journal of Combinatorial Theory Series B, 96-4: 514-528, 2006

[19] D. Seese. The structure of the models of decidable monadic theories of
graphs, in Annals of Pure and Applied Logic, 53 169-195, (1991).

[20] J.A. Telle and A. Proskurowski. Algorithms for Vertex Partitioning Problems
on Partial k-Trees, in SIAM Journal on Discrete Mathematics 10 (1997): 529-
550

[21] J.W. Thatcher and J.B. Wright. Generalized finite automata theory with an
application to a decidion problem of second-order arithmetic. Mathematical
Systems Theory, 2:57-81,1968.

39


