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ABSTRACT 
 

We analyze mortality data from prostate, colon, lung, and all other types (called other 

cancer) to obtain age specific and age adjusted mortality rates for white males in the U.S.  

A related problem is to estimate the relative occurrences of these four types of cancer.  

 

In the recent Atlas of the Unite States Mortality (1996) each type of cancer was 

analyzed individually. The difficulty in doing so is that there are many small areas with 

zero deaths.  We conjecture that simultaneous analyses might help to overcome this 

problem, and at the same time to estimate the relative occurrences. 

 

We start with a Poisson model for the deaths, which produces a likelihood function 

that separates into two parts: a Poisson likelihood for the rates and a multinomial 

likelihood for the relative occurrences. These permit the use of a standard Poisson 

regression model on age as in Nandram, Sedransk and Pickle (1999), and the novelty is a 

multivariate logic model on the relative occurrences in which per capita income, the 

percent of people below poverty level, education (percent of people with four years of 

college) and two criteria pollutants, EPAPM25 and EPASO2, are used as covariates.  

 

We fitted the models using Markov chain Monte Carlo methods. We used one of the 

models to present maps of occurrences and rates for the four types. An alternative model 

did not work well because it provides the same pattern by age and disease.  

 

We found that while EPAPM25 has a negative effect on the occurrences, EPASO2 

has a positive effect. Also, we found some interesting patterns associated with the 

geographical variations of mortality rates and the relative occurrences of the four cancer 

types. 
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Chapter 1

Introduction

1.1 Background

Mapping of mortality rates is a valuable public health tool. The primary objectives

in modeling mortality data for an atlas are to detect patterns in the mortality rates

and to identify outliers from these patterns (i.e., interesting “hot-spots”). Here, we

focus on cancer mortality analyses.

The 1996 Atlas (Pickle et al.) presents maps of 18 leading causes of death by sex,

age, and race in the United States for the period 1988-92. This is the first publication

of maps of all leading causes of death in the United States on a small-area scale. In

this Atlas, information previously available only in tabular form or summarized on

single map is presented on multiple maps and graphs. Broad geographic patterns

by age class are highlighted by application of new smoothing algorithm, and the

geographic unit for mapping is defined on the basis of patterns of health care. These

new features allow public health researchers to examine the data at several different

levels, to discern clusters of similar rate areas, to visualize broad geographic patterns,

and to compare regional rate. With these additional tools, important geographic

patterns of cause-specific mortality can be more easily identified.

The age specific numbers of deaths were modeled for each combination of race,

sex, cause and place using mixed effects generalized linear models. Briefly, logarithm
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of the age specific rates were modeled as a function of age, allowing each HSA to have

a random slope within its particular region. Predicted age specific rates for each HSA

were smoothed using a weighted head banging algorithm, with weights equal to the

inverse of the rates of estimated standard errors.

Recently, there has been increased interest in inference about mortality rates for

small geographical areas. Nandram et al. (1999) compared alternative models for es-

timating age specific and age adjusted mortality rates for all cancer for white males.

They used Bayesian methods with four hierarchical models. The alternative specifi-

cations differ in their assumptions about the variation in log(λij) over health service

areas and age classes. See also Nandram et al. (1999a) for methods used on chronic

obstructive pulmonary disease. Gideon (1999) studied Bayesian methods on Poisson

regression models based on the first model suggested by Nandram et al. (1999) for

breast cancer mortality data. Both non spatial and spatial analyzes were investigated,

by Gideon (1999).

1.1.1 Source of Data

The death counts and number at risk for this project were obtained from records

of all United States death certificates in the fifty states and District of Columbia for

1988-92 and population data for 1990. The number of deaths by age, sex, place of

residence, and cause of death is based on original death certificates reported to the

National Center for Health Statistics (NCHS) by the States. Death certificates with

age not stated were excluded, 0.025 percent of the total. Race was classified following

standard procedures for United States statistics. Hispanics with no racial designation

are included in the “White” category.

The population counts from the 1990 census, classified by age, race, sex, and

county, were multiplied by five to create a denominator corresponding to the five

years of mortality data. In few instances where the calculated number of person
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years was less than the reported number of deaths, as when death occurred in a

sparsely populated county before census enumeration, the years at risk were inflated

to equal the total number of deaths due to any cause. The age classes are classified

as 0-4 years, 5-14 years, 15-24 years, . . . , 75-84 years, and 85 years and older, coded

as decades 0-.25, 1, 2, 3,. . . , 9 (Pickle at al., 1996). Further details on the method

of data collection may be found in the Technical Appendix of Vital Statistics of the

United States, 1990.

The quality of the data is determined by the accuracy and completeness of the

information from medical diagnosis to final coding and processing of the underlying

cause of death. Beginning with mortality data for 1968, the underlying cause of death

has been determined by NCHS computerized system that consistently applies the

World Health Organization coding and selection rule to each death certificate using

all conditions reported by certifier. Automation of these tasks and cross verification

of medical conditions coding have reduced errors in assigning underlying cause of

death certificate information to less than one percent. However, the completeness

and accuracy of the information supplied on the certificate and the decedent’s medical

diagnosis remain a potential source of error.

Deaths were initially assigned to a county (or equivalent administrative unit, such

as independent city or parish) according to the residence of the deceased, regardless

of the place of death. There were in all 3141 geographical units, which were further

aggregated into Health Service Areas (Pickle et al., 1996) by a cluster analysis of

where residents aged 65 and over obtained routine short-term hospital care in 1988.

An HSA may be thought of as an area that is relatively self-contained with respect to

hospital care. The median number of counties per HSA is about 2 with range 1 to 20.

The median number of HSAs per state is 16 with range of 1 to 58. With exception

of New York City the area of each HSA is at least 250 square miles.

4



This project examines the geographic effects of regions as well as HSA. For this

project there are twelve regions and 798 HSA, three of the nine census divisions were

split to make a total of twelve regions to achieve greater homogeneity of rates (Pickle

et al. 1996).

We focus our analyzes on mortality data from all cancer for white males. Cancer

diseases are categorized as colon cancer, lung cancer, prostate cancer and a fourth

type which we call other cancer. This fourth type includes skin, esophagus, stomach,

liver, uterine cervix, multiple myeloma, lymphomas, leukemias, ovary, brain, testis,

mouth, pancreas, kidney, bladder, thyroid, larynx etc.

For each type of cancer we focus on, the death rates rise steadily with age. Lung

cancer has been the leading cause of cancer death in men since the 1950’s and prostate

cancer is primarily a disease of older men, with over 80 percent of all diagnoses

occurring over age 65.

For inference on the proportional distribution of cancer types, we used the covari-

ates income, poverty, education, and two other covariates.

The two other covariates are epapm25 and epaso2 and are called criteria pollu-

tants. The covariate epapm25 refers to dust, dirt, smoke and other particles sus-

pended in air. The national standard air quality includes up to 10 microns in diam-

eter. Epapm25 includes all the particulate matters up to 2.5 microns in diameter.

The particulate matters were identified as serious airbone threats to human health.

The covariate epaso2 accounts for sulphur dioxide (S02) which is closely tied to the

burning of coal with a high sulphur content. It can form acid rain and has indirect

health effects through contamination of surface water. Sulphur dioxide levels and

particles matterns are higher in the Eastern United States.
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1.2 Preliminary Analyzes of the Observed Data

In this project we focus on all cancer data categorized as colon, lung, prostate and

other for white males. In this section, we perform preliminary analyzes on these data.

1.2.1 Methodology for Preliminary Analyzes

Let dijk and nij denote, respectively, the number of deaths and population at risk

(number of persons years) for age class j and disease k in HSA i (i = 1, . . . , 798; j =

1, . . . , 10, k = 1, . . . , 4). The age classes are 0− 4, 5 − 14, . . . , 75 − 84, 85 and up,

coded as 0.25, 1, . . . , 9, the midpoints of the decade intervals (decade 1 = .25, decade

j = j − 1, for j = 2, . . . , 10).

Our model assumes that the number of deaths, dijk

dijk|nij, λij, pijk
ind
∼ Poisson(nijλijpijk), (1.1)

where λij is the age specific mortality rate over all diseases, j = 1, . . . , 10 , k =

1, . . . , 4 ,
∑4

k=1 pijk = 1, i = 1, . . . , 798. Here pijk is the proportion of individuals at

age j who got cancer type k in HSA i.

All the models that we consider assume (1.1).

Inference is desired for

a) the age specific mortality rate λijk = λij pijk and,

b) the age adjusted rate Rik =
∑10

j=1 aj λij pijk where aj are weights proportional to

the U.S. population in 1940 (used in the atlas construction).

Let d, n, λ and p be the vector of the dijk, nij, λij and pijk respectively. The joint
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density of d is

f(d|n, λ, p) =
798∏
i=1

10∏
j=1

4∏
k=1

(nijλijpijk)dijke−nijλijpijk

dijk!
,

k∑
k=1

pijk = 1

=
798∏
i=1

10∏
j=1

{∏4
k=1(nijλijpijk)

dijke−nijλij∏4
k=1 dijk!

}
(1.2)

=
798∏
i=1

10∏
j=1

{
dij.!

∏4
k=1 p

dijk
ijk∏4

k=1 dijk!

}{
(nijλij)dij.e−nijλij

dij.!

}
(1.3)

=

{ 798∏
i=1

10∏
j=1

p(dij |pij, dij.)

} { 798∏
i=1

10∏
j=1

p(dij|λij)

}
.

We note that the likelihood function can be viewed is a product of a function of the

pijk and a function of the λij . Therefore, inference on the pijk and the λij can be

made separately. The first is a Poisson likelihood and the second is a multinomial

likelihood.

By taking the log on both parts of equation (1.2), we get

log
(
f(d|n, λ, p)

)
∝

798∑
i=1

10∑
j=1

{ 4∑
k=1

dijk log (nijλijpijk)− nijλij

}

∝
798∑
i=1

10∑
j=1

4∑
k=1

dijk log (pijk) +
798∑
i=1

10∑
j=1

{
(
4∑

k=1

dijk) log (nijλij)− nijλij

}
.

It follows that the maximum likelihood estimator of λij is

λ̂ij =
dij.

nij
. (1.4)

and maximum likelihood estimator of pijk

p̂ijk =
dijk

dij.
. (1.5)

Then, the maximum likelihood estimator of the age specific mortality rate λijk is

λ̂ijk = λ̂ij p̂ijk, (1.6)

the age adjusted rate Ri is R̂i =
∑10

j=1 aj λ̂ij p̂ijk where aj are weights proportional

to the U.S. population in 1940 (used in the atlas construction).

We will call p̂ijk, λ̂ij and R̂i the observed values of pijk, λij and Ri respectivley.
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1.2.2 Mapping the Observed Rates

Table 1.1 contains the number HSA with zero observed deaths by age-class and dis-

ease. A very large Number of HSAs contains no observed death for age classes smaller

than 4. That is the data are very sparse.

Age Class Prostate Colon Lung Others

1 796 797 788 397

2 795 792 791 255

3 790 717 757 184

4 786 496 536 97

5 722 265 149 39

6 387 118 23 18

7 77 35 3 1

8 8 8 0 0

9 4 9 2 0

10 13 36 22 11

Table 1.1: Number of HSAs with Zero Observed Deaths

Age Class Prostate Colon Lung Others

1 776 469 520 47

2 722 265 149 39

3 387 118 23 18

4 77 35 3 1

5 8 8 0 0

6 4 9 2 0

7 13 36 22 11

Table 1.2: Number of HSAs with Zero Observed Deaths After Combining the First 4
Age Classes

Because of the sparseness of the data (Table 1.1), it is difficult to map age classes

1, 2, 3 and 4. We combined the first four age classes to form one so only 7 age classes

remain as shown in Tables 1.2 and 1.3. This table contains also the standard million

population used for age adjustment, proportional to total U.S. population in 1940.
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We can see in the table that there are still many HSAs with 0 observed deaths for

age class 1 and 2.

Age Class Age (years) Standard Population

1 0-34 594,159

2 35-44 139,237

3 45-54 117,811

4 55-64 80,294

5 65-74 48,426

6 75-84 17,303

7 85 and older 2,770

Table 1.3: Age Classes and Standard Population Used for Age Adjustment Taken
from Pickle et al. (1996)

Region 1 2 3 4 5 6 7 8 9 10 11 12
# HSA 23 49 38 88 88 121 45 105 115 40 38 48

Table 1.4: Number of HSAs by Region

Table 1.4 contains the number of HSAs per region. This is a table of 798 HSAs

over the continental U.S.

Since the data for the first 4 age classes are too sparse across age class for prostate

and colon cancer, we defined the death rate of the first age class by the weighted

average {
λ∗i1 =

∑4
j=1 aj∗λij
∑4
j=1 aj

λ∗ij = λi(j+3) for j = 2, . . . , 7

Then, the age adjusted death rates were computed using the weights{
a∗1 =

∑4
j=1 aj

a∗j = a(j+3) for j = 2, . . . , 7.

In Tables 1.5 and 1.6 we present the mean, standard deviation and median of the

observed death rates over HSAs. The means for age class 1 are essentially zero and
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they increase across age classes for each disease.

All Cancer Prostate Colon Lung
Age Class Mean Std Mean Std Mean Std Mean Std

1 6.6721 3.6171 0.0041 0.0400 0.2770 0.5738 0.2046 0.4737

2 36.487 15.335 0.1403 0.7101 3.5473 4.8244 7.7909 7.2059

3 154.52 43.986 2.3117 5.3532 14.689 12.313 59.662 27.873

4 504.25 99.938 22.969 14.994 46.763 22.326 216.91 71.176

5 1091.1 169.04 108.92 35.244 108.54 37.292 438.72 119.71

6 1855.6 249.46 331.19 90.699 211.30 73.614 577.32 154.11

7 2666.5 550.65 719.81 269.48 368.29 176.94 500.28 241.34

8 (Age adjusted) 160.02 20.645 15.138 2.9028 16.076 3.8540 58.272 14.948

Table 1.5: Mean and Standard Deviation per 100,000 population for the Observed
Death Rates (λijk) over HSAs

Age Class All Cancer Prostate Colon Lung

1 6.1852 0.0000 0.0000 0.0000

2 35.250 0.0000 2.7761 7.0054

3 153.98 1.0040 13.461 57.571

4 507.02 21.910 46.879 214.22

5 1104.8 107.45 105.76 433.53

6 1869.5 328.78 209.78 580.22

7 2663.7 709.44 359.00 487.41

8 (Age adjusted) 161.82 15.034 15.860 58.037

Table 1.6: Median per 100,000 population for the Observed Death Rates (λijk) over
HSAs

Tables 1.7, 1.8, 1.9 and 1.10 present the means of the observed proportions of

death pijk over HSAs by region and age class for each disease. The observed rates for

prostate cancer do not vary much among the regions while they increase across age

class except for region 1 and age class 1. This is due to the fact that there is little

spatial clustering for prostate cancer.
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Region 1 2 3 4 5 6 7

1 4.546 2.257 17.842 47.509 99.879 170.449 255.581

2 1.940 2.986 14.382 45.995 99.632 168.111 254.321

3 1.766 2.916 14.076 45.610 99.277 167.862 254.839

4 2.002 2.959 13.368 45.692 98.604 170.708 257.846

5 1.728 3.290 13.300 44.193 96.953 169.023 257.579

6 1.837 3.181 13.680 44.175 97.052 170.427 258.583

7 1.851 3.074 13.801 44.495 97.977 172.038 260.633

8 1.721 3.015 14.127 44.523 97.861 172.394 261.137

9 1.541 2.921 13.808 44.136 97.222 171.334 259.702

10 1.513 3.054 13.948 44.568 97.939 172.608 261.758

11 1.495 3.025 14.020 44.682 98.196 173.039 262.473

12 1.363 3.179 14.166 45.544 99.543 174.791 263.866

Table 1.7: Mean (10−3) for the Observed pijk for Prostate Cancer by Region and Age
Class

Region 1 2 3 4 5 6 7

1 38.182 82.957 91.359 102.574 122.905 134.179 151.832

2 39.525 81.723 93.953 110.361 125.177 137.503 153.308

3 40.228 83.671 95.420 107.217 120.841 133.336 149.101

4 41.035 85.538 92.407 101.107 113.425 125.835 143.655

5 42.083 88.517 90.295 97.402 109.149 123.200 142.247

6 40.402 88.743 93.055 98.829 109.744 123.815 145.022

7 40.222 89.095 93.345 99.249 109.783 123.719 144.790

8 40.038 88.328 93.767 99.185 109.541 123.685 144.661

9 39.928 88.575 92.922 97.531 106.780 121.312 142.594

10 39.392 88.950 92.687 97.735 106.465 120.621 141.924

11 39.185 88.883 92.742 97.764 106.336 120.595 141.761

12 37.754 87.482 91.651 97.192 105.828 119.485 139.642

Table 1.8: Mean (10−3) for the Observed pijk for Colon Cancer by Region and Age
Class
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Region 1 2 3 4 5 6 7

1 39.091 203.160 343.293 385.306 342.889 288.376 179.164

2 36.615 200.691 348.815 383.950 349.294 284.484 182.140

3 37.284 203.854 356.174 393.707 358.930 290.799 183.819

4 39.748 213.306 374.410 411.430 375.226 300.825 191.101

5 39.368 219.647 383.533 423.151 387.028 307.613 192.510

6 38.828 215.159 375.936 421.382 386.156 304.683 190.719

7 38.287 214.109 373.982 419.355 384.439 302.588 188.500

8 37.613 214.741 373.785 419.727 386.249 303.508 188.482

9 36.578 214.899 374.813 422.927 390.367 307.269 190.625

10 35.926 211.417 371.709 420.396 388.985 305.784 189.657

11 35.697 210.597 371.142 419.938 388.486 305.410 189.148

12 33.559 204.696 366.529 415.858 384.794 303.653 189.752

Table 1.9: Mean (10−3) for the Observed pijk for Lung Cancer by Region and Age
Class

Region 1 2 3 4 5 6 7

1 918.182 711.625 547.507 464.612 434.327 406.996 413.423

2 921.921 714.600 542.851 459.694 425.897 409.902 410.231

3 920.722 709.559 534.331 453.465 420.953 408.002 412.241

4 917.215 698.198 519.815 441.772 412.746 402.632 407.399

5 916.821 688.547 512.873 435.254 406.870 400.165 407.665

6 918.933 692.917 517.329 435.614 407.048 401.076 405.676

7 919.640 693.722 518.873 436.901 407.801 401.655 406.077

8 920.629 693.916 518.322 436.565 406.349 400.412 405.719

9 921.954 693.605 518.456 435.406 405.632 400.086 407.079

10 923.169 696.578 521.656 437.302 406.611 400.987 406.660

11 923.623 697.494 522.095 437.617 406.981 400.956 406.618

12 927.324 704.643 527.655 441.406 409.835 402.071 406.741

Table 1.10: Mean (10−3) for the Observed pijk for Other Cancer by Region and Age
Class

Figure 1.1 presents the age specific mortality rates for prostate, colon, lung and

other cancer. The death rates for prostate, colon and lung cancer are essentially zero

until age class 5 where they begin to increase steadily with age class. The observed

rates for lung cancer, which is the leading cause of cancer death in men, increase

quickly from age class 5 to 9 where it drops. Prostate cancer being primarily a dis-
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ease of older men with over 80 percent of all diagnoses occurring over age 65, is nearly 

zero until age class 5 an then increases steadily to be more frequent than lung cancer  

for age classes 9 an 10.  The death rates for colon cancer increase slowly compare to 

prostate and lung cancers after age class 4. 

 
Figure 1.1: Observed Death Rates for the four types of Cancer 

 

 
 
 
 



In Figures 1.2 and 1.3 we present the maps for the observed mortality rates. The

maximum likelihood estimates provide no smoothing. Apparently, there are no pat-

terns for prostate and colon cancer for age specific rates 40 and 70. However higher

adjusted rates are clustered in Mountain North and West North Central North for

prostate cancer, and in the North East (age 70) and East North Central for colon

cancer. For lung and all cancer, higher age specific and age adjusted mortality rates

are clustered around the Appalachian region (Mississippi to West Virginia).

Lung cancer has been the leading cause of cancer death among men since the

1950’s. Prostate cancer is primarily a disease of older men, with over 80 percent of

all diagnoses occurring over age 65.
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Fig. 1.2: Maps of the Observed Death Rates by Type of Cancer
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Fig. 1.3: Maps of the Observed Death Rates by Type of Cancer
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Figure 1.4 contains the box plots of the observed proportions of death by disease

(pijk). For prostate cancer the proportion of death increase steadily with age classes

from around 0% to 26 %. Colon cancer seems to be low for all age classes, the pro-

portion of deaths increases slowly from 5% to 12%. The proportion of deaths for lung

cancer increases steadily until age 60 from 0% to 43% and then decreases to 19% at

age 85 and older. As expected, other cancer is the leading cause of death before age

30 with a proportion of about 95% and it is decreasing steadily across age class to

a proportion of about 42%. Lung cancer appears to be a disease of the middle age.

Other cancers affect mostly young people.
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Figure 1.4: Box Plots of the Observe Proportions of Deaths by types of Cancer
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Fig 1.6: Maps of the Observed Proportions of Deaths (10-2)
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In Figures 1.5 and 1.6 we present the maps for the relative occurrences. The high

proportions of deaths by prostate cancer seem to be more frequent in the West side

of the country while they are clustered in the East North for colon cancer. For lung

cancer, higher proportions of deaths are clustered around the Appalachian region

(Mississippi to West Virginia).

1.3 Model for the λij

We use the fourth model suggested by Nandram et al. (1999) for the analysis of the

mortality rates from all cancer.

We assume that dij |nij, λij
ind
∼ Poisson(nijλij). We fit a hierarchical model with

a single regression coefficient. The basis model for the analysis is as follows

logλij = x
′

j β + νi + δj (1.7)

where x
′

j =
(
1, decadej, (decadej)2, (decadej)3,max{0, (decadej−knot)3}

)
with decade1 =

0.25 , decadej = j − 1 and for j = 2, . . . , 10.

It is assumed that νi|σ21
iid
∼ N

(
0, σ21

)
, δj|σ22

iid
∼ N

(
0, σ22

)
and the value of the knot

that maximizes the likelihood of U.S. marginal data is 6 for “all cancer”.

Here, p(β) = 1 and σ−21 , σ−22 ∼ Γ(a
2
, b
2
) where a = b = 0.002 to obtain a proper

diffuse prior.

Nandram et al. (1999) showed how to fit this model for all cancer. They found

that the linear structure (1.7) provided a substantially improved fit over a model in

which σ22 = 0. Note that logλij = x
′

j β will smooth the observed data too much.

Therefore, the smoothing is adjusted by adding two heterogeneous terms : νi and

δj. Note only the modest ten parameters δj are added. We describe the Metropolis-

Hastings algorithm in Appendix A.
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The computations were done by region. They ran 21000 iterates, “burning in”

1000 and choosing every 20th to obtain 1000 iterates which we used for output anal-

yses. We will call this model the NSP model.

1.4 Thesis Overview

In the current chapter, we started with descriptive and exploratory data analysis,

and we discussed the source of the data, data summary and pictorial representation

of the data using box plots and line plots. The maps of the observed age specific

and age adjusted death rates were also drawn. We observe that the data are very

sparse across age classes, especially for prostate and colon cancer. A problem of weak

identifiability across age class arose and was resolved by amalgamating the age classes.

In the present study we will perform Bayesian analyses of cancer mortality data

by type of cancer for white males. We focus on analyzing the relative occurrences of

each cancer type. Ultimately, we wish to determine patterns in the mortality data

and identify outliers from these patterns (i.e., interesting “hot-spots“). We investi-

gate Poisson regression model first on 2 approximate models and then on an exact

one. We construct maps for both age specific and age adjusted mortality rates.

Since inference can be made separately on the mortality rates and the proportions

of death by type of cancer, two models have to be fitted at a time. The model sug-

gested by Nandram, Sedransk and Pickle (1999) reviewed in Section 1.3, henceforth

the NSP model, is used to model the mortality rates (see Section 1.3). The objective

in this project remains to investigate models for the proportions of death by disease.

In Chapter 2, we will fit two different approximate models to the data. Maps will
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be constructed with the parameter estimates for age specific and age adjusted rates.

We also construct box plots for the proportions of deaths by cancer types.

In Chapter 3, we apply the model first used to model the mortality rates by type

of cancer. This model is not much affected by the sparseness of the data and we do

not need to amalgamate the age classes. We then deduce the proportions of death by

disease and fit a more elaborate model which serves as an alternative and improved

model to the first approximated one presented in Chapter 2. Maps for mortality rates

and proportions of death by type of cancer are obtained.

Finally, we present our conclusions, both methodological and substantive. We

also present an exact model that we would have preferred to fit, but for which we

experienced much difficulty with the Markov Chain Monte Carlo implementation.
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Chapter 2

Approximate Models

In this chapter we describe and fit two different approximate models to the data be-

cause the data are very sparse (many HSAs have zero deaths) especially in the first

4 age classes, we amalgamated them as follows: age classes 1,2,3,4 as group 1, 5 as

group 2, 6 as group 3, . . . , 10 as group 7.

No new model for the λij is discussed. We simply use the NSP model.

The two models for the pijk differ in the effects being included in this model. The

second approximate model serves as an alternative and improved model to the first

one. This second model does not account for age class and disease distinctively, only

the interaction between age and disease remains. We also remove the intercept from

the covariates for computational stability.

2.1 First Approximate Model for the pijk’s

2.1.1 Model Description

First, we assume the multinomial logit

log

(
pijk

pij4

)
= Z

′

iα+ γj + ηk + δjk.

We use the corner point restrictions which are η3 = 0, γ1 = 0, δ1k = 0, for k = 1, 2, 3

(prostate, colon and lung respectively), k=4 corresponds to other cancer, δj3 =
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0, for j = 2, . . . , 7.

Then we take

log

(
p̂ijk

p̂ij4

)
= Z

′

iα+ γj + ηk + δjk + eijk, i = 1, . . . , 798, j = 1, . . . , 7, k = 1, 2, 3

(2.1)

where eij =

 eij1
eij2
eij3

 ind
∼ N

(
0, σ2wij

3∗3

)
and Zi is the matrix containing the 5 predictor

variables such as income, poverty, college, epapm25 and epaso2. The variable income,

epapm25 and epaso2 were divided by 10, 000 for computational stability. The p̂ijk are

the MLEs with an adjustment for zeros.

In order to compute log

(
pijk
pij4

)
pijk=p̂ijk

= log

(
dijk
dij4

)
, i = 1, 2, 3, we used the new

definition d∗ijk of dijk

d∗ijk =

{
10−6 if dijk = 0,
dijk otherwise.

Moreover, for small dijk, Pickle et al. (1996) have shown that one will obtain

better estimates of the λij and the pijk using more stable quantities obtained which

can be obtained computing the averages by regions for small dijk’s such as

d∗∗ijk =

{ ∑
i∈R

∑10
j=1 dijk∑

i∈R

∑10
j=1

∑
k dijk

∑
i∈R

∑
k dijk

nr
if dijk < 3,

dijk if dijk ≥ 3,

where R = region and nr = number of HSAs in the region R.

The last substitution is motivated by

∑
i∈R

∑10
j=1 dijk

∑
i∈R

∑10
j=1

∑
k dijk

≈ dijk∑
k dijk

and
∑
i∈R

∑
k dijk

nr
≈
∑

k dijk .

First we obtain the least square estimates of α, γ, η, δ. Let β ′ =
(
α′, γ′, η′, δ′

)
,

then we have

β̂ =
(
X
′
W−1X

)−1
X
′
W−1Y,
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Ĉov
(
β̂
)
=
(
X
′
W−1X

)−1
σ̂2,

σ̂2 =
(
Y −Xβ̂

)′(
Y −Xβ̂

)/
(21× n− 26).

The following identity simplifies the computations

X
′
W−1X =

n∑
i=1

X
′

iW
−1
i Xi and X

′
W−1Y =

n∑
i=1

X
′

iW
−1
i Yi .

Then we approximate the distribution of these parameters by a normal distribu-

tion

β̂ ∼ N26

(
β,

̂
Cov

(
β̂
))

.

Now pretending as though β has a uniform non informative prior, we have

β|data ∼ N26

(
β,

̂
Cov

(
β̂
))

. (2.2)

It is straight forward to obtain a sample of 1000 random deviates from (2.2). By

substituting these into (2.1) we obtain an approximation to the distribution of {pijk},

see Appendix A. However, this is a rough way to smooth the MLEs of the pijk.

2.1.2 Estimates and Maps

In order to draw the maps, 1000 of pijk and λij were drawn from the starts ob-

tained from the previous models as explained in the previous sections. One sample

of 1000 death rates λijk = λij pijk and adjusted death rates Rik =
∑10

j=1 aj λij pijk

were deduced. We summarize the results by maps using only the means and standard

deviations of the sample. Each age class and disease were considered separately for

mapping across the U.S.

In Table 2.1 we present E(.|d) and SD(.|d) for the age specific and age adjusted (age
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All Cancer Prostate Colon Lung
Age Class Mean Std Mean Std Mean Std Mean Std

1 6.083 1.162 .0000 .0000 .5561 .1088 .2023 .0401

2 37.45 5.104 .0002 .0000 5.848 .8455 8.325 1.222

3 152.9 20.65 3.941 .5549 21.93 3.093 55.88 7.981

4 512.5 62.14 28.74 3.600 120.6 14.90 183.6 23.34

5 1070 149.7 115.8 16.66 241.2 34.34 358.5 52.37

6 1887 188.1 324.5 32.82 430.4 43.24 507.1 52.15

7 2724 263.6 657.3 63.80 650.6 62.94 480.1 47.33

8 160.0 17.46 15.82 1.656 34.34 3.806 50.06 5.916

Table 2.1: Mean and Standard Deviation per 100,000 population of the Death Rates
(λijk) over HSAs

class 8) rates averaged over HSAs. They look similar to the observed rates except

for colon cancer for which the estimated rates are almost two times larger than the

observed ones after age class 2, and for prostate cancer for which the rates are overes-

timated until age class 5. Based on the model, the estimated age mortality rates for

age class 1 are still approximately zero. We observe that the values of the estimates

increase across age class.

Table 2.2 presents the means over the 1000 simulations of the parameter estimates.

The estimates follow the patterns observed in the mortality data. The estimates

accounting for prostate and colon cancer are mostly negative except for prostate

cancer at age class 7 (85 and older) since lung cancer is the leading cause of cancer

death and the disease for which the fixed effect on disease η3 = 0. The parameter

estimates accounting for age class and disease are significant. The proportion of

deaths by prostate cancer increases. For colon cancer, they increase until age class

4 (age 60) and then drop. For lung cancer, they increase with age class and drop

after age class 7 (85 and older) as in the observed data. Concerning the covariates,

we observe that the most significant are the intercept, epapm25 and income. The 4

remaining covariates do not seem to explain a lot of the variation. We also can notice

27



Covariates Mean Std Ratio
Intercept -3.049 0.2361 -12.9
% Income -.1377 0.0291 -4.73
% Poverty -.0082 0.0042 -1.95
% College -.0027 0.0031 -0.87
Epapm25 -6.623 1.4569 -4.55
Epaso2 0.9549 0.3745 2.55
γ2 2.2881 0.2363 9.68
γ3 3.0728 0.2308 13.31
γ4 3.3400 0.2284 14.58
γ5 3.3273 0.2289 14.53
γ6 3.1083 0.2295 13.53
γ7 2.6501 0.2300 11.52
δ21 -1.595 1.5512 -1.03
δ31 6.9297 1.2255 5.65
δ41 8.1146 1.2167 6.67
δ51 8.9451 1.2141 7.37
δ61 9.7457 1.2119 8.04
δ71 10.639 1.2114 8.78
δ22 -1.139 1.0393 -1.10
δ32 -1.700 1.0369 -1.64
δ42 -1.786 1.8730 -0.95
δ52 -1.588 1.5987 -0.99
δ62 -1.234 1.5911 -0.77
δ72 -.6002 1.5928 -0.38
η1 -10.27 1.9714 -5.21
η2 0.3418 1.5950 .21

Table 2.2: Mean and Standard Deviation of β over the 1000 Simulations

that the parameters corresponding to the age classes are all significant. However the

interaction of age class and disease is only significant for prostate cancer and after

age class 1. The parameter accounting for disease is very significant for prostate but

is not for colon cancer.

In Figure 2.1 we present the distributions of the proportions of deaths by disease. The

box plots are similar to the one obtained from the observed proportions in Figure 1.4

for prostate, lung and other cancers. However the pattern for colon cancer is quite

similar across age class but the proportions are overestimated.
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Figure 2.1: Box Plots of the Proportions of Deaths by Disease

29



In Figure 2.2, 2.3, 2.4 and 2.5 we present the maps of the mortality rates (for age

specific 40, 70 and age adjusted) and of the relative occurrences respectively. The

same pattern is observed for each disease and each age class as a concentration of

high mortality rates around the Appalachian region (Mississippi to West Virginia).

We observe that the mortality rates obtained for colon cancer are slightly different

from the observed ones as in Table 2.1.
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Fig. 2.2: Maps of the Estimated Death Rates by Type of Cancer
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Fig. 2.3: Maps of the Estimated Death Rates by Type of Cancer
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Fig 2.4: Maps of the Proportions of Deaths (10-2)
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Fig 2.5: Maps of the Proportions of Deaths (10-2)
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2.1.3 Concluding Remarks

We fitted a simple approximate model to the pijk that does not account for hetero-

geneity among health service areas. As expected, this approximate model does not

appear to fit the data very well. Our mapping suggests that the proportion of death

follow the same pattern across age classes and specific types of cancer, of course, with

different intensities which give us the same pattern for the all cancer map and the

specific disease maps.

The objective in the next section is to provide distinct patterns for each disease

across age classes. To do so we investigate the fit of another approximate model which

will serve as an alternative and improved model to the previous one by obtaining

slightly smoother estimates and maps with age and disease specific patterns.

2.2 Second Approximate Model for the pijk’s

2.2.1 Model Description

We only modify the model for the pijk’s and use the same model for the λij as the

one we proposed in Section 2.1. We retain the 7 age classes.

We looked at the multinomial logit fixed effects model

yijk = log

(
pijk

pij4

)
= Z

′

iα + θjk + eijk,

where i = 1, . . . , N, j = 1, . . . , c, k = 1, 2, 3, and eij
ind
∼ N

(
0, σ2jwij

3∗3

)
.

Z
′

i is defined as in Section 2.2 but without an intercept, σ−2j ∼ Γ(a
2
, b
2
) , a = b =

0.002 for j = 1, . . . , c, and there are no constraints on the θjk.
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Then y
ij

ind
∼ N

(
Z
′

iα+ θj , σ
2
jW

−1
ij

)
.

Letting N = 798, c = 7 and W−1
ij = Ωij, the joint posterior density obtained by

assuming flat priors for all location parameters is

p(α, θj , σ
2
j |d) ∝

N∏
i=1

c∏
j=1

{(
1

σ2j

)3/2
e
− 1

2σ2
j

(y
ij
−(Z

′
iα+θj ))

′
W−1
ij (y

ij
−(Z

′
iα+θj ))

}

×
c∏

j=1

(
1

σ2j

)a/2+1

e
− b

2σ2j .

Then we can deduce the posterior distribution

σ−2j |α, θj , d ∼ Γ

(
3N + a

2
,
b+

∑
i(yij − (Z

′

iα+ θj))
′
Ωij (yij − (Z

′

iα+ θj))

2

)
.

(2.3)

Since the conditional posterior densities of α and θj are difficult to identify, we use

the second order Taylor’s series approximation. We ∆ denote the logarithm of the

conditional posterior density for each parameter such as for example for α

∆(α) ∝
∑
i,j

1

σ2j

3∑
k1,k2=1

(yijk1 − (Z
′

iα+ θjk1)) Ωijk1k2 (yijk2 − (Z
′

iα+ θjk2))

Then

d∆(α)

dα
= −

∑
i,j

1

σ2j

3∑
k1,k2=1

Ωijk1k2 (yijk2 − (Z
′

iα+ θjk2))Zi

d2∆(α)

dα2
=

∑
i,j

1

σ2j

3∑
k1,k2=1

Ωijk1k2 Zi Z
′

i

Therefore, we approximate the distribution of α by

α|θj, σ
−2
j

ind
∼ N

{(∑
i,j

1

σ2j

3∑
k1,k2=1

Ωijk1k2 Zi Z
′

i

)−1
(∑

i,j

1

σ2j

3∑
k1,k2=1

Ωijk1k2 (yijk2 − θjk2)Zi

)
,

(∑
i,j

1

σ2j

3∑
k1,k2=1

Ωijk1k2 Zi Z
′

i

)−1}
.(2.4)
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By the same methodology, we approximate the distribution of θj by

θj|α, σ
−2
j

ind
∼ N

{(∑
i

Ωij

)−1 (∑
i

Ωij (yij − Z
′

iα)

)
, σ2j

(∑
i

Ωij

)−1}
(2.5)

We use the Gibbs sampler to generate 1000 estimates of α, θ drawing from (2.3),

(2.4) and (2.5) in turn; the convergence was rapid. In fact, we dropped out the first

100 and took the next 1000 iterates to make inference.

Finally, we deduce the corresponding 1000 pijk as explained in Appendix B from

the Gibbs estimates so we have an estimate of the distribution of the pijk each based

on 1000 samples. The idea is to have smooth estimates of the pijk. This is a slightly

refined procedure relative to the first one presented in the previous section.

We could have separated out θjk into its components as in the first approximation

but we simplify the computations somewhat.

2.2.2 Estimates

We look at two cases. In the first case the reference parameter is other cancer and

the second case the reference parameter is prostate cancer.

Reference Parameter is Other Cancer

Tables 2.3 and 2.4 present the means over the 1000 simulations of the parameter

estimates. The estimates follow the patterns of the observed mortality data. All the

parameters are significant except poverty.

In Table 2.5 we present E(.|d) and SD(.|d) for the age specific and age adjusted

(age class 8) rates average over HSAs. They look similar to the observed ones except

for colon cancer for which the estimated rates are underestimated after age class 2 and
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Covariates Estimates
Mean Std Interval Ratio

% Income -0.112 0.018 [-0.124, -0.100] -6.22

% College -0.007 0.003 [-0.009, -0.006] -2.33

% Poverty -0.004 0.0027 [-0.006, -0.003] -1.48

Epapm25 -4.709 0.988 [-5.387 ,-4.034] -4.77

EpaSO2 0.7217 0.251 [0.553, 0.883] 2.87

Table 2.3: Mean and Standard Deviation of the Estimates of α

Prostate Colon Lung
Age Class Mean Std Mean Std Mean Std

1 -13.713 0.350 -2.780 0.081 -3.087 0.078

2 -15.624 0.325 -1.761 0.047 -0.740 0.038

3 -4.721 0.107 -1.857 0.046 0.127 0.037

4 -2.894 0.047 -1.749 0.042 0.478 0.035

5 -1.636 0.038 -1.529 0.040 0.499 0.035

6 -0.659 0.035 -1.250 0.036 0.220 0.034

7 0.037 0.035 -0.948 0.039 -0.484 0.037

Table 2.4: Mean and Standard Deviation of the Estimates of θjk

for prostate cancer for which the estimated rates are underestimated until age class 6.
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All Cancer Prostate Colon Lung
Age Class Mean Std Mean Std Mean Std Mean Std

1 6.078 1.160 .0000 .0000 .2745 .0534 .2020 .0393

2 37.51 5.198 .0000 .0000 3.367 .4914 9.342 1.364

3 152.8 20.69 .5323 .0748 9.292 1.305 67.56 9.488

4 512.3 62.19 9.123 1.141 28.65 3.582 265.6 33.21

5 1069 149.2 62.64 8.991 69.68 10.00 529.6 76.01

6 1887 187.6 294.1 29.68 162.9 16.44 708.2 71.48

7 2723 260.6 853.5 82.02 318.7 30.63 506.7 48.69

8 159.9 17.42 11.28 1.105 11.10 1.215 70.01 8.103

Table 2.5: Mean and Standard Deviation per 100,000 population of the Death Rates
(λijk) over HSAs
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In Figure 2.6 we present the distribution of the proportions of death (pijk) by

disease. The patterns of the box plots across the age classes look similar to the one

obtained from the observed proportions in Figure 1.4 for prostate, lung and other

cancers but smoothed. The patterns across age classes and the estimated proportions

are similar.
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Figure 2.6: Box Plots of the Estimated Proportions of Death by Disease
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Reference Parameter is Prostate Cancer

Tables 2.6 and 2.7 present the means over the 1000 simulations of the parameter

estimates. The estimates follow the patterns of the observed mortality data. All the

parameters are significant except epapm25.

Covariates Estimates
Mean Std Interval Ratio

% Income 0.232 0.039 [.206,.258] 5.95

% College -0.037 0.006 [-.041,-.033] -6.17

% Poverty 0.008 0.004 [.005,.011] 2

Epapm25 2.987 2.098 [1.59,4.39] 1.42

EpaSO2 1.188 0.538 [.829,1.55] 2.21

Table 2.6: Mean and Standard Deviation of the Estimates of α

Prostate Colon Lung
Age Class Mean Std Mean Std Mean Std

1 8.938 0.160 10.392 1.393 17.511 1.364

2 9.431 0.190 12.234 0.676 15.569 0.411

3 2.253 0.177 5.218 0.443 6.514 0.213

4 -0.186 0.088 2.637 0.146 2.886 0.091

5 -0.842 0.073 1.588 0.086 1.760 0.075

6 -1.110 0.073 0.591 0.079 1.128 0.074

7 -1.173 0.074 -0.597 0.088 0.774 0.082

Table 2.7: Mean and Standard Deviation of the Estimates of θjk

In Table 2.8 we present E(.|d) and SD(.|d) for the age specific and age adjusted

(age class 8) rates average over HSAs. They look similar to the observed rates except

for colon and prostate cancer for which the estimated rates are underestimated.

In Figure 2.7 we present the distribution of the proportions of deaths by disease.

The patterns of the box plots across age classes and the estimated proportions of death

little bit different from the one obtained from the observed proportions in Figure 1.4
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All Cancer Prostate Colon Lung
Age Class Mean Std Mean Std Mean Std Mean Std

1 6.078 1.160 .0000 .0000 .0029 .0006 .0345 .0066

2 37.51 5.198 .0000 .0000 .0858 .0119 1.686 .2336

3 152.8 20.69 .1399 .0183 1.708 .2314 34.04 4.610

4 512.3 62.19 12.20 1.421 12.71 1.547 213.7 26.02

5 1069 149.2 71.54 9.612 38.59 5.422 438.5 61.62

6 1887 187.6 250.1 23.95 103.2 10.49 565.7 57.49

7 2723 260.6 568.2 54.19 220.2 21.71 391.9 38.63

8 159.9 17.42 10.36 .9589 5.500 .5681 53.54 6.003

Table 2.8: Mean and Standard Deviation per 100,000 population of the Death Rates
(λijk) over HSAs

for prostate, lung and other cancers. Indeed the proportions of death for prostate

and colon cancer are underestimated.

The box plots obtained with other cancer as the reference match the observed

ones better.
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Figure 2.7: Box Plots of the Estimated Proportions of Deaths by Disease
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2.2.3 Maps

Since the results are similar but match the observed mortality rates better with other

cancer as the reference parameter, we only drew and analyzed the corresponding maps.

In Figures 2.8 and 2.9 we present the maps for age specific (40, 70) and age ad-

justed mortality rates by disease. The same pattern of concentration of high mortality

rates around the Appalachian region (Mississippi to West Virginia) is observed for

each age class across disease. Only a slight improvement is observed compared to the

first approximate model fitted in Section 2.2.

In Figures 2.10 and 2.11 we present the maps for age specific 40 and 70 of the

proportions of deaths by type of cancer. The map for prostate cancer at age 40

clearly show that the model encounters major difficulties. The remaining maps show

some improvement from the first model since they match the maps of the observed

proportions presented in chapter 1 better.
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Figure 2.8: Maps of the Estimated Death Rates by Disease
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Fig. 2.9: Maps of the Estimated Death Rates by Type of Cancer
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Fig 2.10: Maps of the Proportions of Deaths (10-2)
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Fig 2.11: Maps of the Proportions of Deaths (10-2)
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2.3 Concluding Remarks

In this section we introduced two simple approximate models for the pijk that seem

to account well for heterogeneity among Health Service Areas for each disease. The

maps have the same pattern for each disease.

Only slight improvements were observed with the second model. The estimates

are still very smoothed and our mapping still suggests that the proportions for each

disease category do not change among HSA. Besides the distribution of the propor-

tions of death by disease obtained from the second approximation are closer to the

observed ones.

Since the data are very sparse for prostate cancer, we fitted the model twice, once

with reference parameter others cancer and once with prostate cancer. The results

are slightly closer to the observed data with other cancer as the reference.

In Chapter 3, we follow up further by first fitting the model used previously

for the λij to the λijk and then fit an improve model to the pijk.
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Chapter 3

An Exact Model

The objective in this chapter is to investigate if there are different map patterns for

each type of disease, and to obtain improved precision.

The models we studied in the previous chapters did not fit the data well because

they produce one map pattern among the different types of cancer. In this chapter,

we first focus on a model for the λijk which is a generalization of the model presented

in Chapter 2 for the λij to each disease, and then we deduce the proportions of death

by disease pijk.

Note, in particularly, in this chapter we use all 10 age classes.

3.1 Model for the λijk

The basis model generalized from (1.7) is as follows

logλijk = x
′

j βk + νik + δjk

where x
′

j =
(
1, decadej, (decadej)2, (decadej)3,max{0, (decadej−knot)3}

)
with decade1 =

0.25 , decadej = j − 1 for j = 2, . . . , 10 and k = 1, . . . , 4 for each disease prostate,

colon, lung and others cancer respectively.
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It is assumed that νik|σ21k
iid
∼ N

(
0, σ21k

)
, δjk|σ22k

iid
∼ N

(
0, σ22k

)
, and the value of the

knot that maximizes the likelihood of U.S. marginal data is 6 for “all cancer”.

Here, p(β) = 1 and σ−21k , σ
−2
2k ∼ Γ(a

2
, b
2
) where a = b = 0.002 to obtain a proper

diffuse prior.

The Metropolis-Hastings algorithm was used based in a manner similar to that in

Appendix A but applied to each disease.

By trial and error, we chose the tuning constants between 6 and 10 (see Appendix

A).

The computations were done by region. We ran 11, 000 iterates, “burning in” 1000

and choosing every tenth to obtain 1000 iterates which we used for output analyzes.

3.2 Assessing the Model Fit

We have used two different measures to assess the model.

The first measure that we used to assess the model is the posterior predictive

p-value; i.e.,

Pr{T (dnew, λ) ≥ T ((dobs, λ) | dobs}. (3.1)

Very small or very large values of (3.1) are sometimes used to discredit a model

(Gelman et al. 1995, Chapter 6). A model is considered acceptable if the p-value is

between 0.05 and 0.95. We have used three checking functions, T (dnew, λ), analogous

to the three discrepancy measures, P (dobs, dnew):

1. Chi-square ∑
i

∑
j

(dijk − nijλijk)
2/nijλijk.
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2. Rank-based
√
12
∑
i

∑
j

{cijk/(a+ 1) − 0.5}(dijk − nijλijk)

where a = 10 and cijk = rank(dijk − nijλijk).

3. Poisson-based

2
∑
i

∑
j

{
(dijk + 0.5) ln

(
dijk + 0.5

nijλijk + 0.5

)
− (dijk − nijλijk)

}
.

Region Prostate Colon
Chi-Square Poisson-based Rank-based Chi-Square Poisson-based Rank-based

1 0.157 0.185 0.125 0.418 0.116 0.126
2 0.920 0.642 0.237 0.519 0.149 0.055
3 0.935 0.745 0.406 0.271 0.000 0.001
4 0.222 0.051 0.060 0.458 0.005 0.072
5 0.928 0.540 0.418 0.884 0.318 0.328
6 0.791 0.532 0.283 0.305 0.000 0.005
7 0.729 0.099 0.036 0.220 0.282 0.461
8 0.923 0.721 0.637 0.615 0.876 0.568
9 0.348 0.227 0.188 0.305 0.002 0.022
10 0.426 0.117 0.165 0.373 0.372 0.388
11 0.948 0.454 0.393 0.275 0.676 0.779
12 0.874 0.395 0.103 0.187 0.002 0.001

Table 3.1: Posterior Predictive P-values by Region for Prostate and Colon Cancer

In Table 3.1 and 3.2 we present the p-values of the three checking functions of the

model by region for each disease. Most of the chi-square p-values lie between 0.05 and

0.95 across region for prostate and colon cancer but not for lung and other cancer.

The fit for lung cancer seems unreasonable based on this measure. These p-values

are very sensitive to outliers and an extreme outlier could force them to zero.

The second method of evaluating the model is to use a cross-validation. Let d(ijk)

denote the set of all d’s except for (ijk). Then define the cross-validation residual as

aijk = rijk − E(rijk | d(ijk)), and the standardized cross-validation residual as

DRESijk =
rijk − E(rijk | d(ijk))

SD(rijk | d(ijk))
. (3.2)
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Region Lung Others
Chi-Square Poisson-based Rank-based Chi-Square Poisson-based Rank-based

1 0.120 0.044 0.018 0.575 0.628 0.303
2 0.238 0.000 0.002 0.000 0.000 0.000
3 0.083 0.000 0.004 0.000 0.000 0.020
4 0.004 0.000 0.000 0.000 0.000 0.000
5 0.134 0.000 0.000 0.194 0.061 0.121
6 0.008 0.000 0.000 0.428 0.515 0.611
7 0.312 0.255 0.019 0.009 0.024 0.205
8 0.103 0.000 0.000 0.011 0.045 0.009
9 0.097 0.000 0.000 0.068 0.037 0.029
10 0.062 0.000 0.000 0.093 0.066 0.030
11 0.258 0.024 0.058 0.194 0.356 0.285
12 0.218 0.022 0.008 0.002 0.000 0.046

Table 3.2: Posterior Predictive P-values by Region For Lung and Other Cancer

That is, the (ijk)-th observed rijk is “held out” and compared with its point estima-

tor, E(rijk | d(ijk)), which is evaluated without using the observed dijk. We employ the

cross-validation residuals and standardized residuals as absolute measures of the con-

cordance of the data with a proposed model. To summarize we count (a) the number

of (ijk) such that | DRESijk |≥ q which we call “# outliers” and (b) the number of

HSAs such that | DRESijk |≥ q for at least one j, which we call “# HSAs”. In Table

3.3 we present the number of HSAs with outliers ≥ 3 and 4 by region. (Table 1.4

contains the number of HSAs per region). As can be seen regions 4 and 9 have the

most number of HSAs with residuals greater than 3 and 4. It indicates that regions

4 and 9 are not fitted well. Table 3.4 contains the number of HSAs with outliers ≥ 3

and 4 by age class. The model does not seem to fit the data very well at the age

classes 5 and 9 for prostate cancer, 3 to 5 for colon cancer, all the age classes for lung

cancer and all the age classes but the last one for other cancer.

The large number of HSAs with outliers comes from the fact that the data are

very sparse across age class.

Finally we decide to assess the model by looking at the residual plots for all dis-
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Region Prostate Colon Lung Others
#HSA≥3 #HSA≥4 #HSA≥3 #HSA≥4 #HSA≥3 #HSA≥4 #HSA≥3 #HSA≥4

1 1 1 5 2 17 0 2 0
2 4 2 5 1 11 5 7 5

3 3 1 8 2 18 2 10 2
4 38 20 10 2 28 2 11 2
5 5 3 8 1 14 0 5 0
6 12 6 19 4 44 1 7 1
7 2 1 6 2 4 3 10 3
8 5 4 13 5 21 7 13 7
9 10 6 21 8 43 3 13 3
10 5 2 5 3 24 1 4 1
11 0 0 8 3 4 3 7 3
12 4 0 12 7 8 2 8 2

Table 3.3: Number of HSAs with Absolute Values of Residuals ≥3 and ≥4 by Region

Age Prostate Colon Lung Others
#HSA≥3 #HSA≥4 #HSA≥3 #HSA≥4 #HSA≥3 #HSA≥4 #HSA≥3 #HSA≥4

1 0 0 0 0 8 7 17 8
2 1 1 3 1 6 5 13 3
3 7 5 20 8 18 13 13 3
4 3 3 32 11 17 7 9 3
5 24 16 20 4 12 6 8 3
6 9 6 12 1 34 5 14 4
7 8 2 8 3 42 19 8 1
8 9 2 8 5 67 36 5 1

9 23 10 10 5 27 10 9 3
10 5 1 7 2 10 4 1 0

Table 3.4: Number of HSAs with Absolute Values of Residuals ≥3 and ≥4 by Age
Class

eases simultaneously.

In Figures 3.1 we present the plot of residual against standard deviation of resid-

ual, SD(rijk|dijk) and the plot of aijk versus number of death. We provide bands of

|rijk − E(rijk|d(ijk))| ≤ 2 SD(rijk|dijk) which in fact gives it a funnel shape, where

both sides of the funnel have some outliers. The other plot is residual aijk against

number of death dijk. This is indicating that the model provides a good fit.

Figures 3.2 are the plots of residual aijk against age and region. The plot against

age shows the increase in variation as the age increases, the highest being age class
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10, i.e. 85 years and above. There is symmetry about zero as can be seen from the

two types of plots, against age and region. These are further good indications of the

fit of the model.
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Figure 3.1: Plots of Residuals versus Standard Deviation of Residuals and Number of 
Deaths 
 

 
Figure 3.2: Plots of Residuals versus Age and Region 
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Figure 3.3 shows the plots of residual aijk and standardized residuals against the 

predictive rates, λijk for the 4 diseases simultaneously.  In a Normal distribution model, 

these plots should be a null plot, i.e. no pattern, but in our case it is a Poisson distribution 

model.  The mean of the Poisson is directly proportional to the variance, hence the 

megaphone shape is expected.  The interesting characteristic is its symmetry about zero. 

 

 

Figure 3.3: Plots of Residuals and Standardized Residuals versus Predicted Rates 
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The box plots of the standardized residuals versus age class, region and type of 

cancer presented in Figures 3.4, 3.5, and 3.6 do not show any departure from the 

symmetrical pattern about zero. 

 

 

Figure 3.4: Box Plots of the Standardized Residuals versus Age Class 
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Figure 3.5: Box Plots of the Standardized Residuals versus Region 

 

Figure 3.6: Box Plots of the Standardized Residuals versus Type of Cancer 



3.3 Estimates and Maps for the Death Rates

Table 3.5 presents the mean and standard Deviation of the death rates, λijk, over

HSAs. The death rates increase with age class for each disease. They are very similar

to the observed ones presented in Table 1.5.

All Cancer Prostate Colon Lung
Age Class Mean Std Mean Std Mean Std Mean Std

1 3.686 .4384 .0548 .0655 .0297 .0300 .0097 .0164

2 3.551 .4011 .0121 .0071 .0345 .0171 .0117 .0119

3 5.584 .6812 .0114 .0058 .1127 .0413 .0609 .0291

4 11.68 1.375 .0262 .0202 .6111 .1648 .6845 .1791

5 36.20 5.016 .1576 .0694 3.140 .5620 7.519 1.876

6 151.7 21.71 2.263 .4328 13.94 1.662 55.86 13.02

7 509.6 64.12 22.68 3.269 47.51 5.335 213.8 42.93

8 1090 124.1 107.6 15.99 108.9 14.74 427.6 76.03

9 1870 188.1 326.8 47.80 214.1 27.43 572.9 86.58

10 2711 255.1 714.8 107.7 365.1 42.67 510.7 74.37

11 160.3 18.13 14.97 2.184 16.01 1.874 56.95 10.50

Table 3.5: Mean and Standard Deviation per 100,000 population of the Death Rates
(λijk) over HSAs

In Figure 3.7 and 3.8 we present the maps for age specific 40, 70 and age adjusted

mortality rates by disease. Since the data are very sparse for age younger than 40

years for prostate and colon cancers, the corresponding maps have to be interpreted

with caution. The maps show interesting hot spots for prostate cancer in the North

West and North Central regions. For colon cancer, the high mortality rates are con-

centrated in the regions of the North East and east North Central. The high mortality

rates for lung cancer and all cancers are both concentrated in the South East region

for each age class.
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17.083 - 23.867
15.899 - 17.083
15.236 - 15.899
14.633 - 15.236
14.116 - 14.633
13.103 - 14.116
3.902 - 13.103

0.208 - 0.464
0.168 - 0.208
0.142 - 0.168
0.091 - 0.142
0.016 - 0.091

119.289 - 176.671
109.985 - 119.289
104.3 - 109.985
98.086 - 104.3
28.882 - 98.086

17.937 - 27.726
16.953 - 17.937
16.18 - 16.953
15.369 - 16.18
14.878 - 15.369
14.418 - 14.878
9.489 - 14.418

3.393 - 6.171
3.278 - 3.393
3.137 - 3.278
2.722 - 3.137
1.79 - 2.722

121.793 - 187.429
112.229 - 121.793
101.028 - 112.229
96.542 - 101.028
64.135 - 96.542

Prostate Colon

Age Adjusted

Age 40

Age 70

Fig. 3.7: Maps of the Estimated Death Rates by Type of Cancer
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68.601 - 81.09
63.026 - 68.601
58.421 - 63.026
54.173 - 58.421
50.817 - 54.173
45.542 - 50.817
19.917 - 45.542

9.29 - 11.522
7.822 - 9.29
7.031 - 7.822
5.986 - 7.031
2.484 - 5.986

483.73 - 611.937
441.816 - 483.73
401.531 - 441.816
368.807 - 401.531
153.546 - 368.807

178.296 - 236.709
170.71 - 178.296
164.717 - 170.71
158.5 - 164.717
150.921 - 158.5
140.029 - 150.921
97.27 - 140.029

40.608 - 53.511
37.553 - 40.608
35.038 - 37.553
31.857 - 35.038
21.86 - 31.857

1188.776 - 1612.286
1127.49 - 1188.776
1066.248 - 1127.49
982.354 - 1066.248
657.947 - 982.354

Lung All Cancer

Age Adjusted

Age 40

Age 70

Fig. 3.8: Maps of the Estimated Death Rates by Type of Cancer
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3.4 Analyses of Relative Occurences

3.4.1 Model Description

The model we fit is

log

(
pijk

pij4

)
= Z

′

iα+ γj + ηk + θjk + φi,

where i = 1, . . . , 798, j = 1, . . . , 10, k = 1, 2, 3, and φi ∼ N(0, σ22), σ−22 ∼

Γ(a
2
, b
2
) for a = b = 0.002.

Here Zi is the matrix containing the 5 predictor variables such as per capita

income, percentage of people below poverty level, education, epapm25 and epaso2.

The variable income, epapm25 and epaso2 were divided by 10, 000 for computational

stability. The p̂ijk are the MLEs with an adjustment for zeros.

The corner point restrictions are η3 = 0, γ1 = 0, δ1k = 0, for k = 1, 2, 3,

δj3 = 0, for j = 2, . . . , 7.

We can define λijk = λijpijk and since
∑4

k=1 pijk = 1 we have

pijk =
λijk∑4
k=1 λijk

.

Thus, we take

p̂
(t)
ijk =

λ̂
(t)
ijk∑4

k=1 λ̂
(t)
ijk

where λ̂
(t)
ijk for t = 1, . . . , 1000 are the 1000 iterates from the Metropolis-Hastings

samples.

Then, we fitted the model for each iteration t = 1, . . . , 1000

log

(
p̂
(t)
ijk

p̂
(t)
ij4

)
= Z

′

iα
(t) + γ

(t)
j + η

(t)
k + θ

(t)
jk + φ

(t)
i .

Once we obtained the least square estimates we then deduce φ
(t)
i such as

φ
(t)
i =

1

3 ∗ 10

∑
j,k

{
log

(
p̂
(t)
ijk

p̂
(t)
ij4

)
−

(
Z
′

iα
(t) + γ

(t)
j + η

(t)
k + θ

(t)
jk

)}
.

64



When estimates of α, γ, η, θ are obtained, we use them to obtain p
(t)
ijk again.

3.4.2 Estimates and Maps

Table 3.6 contains the mean, standard deviation and credible intervals of coefficients.

Most of the covariates are significant and the estimates are different from the one

obtained in Chapter 2 (see Table 2.2). The intercept and income are not significant

anymore. Epapm25 and Epaso2 are the two most signifiacnt covariates. The pa-

rameters accounting for age class are all significant except for the second age class.

The estimates of the interaction between age class and disease are clearly significant

except for colon cancer at age class 2. The parameters accounting for type of cancer

are significant.

In Figure 3.9 we present the distribution of the proportions of deaths pijk by dis-

ease. The patterns of the box plots across age classes look similar to the one obtained

from the observed proportions in Figure 1.4.
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Figure 3.9: Distribution of the Proportions of Death by Disease
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β Mean Std Interval

Intercept 0.013 0.008 [ 0.008, 0.018]
Income -0.030 0.046 [-0.059, -0.000]

% Poverty -0.002 0.001 [-0.003, -0.002]
College 0.001 0.000 [ 0.000, 0.001]
Epapm25 -6.571 2.171 [-8.052, -5.062]
Epaso2 2.610 0.463 [ 2.279, 2.920]
γ2 0.001 0.000 [ 0.001, 0.001]
γ3 0.009 0.001 [ 0.009, 0.009]
γ4 0.065 0.002 [ 0.063, 0.066]
γ5 0.297 0.005 [ 0.293, 0.300]
γ6 0.710 0.006 [ 0.706, 0.714]
γ7 0.974 0.006 [ 0.970, 0.978]
γ8 0.986 0.005 [ 0.982, 0.989]
γ9 0.780 0.004 [ 0.777, 0.783]
γ10 0.471 0.005 [ 0.468, 0.474]
θ21 -0.012 0.002 [-0.014, -0.011]
θ31 -0.022 0.002 [-0.024, -0.020]
θ41 -0.077 0.003 [-0.079, -0.075]
θ51 -0.306 0.005 [-0.309, -0.302]
θ61 -0.696 0.007 [-0.701, -0.691]
θ71 -0.885 0.006 [-0.889, -0.881]
θ81 -0.751 0.006 [-0.754, -0.747]
θ91 -0.346 0.006 [-0.350, -0.342]
θ101 0.180 0.009 [ 0.174, 0.185]
θ22 0.001 0.001 [ 0.000, 0.002]
θ32 0.004 0.001 [ 0.004, 0.005]
θ42 -0.013 0.003 [-0.015, -0.011]
θ52 -0.179 0.005 [-0.182, -0.176]
θ62 -0.538 0.006 [-0.542, -0.534]
θ72 -0.764 0.006 [-0.767, -0.760]
θ82 -0.741 0.005 [-0.744, -0.738]
θ92 -0.495 0.004 [-0.498, -0.493]
θ102 -0.140 0.005 [-0.143, -0.136]
η1 0.013 0.002 [ 0.011, 0.014]
η2 0.006 0.001 [ 0.005, 0.006]

Table 3.6: Mean, Standard Deviation and 95% Credible Interval for the Estimates of
the Parameters
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Figures 3.10 and 3.11 show the empirical posterior densities for the 2 most sig-

nificant covariates epapm25 and epaso2 and also for the variable accounting for the

variation among HSAs, φi. They do not show much departure from the normal dis-

tribution.
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Figure 3.10: Frequency Histogram for Epapm25 and Epaso2 

 

 
Figure 3.11: Frequency Histogram for Φi 
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In Figures 3.12, 3.13 and 3.14 we present the maps for age specific (40, 70 and

85 and up) of the proportions of deaths by disease. The regions of Pacific, Mountain

North, Mountain South and West North Central-North present a concentration of

high proportions of death for prostate cancer for people older than 65 years old and

for other cancers for age 70 and younger. The Appalachian region and the South

Atlantic-South present a concentration of high proportions of death for lung cancer

for all age classes. The concentration of high proportions of death for colon cancer is

in the North East and North Central East regions for age 70 and older.
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0.601 - 1.098
0.458 - 0.601
0.392 - 0.458
0.26 - 0.392
0.061 - 0.26

9.533 - 18.604
9.04 - 9.533
8.61 - 9.04
7.877 - 8.61
5.731 - 7.877

23.901 - 27.2
21.277 - 23.901
20.049 - 21.277
18.233 - 20.049
9.84 - 18.233

72.939 - 79.434
70.923 - 72.939
69.279 - 70.923
66.808 - 69.279
62.3 - 66.808

Age 40

Prostate Lung

Colon Others

Fig. 3.12: Maps of the Proportions (10^-2) of Deaths for Age 40
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11.425 - 18.502
10.345 - 11.425
9.619 - 10.345
8.758 - 9.619
2.472 - 8.758

43.287 - 49.17
40.517 - 43.287
38.137 - 40.517
35.608 - 38.137
20.519 - 35.608

11.452 - 18.682
10.693 - 11.452
9.535 - 10.693
8.646 - 9.535
7.283 - 8.646

42.28 - 51.994
40.966 - 42.28
39.772 - 40.966
38.07 - 39.772
34.326 - 38.07

Age 70

Prostate Lung

Colon Others

Fig. 3.13: Maps of the Proportions (10^-2) of Deaths for Age 70
72



29.4 - 38.118
27.322 - 29.4
25.885 - 27.322
24.148 - 25.885
8.237 - 24.148

15.139 - 22.784
14.061 - 15.139
13.024 - 14.061
12.346 - 13.024
9.479 - 12.346

21.221 - 25.698
19.893 - 21.221
18.481 - 19.893
17.2 - 18.481
8.69 - 17.2

42.194 - 51.607
40.981 - 42.194
39.932 - 40.981
38.699 - 39.932
33.397 - 38.699

Age 85 and older

Prostate Lung

Colon Others

Fig. 3.14: Maps of the Proportions (10^-2) of Deaths for Age 85 and Above
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The maps for age 40 for prostate and colon cancer are difficult to interpret since

the data are very sparse. For prostate cancer, the regions of Mountain North, West

North Central-South and East South Central concentrate the high proportions of

death. For colon cancer, the high proportions of death are concentrated in the re-

gions of Mountain South, West North Central-North and East South Central.

In Figures 3.15, 3.16, 3.17 and 3.18 we present the maps of the proportions of

deaths for high and low values of epapm25 for prostate, colon, lung and other cancer

respectively. In Figures 3.19, 3.20, 3.21 and 3.22 we present the corresponding maps

for high and low values of epaso2. The maps do not show any strong pattern. Still,

we observe that the proportion of deaths by lung cancer are high n the South Eastern

states though there are high elsewhere as well.
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0.605 - 0.986
0.467 - 0.605
0.4 - 0.467
0.322 - 0.4
0.097 - 0.322

0.681 - 1.09
0.482 - 0.681
0.369 - 0.482
0.23 - 0.369
0.058 - 0.23

10.811 - 14.363
10.016 - 10.811
9.452 - 10.016
8.792 - 9.452
5.715 - 8.792

11.892 - 18.765
10.774 - 11.892
9.893 - 10.774
8.702 - 9.893
2.394 - 8.702

Epapm25 for Prostate

High Epapm25 Low Epapm25
Age 40

Age 70

Fig. 3.15: Maps of the Proportions (10^-2) of Death for Prostate Cancer for High and Low Epapm25
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9.491 - 18.104
8.989 - 9.491
8.63 - 8.989
7.993 - 8.63
6.014 - 7.993

9.815 - 15.546
9.178 - 9.815
8.724 - 9.178
7.789 - 8.724
5.769 - 7.789

11.375 - 18.541
10.642 - 11.375
9.577 - 10.642
8.747 - 9.577
7.489 - 8.747

11.438 - 15.887
10.729 - 11.438
9.532 - 10.729
8.552 - 9.532
7.243 - 8.552

Epapm25 for Colon

High Epapm25 Low Epapm25

Age 40

Age 70

Fig. 3.16: Maps of the Proportions (10^-2) of Death for Colon Cancer for High and Low Epapm25
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24.151 - 27.212
21.734 - 24.151
20.375 - 21.734
19.03 - 20.375
12.769 - 19.03

23.349 - 26.646
20.813 - 23.349
19.508 - 20.813
16.917 - 19.508
10.065 - 16.917

43.574 - 49.009
41.007 - 43.574
38.624 - 41.007
36.364 - 38.624
30.397 - 36.364

43.031 - 48.487
39.567 - 43.031
37.568 - 39.567
34.974 - 37.568
21.038 - 34.974

Epapm25 for Lung

High Epapm25 Low Epapm25

Age 40

Age 70

Fig. 3.17: Maps of the Proportions (10^-2) of Death for Lung Cancer for High and Low Epapm25
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72.192 - 78.936
70.522 - 72.192
68.853 - 70.522
66.736 - 68.853
62.543 - 66.736

74.185 - 79.15
71.52 - 74.185
70.031 - 71.52
67.022 - 70.031
62.679 - 67.022

42.107 - 46.906
40.783 - 42.107
39.455 - 40.783
38.09 - 39.455
34.53 - 38.09

42.703 - 52.228
41.251 - 42.703
40.089 - 41.251
38.172 - 40.089
35.03 - 38.172

Epapm25 for Other

High Epapm25 Low Epapm25

Age 40

Age 70

Fig. 3.18: Maps of the Proportions (10^-2) of Death for Other Cancer for High and Low Epapm25
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0.598 - 0.979
0.464 - 0.598
0.398 - 0.464
0.323 - 0.398
0.082 - 0.323

0.685 - 1.09
0.489 - 0.685
0.369 - 0.489
0.229 - 0.369
0.058 - 0.229

10.837 - 15.937
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9.407 - 9.98
8.794 - 9.407
5.534 - 8.794

11.799 - 18.765
10.724 - 11.799
9.952 - 10.724
8.728 - 9.952
2.394 - 8.728

EpaSO2 for Prostate

High EpaSO2 Low EpaSO2

Age 40

Age 70

Fig. 3.19: Maps of the Proportions (10^-2) of Death for Prostate Cancer for High and Low EpaSO2
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9.526 - 12.4
9.037 - 9.526
8.663 - 9.037
8.06 - 8.663
6.048 - 8.06

9.702 - 18.104
9.122 - 9.702
8.699 - 9.122
7.716 - 8.699
5.769 - 7.716

11.368 - 15.021
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8.728 - 9.813
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8.613 - 9.402
7.243 - 8.613

EpaSO2 for Colon

High EpaSO2 Low EpaSO2
Age 40

Age 70

Fig. 3.20: Maps of the Proportions (10^-2) of Death for Colon Cancer for High and Low EpaSO2
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24.23 - 27.212
21.504 - 24.23
20.347 - 21.504
19.144 - 20.347
12.769 - 19.144

23.337 - 26.65
20.899 - 23.337
19.508 - 20.899
16.683 - 19.508
10.065 - 16.683

43.555 - 49.009
40.593 - 43.555
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35.825 - 38.362
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EpaSO2 for Lung

High EpaSO2 Low EpaSO2

Age 40

Age 70

Fig. 3.21: Maps of the Proportions (10^-2) of Death for Lung Cancer for High and Low EpaSO2
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72.008 - 77.814
70.661 - 72.008
69.006 - 70.661
66.767 - 69.006
62.543 - 66.767
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Age 40

Age 70

Fig. 3.22: Maps of the Proportions (10^-2) of Death for Other Cancer for High and Low EpaSO2
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3.5 Concluding Remarks

First we fitted the NSP model to obtain the rates using the Metropolis-Hastings

algorithm. Then we deduced the proportions of deaths for each disease and fitted a

model which is a simple extension of the one discussed in Chapter 2 by incorporating

a random effect for the HSAs.

The maps for different age classes and diseases show interesting patterns and

highlighted some hot-spots. The maps for colon and prostate cancer for age less than

40 have to be interpreted with caution because of the sparseness of the data.
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Chapter 4

Concluding Remarks

Our goals in this project are to analyze mortality rates for all types of cancer and to

estimate their relative occurrences. We use Bayesian methods.

4.1 Review of Methodology

We make inference on the mortality rates by disease in two steps. Since our model

shows that the mortality rates by disease are the product of the mortality rates for

all cancer diseases and the proportions of death by disease, a two-part model is used.

To model the rates we used the NSP model of Nandram, Sedransk and Pickle

(1999). Then we needed to develop new models for the occurrences.

Because the data are very sparse especially in the first 4 age classes, we amalga-

mated them as follows: age classes 1,2,3,4 as group 1, 5 as group 2, 6 as group 3, . . . ,

10 as group 7.

We began by investigating the fit of an approximate model for the pijk. The

parameter estimates, standard errors and maps were obtained. Unfortunately the

maps had a pattern that was similar for each age class and each disease. The model
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does not fit the data well. Then we fitted another approximate model. Only slight

improvements were observed. The maps did not show any interesting pattern.

Finally, we apply the model used for the λij to each disease so we got the estimates

of the λijk and then we deduce the pijk. Using Bayesian p-value and a cross-validation

exercise, we showed that this model performs well. The maps for the mortality rates

and for the relative occurrences showed different patterns for each disease across age

classes. The maps obtained for age 40 should be interpreted with caution because of

the sparseness of the data.

4.2 Final Results

The mortality rates for each type of cancer increase with age class, of course, with

different intensities. Prostate cancer presents the widest range of mortality rates.

The mortality rates for colon cancer increase across age classes but not as much as

prostate and lung cancer.

The maps of the mortality rates show some interesting hot spots for prostate

cancer in the North West and North Central regions. For colon cancer, the high mor-

tality rates are concentrated in the regions of the North East and east North Central.

The high mortality rates for lung cancer and all cancers are both concentrated in the

South East region for each age class. This is not surprising since lung cancer is the

leading cause of death by cancer.

The proportions of deaths for each type of cancer follow different patterns. The

proportions of deaths increase with age class for prostate and colon cancer while it

does so for lung cancer but only until age 55 where they begin to drop. Lung cancer
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is the leading cause of cancer death across age class except for the older men (age

85 and above) for which the proportions are similar to the one for prostate cancer.

One should note that the proportions of cancer deaths by prostate cancer increase

steadily while they do so for colon cancer but slowly.

With all factors being the same, the odds of occurrences of prostate, colon and

lung with respect to others decrease (increase) substantially with epapm25 (epaSO2).

We conjecture that particulate matters in the air affects mostly young people but

sulphur dioxide affects mostly the elderly.

The maps of the relative occurrences for age 40 for prostate and colon cancer are

difficult to interpret since the data are very sparse. For prostate cancer, the regions

of Mountain North, West North Central-South and East South Central concentrate

the high proportions of death. For colon cancer, the high proportions of death are

concentrated in the regions of Mountain South, West North Central-North and East

South Central. The regions of Pacific, Mountain North, Mountain South and West

North Central-North present a concentration of high proportions of deaths for prostate

cancer for people older than 65 years old and for other cancers for age 70 and younger.

The Appalachian region and the South Atlantic-South present a concentration of high

proportions of deaths for lung cancer for all age classes. The concentration of high

proportions of deaths for colon cancer is in the North East and North Central East

regions for age 70 and older.

4.3 An Alternative Approach

We assume that dij |nij, λij
ind
∼ Poisson(nijλij). We fit a hierarchical model with a

single regression coefficient. The basis model for the analysis is as follows

logλij = x
′

j β + νi + δj (4.1)
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where x
′

j =
(
1, decadej, (decadej)2, (decadej)3,max{0, (decadej−knot)3}

)
with decade1 =

0.25 , decadej = j − 1 for j = 2, . . . , 10.

We assume that νi|σ21
iid
∼ N

(
0, σ21

)
, δj|σ22

iid
∼ N

(
0, σ22

)
and the value of the knot

that maximizes the likelihood of U.S. marginal data is 6 for “all cancer”.

Here, p(β) = 1 and σ−21k , σ
−2
2k ∼ Γ(a

2
, b
2
) where a = b = 0.002 to obtain a proper

diffuse prior.

This can be fitted easily for all cancer. If one can model the individual type of

cancer simultaneously through (4.1) the entire problem about the pijk would be solved

automatically because

pijk =
λijk

λij

such that the constraint λij =
∑

k λijk.

Better methods are needed to show variability in disease mapping over the areas.

A model like the one in Chapter 2 but exact and with a random effect could incor-

porate better heterogeneity among areas. We attempted to do so already but with

little success.

The real difficulty is in modeling the pijk. One could add a random effect in the

model so we get the mixed effects model

log

(
pijk
pij4

)
= Z

′

iα+ γj + ηk + θjk + φi

where i = 1, . . . , 798, j = 1, . . . , 10, k = 1, 2, 3, Zi containing the covariates,

φi ∼ N(0, σ22), σ
−2
2 ∼ Γ(.001, .001). The corner point restrictions are η3 = 0, γ1 = 0,

θ1k = 0, for k = 1, 2, 3, θj3 = 0, for j = 2, . . . , 7.

The Metropolis-Hastings algorithm was used but with little success. Since the

estimates of the covariates contained in α were not stable, we tried using one covariate
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epapm25 and got better results. Besides that, the model was very sensitive to the

sparseness of the data for the first four age classes so we tried to amalgamate the age

classes so 5 age classes remain. The algorithm was working better but once we had

got the estimates to move well, they were highly correlated.

It seems that the data do not permit this kind of model, but further investigation

is required to fit this model.

Another aspect that would need to be addressed is to relate the variation among

HSAs for the λij and for the pijk by introducing a dependence such as(
νi
φi

)
iid
∼ N

((
0
0

)
,∆

)
.

Yet another important point would be to incorporate some spatial structure on(
νi
φi

)
. In this case one would need to delete the intercept from both models.
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Appendix A: Model for the λij

A locally uniform prior distribution is used on β for each region and a proper

diffuse prior on σ21 and σ22 as follows

p(β) = 1 and σ21, σ
2
2 ∼ Γ(

a

2
,
b

2
) where a = b = 0.002.

To fit this model, we use the Metropolis-Hastings algorithm implementing the

product of Kernels Principle (Chib and Greenberg 1995) which essentially allows us

to draw successively from each conditional posterior distribution, instead of having

to run each of the conditional posterior distribution to convergence for every value

of the conditional variables (parameters). Whenever an opportunity arises, we also

use the technique of centering (e.g. Gelfand et al. 1995) to facilitate computations.

An independent chain is used in the Metropolis-Hastings step which permits blocking.

The key idea to obtain the proposal density in any of our Metropolis steps is to use

a second order Taylor’s series expansion about a convenient point (an approximation

to the mode) for each conditional posterior distribution. Letting M = 10 and N =

798, the joint posterior density is

p(β, ν, δ, σ21, σ
2
2|d) ∝

N∏
i=1

M∏
j=1

{
e(x

′
jβ+νi+δj) dij − nij e

x
′
jβ+νi+δj

}

×
N∏
i=1

{(
1

σ21

)1/2
e
− 1

2σ21
ν2i

} M∏
j=1

{(
1

σ22

)1/2
e
− 1

2σ22
δ2j

}

×

(
1

σ21

)a/2+1
e
− b

2σ21

(
1

σ22

)a/2+1
e
− b

2σ22 .
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First of all, we make the transformation x
′

jβ + δj = φj which leads to

p(β, ν, δ, σ21, σ
2
2 |d) ∝

N∏
i=1

M∏
j=1

{
e(νi+φj) dij − nij e

νi+φj

}

×
N∏
i=1

{(
1

σ21

)1/2
e
− 1

2σ2
1
ν2i

} M∏
j=1

{(
1

σ22

)1/2
e
− 1

2σ2
2
(φj−x

′
jβ)

2
}

×

(
1

σ21

)a/2+1

e
− b

2σ21

(
1

σ22

)a/2+1

e
− b

2σ22 .

Then, we can deduce

σ−21 |β, ν, φ, σ
2
2, d ∼ Γ

(
N + a

2
,
b+

∑
i ν
2
i

2

)
(2)

σ−22 |β, ν, φ, σ
2
1, d ∼ Γ

(
M + a

2
,
b+

∑
j(φj − x

′

jβ)
2

2

)
(3)

β|ν, φ, σ21, σ
2
2, d ∼ N

((∑
j

x
∼j
x
′

j

)−1 (∑
j

φjx
∼j

)
, σ22
(∑

j

x
∼j
x
′

j

)−1)
(4)

p(φj |β, ν, σ
2
1, σ

2
2, d) ∼

∏
i

{
e(νi+φj ) dij − nij e

νi+φj

}
e
− 1

2σ2
2
(φj−x

′
jβ)

2

(5)

p(νi|β, φ, σ
2
1 , σ

2
2, d) ∼

∏
j

{
e(νi+φj ) dij − nij e

νi+φj

}
e
− 1

2σ21
ν2i
. (6)

Since the conditional posterior densities (5) and (6) are difficult to work with, we

use the Metropolis algorithm in these two cases.

First, we consider conditional posterior density of φj|β, ν, σ21, σ
2
2, d. We denote ∆(φj)

the logarithm of the conditional posterior densities of φj|β, ν, σ21, σ
2
2, d such as

∆(φj) =
∑
i

{
(νi + φj) dij − nij e

νi+φj

}
−

1

2σ22
(φj − x

′

jβ)
2

= A(φj) −
1

2σ22
(φj − x

′

jβ)
2.

Then,

dA(φj)

dφj
=
∑
i

(
dij − nij e

νi+φj

)
d2A(φj)

dφ2j
= −

∑
i

nij e
νi+φj .
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Thus, based on A(φj) alone we can get an estimator of φj by setting
dA(φj )

dφj
= 0:

φ̂j = log

{ ∑
i dij∑

i nije
νi

}
.

For the Metropolis step, we take

φj|β, ν, σ
2
1, σ

2
2, d

approx
∼ Uniform(a, b),

where {
a = E

(
φj|β, ν, σ21, σ

2
2, d
)
− k ∗ SD

(
φj|β, ν, σ21, σ

2
2, d
)

b = E
(
φj |β, ν, σ21, σ

2
2, d
)
+ k ∗ SD

(
φj|β, ν, σ21, σ

2
2 , d
)
.

Second, we consider how to draw ν. We denote the logarithm of the conditional

posterior distribution of νi|β, φ, σ21, σ
2
2, d by ∆(νi) where

∆(νi) =
∑
j

{
(νi + φj) dij − nij e

νi+φj

}
−

1

2σ21
νi

= A(φj)−
1

2σ21
νi.

Then,

dA(νi)

dνi
=

∑
j

(
dij − nij e

νi+φj

)
d2A(νi)

dν2i
= −

∑
j

nij e
νi+φj .

Thus, based on A(νi) alone we can get an estimator of νi by setting dA(νi)
dνi

= 0:

ν̂i = log

{ ∑
j dij∑

j nije
νi

}
and we can deduce that

νi|β, φ, σ
2
1, σ

2
2, d

approx
∼ Uniform(a, b),

where {
a = E

(
νi|β, φ, σ21, σ

2
2, d
)
− k ∗ SD

(
νi|β, φ, σ21, σ

2
2, d
)

b = E
(
νi|β, φ, σ21, σ

2
2, d
)
+ k ∗ SD

(
νi|β, φ, σ21, σ

2
2, d
)
.
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Appendix B: First Approximate Model for the pijk

Matrix Formulation of the Model

Let’s denote y
i
=



yi,1,1
yi,1,2
yi,1,3
...

yi,j,1
yi,j,2
yi,j,3
...

yi,7,1
yi,7,2
yi,7,3



, xi =

 Z
′

i
... A

Z
′

i



where A =



0 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0 1 0
0 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0 0 1
0 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0 0 0
1 0 . . . 0 1 0 . . . 0 0 0 0 . . . 0 0 1 0
1 0 . . . 0 0 0 . . . 0 0 1 0 . . . 0 0 0 1
1 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0 0 0
0 1 . . . 0 0 1 . . . 0 0 0 0 . . . 0 0 1 0
0 1 . . . 0 0 0 . . . 0 0 0 1 . . . 0 0 0 1
0 1 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
0 0 . . . 1 0 0 . . . 1 0 0 0 . . . 0 0 1 0
0 0 . . . 1 0 0 . . . 0 0 0 0 . . . 0 1 0 1
0 0 . . . 1 0 0 . . . 0 0 0 0 . . . 0 0 0 0



.

Then, the model can be written as

Y = Xβ + ε where ε ∼ N
(
0, σ2W

)
and β =

(
α
6∗1

γ2 γ3 . . . γ7 δ21 . . . δ72 η1 η2

)′
.

(7)

The weight matrix W is a block diagonal matrix of (21× 21) matrices Wi which are

themselves block diagonal matrices of (3× 3) matrices wij .

The estimators are such as

β̂ =
(
X
′
W−1X

)−1
X
′
W−1Y,

Cov
(
β̂
)
=
(
X
′
W−1X

)−1
σ̂2,
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σ̂2 =
(
Y −Xβ̂

)′(
Y −Xβ̂

)/
(21× n− 26).

For computational purposes, we did not use matrix algebra to invert the matrices

but the following identities and transformations

X
′
W−1X =

n∑
i=1

X
′

iW
−1
i Xi and X

′
W−1Y =

n∑
i=1

X
′

iW
−1
i Yi

.

Construction of the Weights

Since we assume that the dijk’s follow a multinomial distribution such as

dij |pij
ind
∼ Multinomial(dij., pij) and p̂ijk =

dijk

dij.
=⇒

p̂ijk

p̂ij3
=

dijk

dij3
,

then Var


p̂ij1
p̂ij2
p̂ij3
p̂ij4

 = 1
dij.


pij1(1− pij1) −pij1pij2 −pij1pij3 −pij1pij4
−pij1pij2 pij2(1− pij2) −pij2pij3 −pij2pij4
−pij1pij3 −pij2pij3 pij3(1− pij3) −pij3pij4
−pij1pij4 −pij2pij4 −pij3pij4 pij4(1− pij4)


Now, let T be a vector with finite variance Σ and mean µ. Take any function

f(T ), then the first order Taylor’s series expansion of f(T ) is

f(T ) ≈ f(µ) + (T − µ)
′
G(µ) where G(µ) is the gradient vector.

Therefore,

Var (f(T )) ≈ Var
(
(T − µ)

′
G(µ)

)
= G(µ)T Var(T ) G(µ),

and

Cov (f1(T ), f2(T )) ≈ Gf1(µ)
T Var(T ) Gf2(µ).

Our three functions are fk(p) = log pijk − log pij4 for k = 1, . . . , 3 .
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Then Var
(
fk(p̂)

)
= 1

dij.

(
1

pijk
+ 1

pij4

)
≈ 1

dijk
+ 1

dij4
, and

Cov
(
f1(p), f2(p)

)
= Cov

(
f1(p), f3(p)

)
= Cov

(
f2(p), f3(p)

)
=

1

dij.pij4
≈

1

dij4
.

It follows that wij =


1
dij1

+ 1
dij4

1
dij4

1
dij4

1
dij4

1
dij2

+ 1
dij4

1
dij4

1
dij4

1
dij4

1
dij3

+ 1
dij4

 .

Approximations

Approximations on the responses and the weights

In order to compute log

(
pijk
pij4

)
pijk=p̂ijk

= log

(
dijk
dij4

)
, i = 1, 2, 3, we used the new

definition d∗ijk of dijk

d∗ijk =

{
10−6 if dijk = 0,
dijk otherwise.

Moreover, for small dijk, Pickle et al. (1996) have shown that one will obtain

better estimates of the λij and the pijk using more stable quantities obtained which

can be obtained computing the averages by regions for small dijk’s such as

d∗∗ijk =

{ ∑
i∈R

∑10
j=1 dijk

∑
i∈R

∑10
j=1

∑
k dijk

∑
i∈R

∑
k dijk

nr
if dijk < 3,

dijk if dijk ≥ 3,

where R = region and nr = number of HSAs in the region R.

The last substitution is motivated by

∑
i∈R

∑10
j=1 dijk

∑
i∈R

∑10
j=1

∑
k dijk

≈ dijk∑
k dijk

and
∑
i∈R

∑
k dijk

nr
≈
∑

k dijk .

Methodology

After fitting model (7), we can deduce the pijk’s by writing the model as follows
log(pij1

pij4
)

log(pij2
pij4

)

log(pij3
pij4

)
...

 = Xβ =


θij1
θij2
θij3
...

 ,
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where 
pij1 = eθij1/(1 + eθij1 + eθij2 + eθij3)
pij2 = eθij2/(1 + eθij1 + eθij2 + eθij3)
pij3 = eθij3/(1 + eθij1 + eθij2 + eθij3)
pij4 = 1/(1 + eθij1 + eθij2 + eθij3).

(8)

Then, we have obtained the estimates β̂ and ̂
Cov

(
β̂
)
= Σ̂ and we have approxi-

mated the distribution of β̂ by

β̂ ∼ N26

(
β, Σ̂

)
.

It is convenient to use a Bayesian approach. Then by taking the non-informative

prior for β, i.e p(β) = 1, it is obvious that approximately

β|d ∼ N26

(
β̂, Σ̂

)
. (9)

Therefore we can draw a sample of 1, 000 β’s from (9). For computational purposes,

we partitioned the parameters as follows

β
26∗1

=


β
1

10∗1

β
2

8∗1

β
3

8∗1

 and Σ̂
26∗26

=


Σ̂11
10∗10

Σ̂12
10∗8

Σ̂13
10∗8

Σ̂21
8∗10

Σ̂22
8∗8

Σ̂23
8∗8

Σ̂31
8∗10

Σ̂32
8∗8

Σ̂33
8∗8

 . (10)

Then, we

i) generate β
1
using the marginal distribution β

1
|b1 ∼ N8

(
β̂
1
, Σ̂11

)
,

ii) generate the conditional distribution of β
2
|β
1
= b1 which is normal and has the

mean

β̂
2
+ Σ̂21Σ̂11

−1
(b1 − β̂

1
),

and covariance

Σ̂22 − Σ̂21Σ̂11
−1
Σ̂12

,
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iii) and finally generate the conditional distribution of β3|β1 = b1, β2 = b2 which is

Normal and has the mean

β̂3 + (Σ̂31, Σ̂32)

(
Σ̂11 Σ̂12
Σ̂21 Σ̂22

)−1 (
b1 − β̂1

b2 − β̂
2

)
,

and covariance

Σ̂33 − (Σ̂31, Σ̂32)

(
Σ̂11 Σ̂12
Σ̂21 Σ̂22

)−1 (
Σ̂13
Σ̂23

)
.
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