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ABSTRACT

We analyze mortality data from prostate, colon, lung, and all other types (called other
cancer) to obtain age specific and age adjusted mortality rates for white males in the U.S.

A related problem is to estimate the relative occurrences of these four types of cancer.

In the recent Atlas of the Unite States Mortality (1996) each type of cancer was
analyzed individually. The difficulty in doing so is that there are many small areas with
zero deaths. We conjecture that simultaneous analyses might help to overcome this

problem, and at the same time to estimate the relative occurrences.

We start with a Poisson model for the deaths, which produces a likelihood function
that separates into two parts: a Poisson likelihood for the rates and a multinomial
likelihood for the relative occurrences. These permit the use of a standard Poisson
regression model on age as in Nandram, Sedransk and Pickle (1999), and the novelty is a
multivariate logic model on the relative occurrences in which per capita income, the
percent of people below poverty level, education (percent of people with four years of

college) and two criteria pollutants, EPAPM25 and EPASO2, are used as covariates.

We fitted the models using Markov chain Monte Carlo methods. We used one of the
models to present maps of occurrences and rates for the four types. An alternative model

did not work well because it provides the same pattern by age and disease.

We found that while EPAPM25 has a negative effect on the occurrences, EPASO2
has a positive effect. Also, we found some interesting patterns associated with the

geographical variations of mortality rates and the relative occurrences of the four cancer

types.
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Chapter 1

Introduction

1.1 Background

Mapping of mortality rates is a valuable public health tool. The primary objectives
in modeling mortality data for an atlas are to detect patterns in the mortality rates
and to identify outliers from these patterns (i.e., interesting “hot-spots”). Here, we
focus on cancer mortality analyses.

The 1996 Atlas (Pickle et al.) presents maps of 18 leading causes of death by sex,
age, and race in the United States for the period 1988-92. This is the first publication
of maps of all leading causes of death in the United States on a small-area scale. In
this Atlas, information previously available only in tabular form or summarized on
single map is presented on multiple maps and graphs. Broad geographic patterns
by age class are highlighted by application of new smoothing algorithm, and the
geographic unit for mapping is defined on the basis of patterns of health care. These
new features allow public health researchers to examine the data at several different
levels, to discern clusters of similar rate areas, to visualize broad geographic patterns,
and to compare regional rate. With these additional tools, important geographic
patterns of cause-specific mortality can be more easily identified.

The age specific numbers of deaths were modeled for each combination of race,

sex, cause and place using mixed effects generalized linear models. Briefly, logarithm
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of the age specific rates were modeled as a function of age, allowing each HSA to have
a random slope within its particular region. Predicted age specific rates for each HSA
were smoothed using a weighted head banging algorithm, with weights equal to the
inverse of the rates of estimated standard errors.

Recently, there has been increased interest in inference about mortality rates for
small geographical areas. Nandram et al. (1999) compared alternative models for es-
timating age specific and age adjusted mortality rates for all cancer for white males.
They used Bayesian methods with four hierarchical models. The alternative specifi-
cations differ in their assumptions about the variation in log(\;;) over health service
areas and age classes. See also Nandram et al. (1999a) for methods used on chronic
obstructive pulmonary disease. Gideon (1999) studied Bayesian methods on Poisson
regression models based on the first model suggested by Nandram et al. (1999) for
breast cancer mortality data. Both non spatial and spatial analyzes were investigated,

by Gideon (1999).
1.1.1 Source of Data

The death counts and number at risk for this project were obtained from records
of all United States death certificates in the fifty states and District of Columbia for
1988-92 and population data for 1990. The number of deaths by age, sex, place of
residence, and cause of death is based on original death certificates reported to the
National Center for Health Statistics (NCHS) by the States. Death certificates with
age not stated were excluded, 0.025 percent of the total. Race was classified following
standard procedures for United States statistics. Hispanics with no racial designation
are included in the “White” category.

The population counts from the 1990 census, classified by age, race, sex, and
county, were multiplied by five to create a denominator corresponding to the five

years of mortality data. In few instances where the calculated number of person



years was less than the reported number of deaths, as when death occurred in a
sparsely populated county before census enumeration, the years at risk were inflated
to equal the total number of deaths due to any cause. The age classes are classified
as 0-4 years, 5-14 years, 15-24 years, ..., 75-84 years, and 85 years and older, coded
as decades 0-.25, 1, 2, 3,..., 9 (Pickle at al., 1996). Further details on the method
of data collection may be found in the Technical Appendix of Vital Statistics of the
United States, 1990.

The quality of the data is determined by the accuracy and completeness of the
information from medical diagnosis to final coding and processing of the underlying
cause of death. Beginning with mortality data for 1968, the underlying cause of death
has been determined by NCHS computerized system that consistently applies the
World Health Organization coding and selection rule to each death certificate using
all conditions reported by certifier. Automation of these tasks and cross verification
of medical conditions coding have reduced errors in assigning underlying cause of
death certificate information to less than one percent. However, the completeness
and accuracy of the information supplied on the certificate and the decedent’s medical
diagnosis remain a potential source of error.

Deaths were initially assigned to a county (or equivalent administrative unit, such
as independent city or parish) according to the residence of the deceased, regardless
of the place of death. There were in all 3141 geographical units, which were further
aggregated into Health Service Areas (Pickle et al., 1996) by a cluster analysis of
where residents aged 65 and over obtained routine short-term hospital care in 1988.
An HSA may be thought of as an area that is relatively self-contained with respect to
hospital care. The median number of counties per HSA is about 2 with range 1 to 20.
The median number of HSAs per state is 16 with range of 1 to 58. With exception

of New York City the area of each HSA is at least 250 square miles.



This project examines the geographic effects of regions as well as HSA. For this
project there are twelve regions and 798 HSA, three of the nine census divisions were
split to make a total of twelve regions to achieve greater homogeneity of rates (Pickle
et al. 1996).

We focus our analyzes on mortality data from all cancer for white males. Cancer
diseases are categorized as colon cancer, lung cancer, prostate cancer and a fourth
type which we call other cancer. This fourth type includes skin, esophagus, stomach,
liver, uterine cervix, multiple myeloma, lymphomas, leukemias, ovary, brain, testis,
mouth, pancreas, kidney, bladder, thyroid, larynx etc.

For each type of cancer we focus on, the death rates rise steadily with age. Lung
cancer has been the leading cause of cancer death in men since the 1950’s and prostate
cancer is primarily a disease of older men, with over 80 percent of all diagnoses
occurring over age 65.

For inference on the proportional distribution of cancer types, we used the covari-
ates income, poverty, education, and two other covariates.

The two other covariates are epapm25 and epaso2 and are called criteria pollu-
tants. The covariate epapm?25 refers to dust, dirt, smoke and other particles sus-
pended in air. The national standard air quality includes up to 10 microns in diam-
eter. Epapm2) includes all the particulate matters up to 2.5 microns in diameter.
The particulate matters were identified as serious airbone threats to human health.

The covariate epaso2 accounts for sulphur dioxide (S02) which is closely tied to the
burning of coal with a high sulphur content. It can form acid rain and has indirect
health effects through contamination of surface water. Sulphur dioxide levels and

particles matterns are higher in the Eastern United States.



1.2 Preliminary Analyzes of the Observed Data

In this project we focus on all cancer data categorized as colon, lung, prostate and

other for white males. In this section, we perform preliminary analyzes on these data.

1.2.1 Methodology for Preliminary Analyzes

Let d;j and n,; denote, respectively, the number of deaths and population at risk
(number of persons years) for age class j and disease k in HSA i (i =1,... ,798;j =
1,...,10, k =1,...,4). The age classes are 0 — 4, 5 — 14, ..., 75 — 84, 85 and up,
coded as 0.25,1, ... ,9, the midpoints of the decade intervals (decade 1 = .25, decade

j=j—1, forj=2...,10).

Our model assumes that the number of deaths, d;;

ind .
dijk|nij) )\ij,pijk ~ Pozsson(nij)\ijpijk), (11)
where );; is the age specific mortality rate over all diseases, j = 1,...,10 , k =

1,...,4, Z:ﬂ pijk = 1,9 =1,...,798. Here p;; is the proportion of individuals at
age 7 who got cancer type k in HSA i.

All the models that we consider assume (1.1).

Inference is desired for

a) the age specific mortality rate A\jjx = \ij pijx and,

10
j=1

b) the age adjusted rate Rix = >, a; Aij pijx Where a; are weights proportional to

the U.S. population in 1940 (used in the atlas construction).

Let d, n, A and p be the vector of the d;ji, nij, Aij and p;;i, respectively. The joint



density of d is
798 10 4

ﬂm@@:HHHWMW”% zm_l
=1 j=1 k=1

798 10 s
_ HH {H =1 nz] szzjk) ijk e w)‘z]} (1 2)
Hk 1 wk

nz] ijPijk

i=1 j=1
B 798 10 dl] Hk 1pz”k (nij)\ij)dij.e—niinj
o HH d.. (1.3)
i=1 j=1 szl ijk~ v
798 10 798 10
~ {TITT wtdloy i) { TITT wia,
i=1 j=1 i=1 j=1

We note that the likelihood function can be viewed is a product of a function of the
pijr and a function of the \;;. Therefore, inference on the p;;;, and the \;; can be
made separately. The first is a Poisson likelihood and the second is a multinomial
likelihood.

By taking the log on both parts of equation (1.2), we get
798 10

log (f(d|ﬂ) A ]_7 Z { Z dzgk IOg Tij z]pmk) nij)\ij}
=1 j=1
798 10 4 798 10 4
azzzmmwwzzgmﬂm%me}
i=1 j=1 k=1 i=1 j=1 - k=1
It follows that the maximum likelihood estimator of \;; is
. d.
Nii = —L=. 14
= (14)

and maximum likelihood estimator of p;;

d;ji
dij.

Then, the maximum likelihood estimator of the age specific mortality rate \;;i is

Pijk = (1.5)

~ ~

Aijk = Nij Dijk, (1.6)

10

i=1@j Aij Diji where a; are weights proportional

the age adjusted rate R; is R, = >
to the U.S. population in 1940 (used in the atlas construction).

We will call p;jx, S\ij and RZ the observed values of p;ji, A\i; and R; respectivley.
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1.2.2 Mapping the Observed Rates

Table 1.1 contains the number HSA with zero observed deaths by age-class and dis-
ease. A very large Number of HSAs contains no observed death for age classes smaller

than 4. That is the data are very sparse.

Age Class | Prostate | Colon | Lung | Others
1 796 797 788 397
2 795 792 791 255
3 790 717 757 184
4 786 496 536 97
5 722 265 149 39
6 387 118 23 18
7 7 35 3 1
8 8 8 0
9 4 9 2 0
10 13 36 22 11

Table 1.1: Number of HSAs with Zero Observed Deaths

Age Class | Prostate | Colon | Lung | Others

1 776 469 520 47

2 722 265 149 39

3 387 118 23 18

4 7 35 3 1

5 8 8 0

6 4 9 2 0

7 13 36 22 11

Table 1.2: Number of HSAs with Zero Observed Deaths After Combining the First 4
Age Classes

Because of the sparseness of the data (Table 1.1), it is difficult to map age classes
1, 2, 3 and 4. We combined the first four age classes to form one so only 7 age classes
remain as shown in Tables 1.2 and 1.3. This table contains also the standard million

population used for age adjustment, proportional to total U.S. population in 1940.

8



We can see in the table that there are still many HSAs with 0 observed deaths for

age class 1 and 2.

Age Class | Age (years) | Standard Population

1 0-34 594,159
2 35-44 139,237
3 45-54 117,811
4 55-64 80,294
5 65-74 48,426
6 75-84 17,303
7 85 and older 2,770

Table 1.3: Age Classes and Standard Population Used for Age Adjustment Taken
from Pickle et al. (1996)

Region | 1 | 2 | 3|4 |5 6 7! 8 9 10|11 12
# HSA | 23149 | 38 | 88|83 | 121 | 45 | 105 | 115 | 40 | 38 | 48

Table 1.4: Number of HSAs by Region

Table 1.4 contains the number of HSAs per region. This is a table of 798 HSAs
over the continental U.S.

Since the data for the first 4 age classes are too sparse across age class for prostate
and colon cancer, we defined the death rate of the first age class by the weighted

average

v Xj—1a5%Nij
)\ZJ = )\i(j—l—?)) for ] = 2, cee ,7

Then, the age adjusted death rates were computed using the weights

{ ax] = ijzl a;

a*x; = a(j+3) for ] = 2, e ,7.
In Tables 1.5 and 1.6 we present the mean, standard deviation and median of the

observed death rates over HSAs. The means for age class 1 are essentially zero and

9



they increase across age classes for each disease.

All Cancer Prostate Colon Lung
Age Class Mean Std Mean Std Mean Std Mean Std
1 6.6721 | 3.6171 | 0.0041 | 0.0400 | 0.2770 | 0.5738 | 0.2046 | 0.4737

36.487 | 15.335 | 0.1403 | 0.7101 | 3.5473 | 4.8244 | 7.7909 | 7.2059
154.52 | 43.986 | 2.3117 | 5.3532 | 14.689 | 12.313 | 59.662 | 27.873
504.25 | 99.938 | 22.969 | 14.994 | 46.763 | 22.326 | 216.91 | 71.176
1091.1 | 169.04 | 108.92 | 35.244 | 108.54 | 37.292 | 438.72 | 119.71
1855.6 | 249.46 | 331.19 | 90.699 | 211.30 | 73.614 | 577.32 | 154.11

7 2666.5 | 550.65 | 719.81 | 269.48 | 368.29 | 176.94 | 500.28 | 241.34
8 (Age adjusted) | 160.02 | 20.645 | 15.138 | 2.9028 | 16.076 | 3.8540 | 58.272 | 14.948

S| O x| W N

Table 1.5: Mean and Standard Deviation per 100,000 population for the Observed
Death Rates (\i;x) over HSAs

Age Class All Cancer | Prostate | Colon | Lung
1 6.1852 0.0000 | 0.0000 | 0.0000
35.250 0.0000 | 2.7761 | 7.0054
153.98 1.0040 | 13.461 | 57.571
507.02 21.910 | 46.879 | 214.22
1104.8 107.45 | 105.76 | 433.53
1869.5 328.78 | 209.78 | 580.22
7 2663.7 709.44 | 359.00 | 487.41

8 (Age adjusted) 161.82 15.034 | 15.860 | 58.037

SO x| W N

Table 1.6: Median per 100,000 population for the Observed Death Rates (\;jx) over
HSAs

Tables 1.7, 1.8, 1.9 and 1.10 present the means of the observed proportions of
death p;;r over HSAs by region and age class for each disease. The observed rates for
prostate cancer do not vary much among the regions while they increase across age
class except for region 1 and age class 1. This is due to the fact that there is little

spatial clustering for prostate cancer.
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Region 1 2 3 4 5 6 7

4.546 | 2.257 | 17.842 | 47.509 | 99.879 | 170.449 | 255.581
1.940 | 2.986 | 14.382 | 45.995 | 99.632 | 168.111 | 254.321
1.766 | 2.916 | 14.076 | 45.610 | 99.277 | 167.862 | 254.839
2.002 | 2.959 | 13.368 | 45.692 | 98.604 | 170.708 | 257.846
1.728 | 3.290 | 13.300 | 44.193 | 96.953 | 169.023 | 257.579
1.837 | 3.181 | 13.680 | 44.175 | 97.052 | 170.427 | 258.583
1.851 | 3.074 | 13.801 | 44.495 | 97.977 | 172.038 | 260.633
1.721 | 3.015 | 14.127 | 44.523 | 97.861 | 172.394 | 261.137
1.541 | 2.921 | 13.808 | 44.136 | 97.222 | 171.334 | 259.702
1.513 | 3.054 | 13.948 | 44.568 | 97.939 | 172.608 | 261.758
1.495 | 3.025 | 14.020 | 44.682 | 98.196 | 173.039 | 262.473
1.363 | 3.179 | 14.166 | 45.544 | 99.543 | 174.791 | 263.866

= =
DBl | o ot k|||~

—
[\

Table 1.7: Mean (1072) for the Observed p;ji. for Prostate Cancer by Region and Age
Class

Region 1 2 3 4 5 6 7
1 38.182 | 82.957 | 91.359 | 102.574 | 122.905 | 134.179 | 151.832
2 39.525 | 81.723 | 93.953 | 110.361 | 125.177 | 137.503 | 153.308
3 40.228 | 83.671 | 95.420 | 107.217 | 120.841 | 133.336 | 149.101
4 41.035 | 85.538 | 92.407 | 101.107 | 113.425 | 125.835 | 143.655
5 42.083 | 88.517 | 90.295 | 97.402 | 109.149 | 123.200 | 142.247
6 40.402 | 88.743 | 93.055 | 98.829 | 109.744 | 123.815 | 145.022
7 40.222 | 89.095 | 93.345 | 99.249 | 109.783 | 123.719 | 144.790
8 40.038 | 88.328 | 93.767 | 99.185 | 109.541 | 123.685 | 144.661
9 39.928 | 88.575 | 92.922 | 97.531 | 106.780 | 121.312 | 142.594
10 39.392 | 88.950 | 92.687 | 97.735 | 106.465 | 120.621 | 141.924
11 39.185 | 88.883 | 92.742 | 97.764 | 106.336 | 120.595 | 141.761
12 37.754 | 87.482 | 91.651 | 97.192 | 105.828 | 119.485 | 139.642

Table 1.8: Mean (1072) for the Observed p;j; for Colon Cancer by Region and Age
Class
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Region 1 2 3 4 5 6 7

39.091 | 203.160 | 343.293 | 385.306 | 342.889 | 288.376 | 179.164
36.615 | 200.691 | 348.815 | 383.950 | 349.294 | 284.484 | 182.140
37.284 | 203.854 | 356.174 | 393.707 | 358.930 | 290.799 | 183.819
39.748 | 213.306 | 374.410 | 411.430 | 375.226 | 300.825 | 191.101
39.368 | 219.647 | 383.533 | 423.151 | 387.028 | 307.613 | 192.510
38.828 | 215.159 | 375.936 | 421.382 | 386.156 | 304.683 | 190.719
38.287 | 214.109 | 373.982 | 419.355 | 384.439 | 302.588 | 188.500
37.613 | 214.741 | 373.785 | 419.727 | 386.249 | 303.508 | 188.482
36.578 | 214.899 | 374.813 | 422.927 | 390.367 | 307.269 | 190.625
35.926 | 211.417 | 371.709 | 420.396 | 388.985 | 305.784 | 189.657
35.697 | 210.597 | 371.142 | 419.938 | 388.486 | 305.410 | 189.148
33.559 | 204.696 | 366.529 | 415.858 | 384.794 | 303.653 | 189.752

= =
DBl o o]l o~

—
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Table 1.9: Mean (1073) for the Observed p;j for Lung Cancer by Region and Age
Class

Region 1 2 3 4 5 6 7
1 918.182 | 711.625 | 547.507 | 464.612 | 434.327 | 406.996 | 413.423
2 921.921 | 714.600 | 542.851 | 459.694 | 425.897 | 409.902 | 410.231
3 920.722 | 709.559 | 534.331 | 453.465 | 420.953 | 408.002 | 412.241
4 917.215 | 698.198 | 519.815 | 441.772 | 412.746 | 402.632 | 407.399
5 916.821 | 688.547 | 512.873 | 435.254 | 406.870 | 400.165 | 407.665
6 918.933 | 692.917 | 517.329 | 435.614 | 407.048 | 401.076 | 405.676
7 919.640 | 693.722 | 518.873 | 436.901 | 407.801 | 401.655 | 406.077
8 920.629 | 693.916 | 518.322 | 436.565 | 406.349 | 400.412 | 405.719
9 921.954 | 693.605 | 518.456 | 435.406 | 405.632 | 400.086 | 407.079
10 923.169 | 696.578 | 521.656 | 437.302 | 406.611 | 400.987 | 406.660
11 923.623 | 697.494 | 522.095 | 437.617 | 406.981 | 400.956 | 406.618
12 927.324 | 704.643 | 527.655 | 441.406 | 409.835 | 402.071 | 406.741

Table 1.10: Mean (1072) for the Observed p;;x for Other Cancer by Region and Age
Class

Figure 1.1 presents the age specific mortality rates for prostate, colon, lung and
other cancer. The death rates for prostate, colon and lung cancer are essentially zero
until age class b where they begin to increase steadily with age class. The observed
rates for lung cancer, which is the leading cause of cancer death in men, increase

quickly from age class 5 to 9 where it drops. Prostate cancer being primarily a dis-

12



ease of older men with over 80 percent of all diagnoses occurring over age 65, is nearly

zero until age class 5 an then increases steadily to be more frequent than lung cancer

for age classes 9 an 10. The death rates for colon cancer increase slowly compare to

prostate and lung cancers after age class 4.

Figure 1.1: Observed Death Rates for the four types of Cancer
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In Figures 1.2 and 1.3 we present the maps for the observed mortality rates. The
maximum likelihood estimates provide no smoothing. Apparently, there are no pat-
terns for prostate and colon cancer for age specific rates 40 and 70. However higher
adjusted rates are clustered in Mountain North and West North Central North for
prostate cancer, and in the North East (age 70) and East North Central for colon
cancer. For lung and all cancer, higher age specific and age adjusted mortality rates

are clustered around the Appalachian region (Mississippi to West Virginia).
Lung cancer has been the leading cause of cancer death among men since the

1950’s. Prostate cancer is primarily a disease of older men, with over 80 percent of

all diagnoses occurring over age 65.

14



Age Adjusted

Fig. 1.2: Maps of the Observed Death Rates by Type of Cancer
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Fig. 1.3: Maps of the Observed Death Rates by Type of Cancer
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Figure 1.4 contains the box plots of the observed proportions of death by disease
(piji). For prostate cancer the proportion of death increase steadily with age classes
from around 0% to 26 %. Colon cancer seems to be low for all age classes, the pro-
portion of deaths increases slowly from 5% to 12%. The proportion of deaths for lung
cancer increases steadily until age 60 from 0% to 43% and then decreases to 19% at
age 85 and older. As expected, other cancer is the leading cause of death before age
30 with a proportion of about 95% and it is decreasing steadily across age class to
a proportion of about 42%. Lung cancer appears to be a disease of the middle age.

Other cancers affect mostly young people.
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In Figures 1.5 and 1.6 we present the maps for the relative occurrences. The high
proportions of deaths by prostate cancer seem to be more frequent in the West side
of the country while they are clustered in the East North for colon cancer. For lung
cancer, higher proportions of deaths are clustered around the Appalachian region

(Mississippi to West Virginia).

1.3 Model for the \;;

We use the fourth model suggested by Nandram et al. (1999) for the analysis of the

mortality rates from all cancer.

We assume that d;;|n;;, \ij ind Poisson(n;jN;j). We fit a hierarchical model with

a single regression coefficient. The basis model for the analysis is as follows
IOg )\ij = Q; ﬁ + v + 5j (17)

where z; = (1, decade;, (decade;)?, (decade;)?, maz{0, (decade;—knot)*}) with decade; =
0.25, decadej = 7 — 1 and for 5 = 2,...,10.

It is assumed that v;|o2 ~ N(0,0?), 6;|03 b N(0,03) and the value of the knot
that maximizes the likelihood of U.S. marginal data is 6 for “all cancer”.

Here, p(3) = 1 and 072,052 ~ I'(s, g) where a = b = 0.002 to obtain a proper
diffuse prior.

Nandram et al. (1999) showed how to fit this model for all cancer. They found
that the linear structure (1.7) provided a substantially improved fit over a model in
which 0% = 0. Note that log \;; = g; g will smooth the observed data too much.
Therefore, the smoothing is adjusted by adding two heterogeneous terms : v; and
;. Note only the modest ten parameters d; are added. We describe the Metropolis-

Hastings algorithm in Appendix A.
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The computations were done by region. They ran 21000 iterates, “burning in”

1000 and choosing every 20" to obtain 1000 iterates which we used for output anal-

yses. We will call this model the NSP model.

1.4 Thesis Overview

In the current chapter, we started with descriptive and exploratory data analysis,
and we discussed the source of the data, data summary and pictorial representation
of the data using box plots and line plots. The maps of the observed age specific
and age adjusted death rates were also drawn. We observe that the data are very
sparse across age classes, especially for prostate and colon cancer. A problem of weak

identifiability across age class arose and was resolved by amalgamating the age classes.

In the present study we will perform Bayesian analyses of cancer mortality data
by type of cancer for white males. We focus on analyzing the relative occurrences of
each cancer type. Ultimately, we wish to determine patterns in the mortality data
and identify outliers from these patterns (i.e., interesting “hot-spots®). We investi-
gate Poisson regression model first on 2 approximate models and then on an exact

one. We construct maps for both age specific and age adjusted mortality rates.

Since inference can be made separately on the mortality rates and the proportions
of death by type of cancer, two models have to be fitted at a time. The model sug-
gested by Nandram, Sedransk and Pickle (1999) reviewed in Section 1.3, henceforth
the NSP model, is used to model the mortality rates (see Section 1.3). The objective

in this project remains to investigate models for the proportions of death by disease.

In Chapter 2, we will fit two different approximate models to the data. Maps will
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be constructed with the parameter estimates for age specific and age adjusted rates.

We also construct box plots for the proportions of deaths by cancer types.

In Chapter 3, we apply the model first used to model the mortality rates by type
of cancer. This model is not much affected by the sparseness of the data and we do
not need to amalgamate the age classes. We then deduce the proportions of death by
disease and fit a more elaborate model which serves as an alternative and improved
model to the first approximated one presented in Chapter 2. Maps for mortality rates

and proportions of death by type of cancer are obtained.

Finally, we present our conclusions, both methodological and substantive. We

also present an exact model that we would have preferred to fit, but for which we

experienced much difficulty with the Markov Chain Monte Carlo implementation.
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Chapter 2

Approximate Models

In this chapter we describe and fit two different approximate models to the data be-
cause the data are very sparse (many HSAs have zero deaths) especially in the first
4 age classes, we amalgamated them as follows: age classes 1,2,3,4 as group 1, 5 as

group 2, 6 as group 3, ..., 10 as group 7.

No new model for the \;; is discussed. We simply use the NSP model.

The two models for the p;;;, differ in the effects being included in this model. The
second approximate model serves as an alternative and improved model to the first
one. This second model does not account for age class and disease distinctively, only
the interaction between age and disease remains. We also remove the intercept from

the covariates for computational stability.

2.1 First Approximate Model for the p;;;’s

2.1.1 Model Description

First, we assume the multinomial logit

log (M> = Z;Q + 95 + M + Ojk.
Dija
We use the corner point restrictions which are n3 =0, 73 =0, 01, = 0, for £k =1,2,3

(prostate, colon and lung respectively), k=4 corresponds to other cancer, ;5 =

24



0, for j=2,...,7.

Then we take

log (%) :Z;Q+’Yj+?7k+5jk+eijk, i=1,...,798, j=1,...,7, k=1,2,3
ij4
(2.1)
€ij1 -
where g;; = | €2 N (Q, UQwij) and Z; is the matrix containing the 5 predictor
3%3
€ij3

variables such as income, poverty, college, epapm?25 and epaso2. The variable income,
epapm?25 and epaso2 were divided by 10, 000 for computational stability. The p;;. are
the MLEs with an adjustment for zeros.

Pija dija

In order to compute log (M> = log (d"—j’“>, 1 = 1,2,3, we used the new
Pijk=Pijk

definition df;, of dij
« 10_6 if dijk: = 0,
ijk dijk otherwise.

Moreover, for small d;;;, Pickle et al. (1996) have shown that one will obtain
better estimates of the \;; and the p;;; using more stable quantities obtained which
can be obtained computing the averages by regions for small d;j;’s such as

2icR 2]10:1 dijk 3 icr 2ok dijk if dijk < 3’

Z‘kk = 2R 271'0=1 >k dijk nr
diji  if dijr > 3,

where R = region and n, = number of HSAs in the region R.

The last substitution is motivated by

10
Yien =1 dijk ~ diji and 2icr 2ok dijk ~ Z i
Sicr gon Sk dige 2ok dijk ny k Qij

First we obtain the least square estimates of a,v,7,d. Let 8’ = (Q/, v, 5_’) ,
then we have
= XWwx)" x'wly,
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Coo(B) = (X'W'X) 6%,
— (Z—Xg)/(z—xg)/(m X n — 26).

The following identity simplifies the computations

XWX =) X,W,'X; and X W'Y =Y X, W'Y

i=1 =1

Then we approximate the distribution of these parameters by a normal distribu-
tion

B ~ N (g, 0@@)).

Now pretending as though 3 has a uniform non informative prior, we have

Q|data ~ N26 (ﬁ, CE)@)) (22)

It is straight forward to obtain a sample of 1000 random deviates from (2.2). By
substituting these into (2.1) we obtain an approximation to the distribution of {p;;i},

see Appendix A. However, this is a rough way to smooth the MLEs of the p;jx.

2.1.2 Estimates and Maps

In order to draw the maps, 1000 of p;;; and \;; were drawn from the starts ob-
tained from the previous models as explained in the previous sections. One sample
of 1000 death rates \ijr = Aij pijr and adjusted death rates R;, = Zjﬂl a; Nij Dijk
were deduced. We summarize the results by maps using only the means and standard
deviations of the sample. Each age class and disease were considered separately for

mapping across the U.S.

In Table 2.1 we present E(.|d) and SD(.|d) for the age specific and age adjusted (age
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All Cancer Prostate Colon Lung
Age Class | Mean | Std | Mean | Std | Mean | Std | Mean | Std
1 6.083 | 1.162 | .0000 | .0000 | .5561 | .1088 | .2023 | .0401
37.45 | 5.104 | .0002 | .0000 | 5.848 | .8455 | 8.325 | 1.222
152.9 | 20.65 | 3.941 | .5549 | 21.93 | 3.093 | 55.88 | 7.981
512.5 | 62.14 | 28.74 | 3.600 | 120.6 | 14.90 | 183.6 | 23.34
1070 | 149.7 | 115.8 | 16.66 | 241.2 | 34.34 | 358.5 | 52.37
1887 | 188.1 | 324.5 | 32.82 | 430.4 | 43.24 | 507.1 | 52.15
2724 | 263.6 | 657.3 | 63.80 | 650.6 | 62.94 | 480.1 | 47.33
160.0 | 17.46 | 15.82 | 1.656 | 34.34 | 3.806 | 50.06 | 5.916

O[O x| W N

Table 2.1: Mean and Standard Deviation per 100,000 population of the Death Rates
(Aijr) over HSAs

class 8) rates averaged over HSAs. They look similar to the observed rates except
for colon cancer for which the estimated rates are almost two times larger than the
observed ones after age class 2, and for prostate cancer for which the rates are overes-
timated until age class 5. Based on the model, the estimated age mortality rates for
age class 1 are still approximately zero. We observe that the values of the estimates

increase across age class.

Table 2.2 presents the means over the 1000 simulations of the parameter estimates.
The estimates follow the patterns observed in the mortality data. The estimates
accounting for prostate and colon cancer are mostly negative except for prostate
cancer at age class 7 (85 and older) since lung cancer is the leading cause of cancer
death and the disease for which the fixed effect on disease 13 = 0. The parameter
estimates accounting for age class and disease are significant. The proportion of
deaths by prostate cancer increases. For colon cancer, they increase until age class
4 (age 60) and then drop. For lung cancer, they increase with age class and drop
after age class 7 (85 and older) as in the observed data. Concerning the covariates,
we observe that the most significant are the intercept, epapm25 and income. The 4

remaining covariates do not seem to explain a lot of the variation. We also can notice
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Covariates | Mean Std Ratio
Intercept | -3.049 | 0.2361 | -12.9
% Income | -.1377 | 0.0291 | -4.73
% Poverty | -.0082 | 0.0042 | -1.95
% College | -.0027 | 0.0031 | -0.87
Epapm25 | -6.623 | 1.4569 | -4.55
Epaso2 0.9549 | 0.3745 | 2.55
Yo 2.2881 | 0.2363 | 9.68
¥3 3.0728 | 0.2308 | 13.31
Y4 3.3400 | 0.2284 | 14.58
¥s 3.3273 | 0.2289 | 14.53
Y6 3.1083 | 0.2295 | 13.53
vz 2.6501 | 0.2300 | 11.52
021 -1.595 | 1.5512 | -1.03
031 6.9297 | 1.2255 | 5.65
041 8.1146 | 1.2167 | 6.67
051 8.9451 | 1.2141 | 7.37
d61 9.7457 | 1.2119 | 8.04
071 10.639 | 1.2114 | 8.78
092 -1.139 | 1.0393 | -1.10
032 -1.700 | 1.0369 | -1.64
04 -1.786 | 1.8730 | -0.95
050 -1.588 | 1.5987 | -0.99
062 -1.234 | 1.5911 | -0.77
070 -.6002 | 1.5928 | -0.38

m -10.27 | 1.9714 | -5.21

72 0.3418 | 1.5950 21

Table 2.2: Mean and Standard Deviation of # over the 1000 Simulations

that the parameters corresponding to the age classes are all significant. However the
interaction of age class and disease is only significant for prostate cancer and after
age class 1. The parameter accounting for disease is very significant for prostate but
is not for colon cancer.

In Figure 2.1 we present the distributions of the proportions of deaths by disease. The
box plots are similar to the one obtained from the observed proportions in Figure 1.4
for prostate, lung and other cancers. However the pattern for colon cancer is quite

similar across age class but the proportions are overestimated.
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Figure 2.1: Box Plots of the Proportions of Deaths by Disease
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In Figure 2.2, 2.3, 2.4 and 2.5 we present the maps of the mortality rates (for age
specific 40, 70 and age adjusted) and of the relative occurrences respectively. The
same pattern is observed for each disease and each age class as a concentration of
high mortality rates around the Appalachian region (Mississippi to West Virginia).
We observe that the mortality rates obtained for colon cancer are slightly different

from the observed ones as in Table 2.1.
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Fig. 2.2: Maps of the Estimated Death Rates by Type of Cancer
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Fig. 2.3: Maps of the Estimated Death Rates by Type of Cancer
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Fig 2.4: Maps of the Proportions of Deaths (10-2)
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2.1.3 Concluding Remarks

We fitted a simple approximate model to the p;;, that does not account for hetero-
geneity among health service areas. As expected, this approximate model does not
appear to fit the data very well. Our mapping suggests that the proportion of death
follow the same pattern across age classes and specific types of cancer, of course, with
different intensities which give us the same pattern for the all cancer map and the

specific disease maps.

The objective in the next section is to provide distinct patterns for each disease
across age classes. To do so we investigate the fit of another approximate model which
will serve as an alternative and improved model to the previous one by obtaining

slightly smoother estimates and maps with age and disease specific patterns.

2.2 Second Approximate Model for the p;;;’s

2.2.1 Model Description

We only modify the model for the p;j;’s and use the same model for the \;; as the

one we proposed in Section 2.1. We retain the 7 age classes.

We looked at the multinomial logit fixed effects model

Yijr = log (M> = Za+ Ok + €ijk,
Dija

where i =1,... ,N, j=1,...,¢, k=1,2,3, and ¢ iﬁfiN(Q,a?wij).
3%3

Z; is defined as in Section 2.2 but without an intercept, 0']»_2 ~ I'( ,g) ,a=b=

N

0.002 for j =1,... , ¢, and there are no constraints on the 60,;.
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Then Y, nd N(Z Oé—i-HJ,O'JQW )
Letting N = 798, ¢ = 7 and ng = ();;, the joint posterior density obtained by
assuming flat priors for all location parameters is

3/2 1 w1 /
5.2 ( (ZZQ"’Q])) ij (_i]-_(gig"’gj))
(04,9],0]|d x ””{( ) T207 Wi . }

i=1 j=1

c a/2+1 b
1 ]
X H D) (& J.
ol
ey j

J=

Then we can deduce the posterior distribution

2|a 0. d ~ F(?’N‘i‘a b—i—zi(g (ZO‘+9 ))/ i (gij_(Z;Q-l-Qj))).

y Ljr 2

2 ’ 2
(2.3)

Since the conditional posterior densities of o and §; are difficult to identify, we use
the second order Taylor’s series approximation. We A denote the logarithm of the
conditional posterior density for each parameter such as for example for a

Z Z (Wit — (Zi+ 651,)) Qigiara Yigha — (Ziw + 0j1,))

,J J k1,ko=1

Then
dA(« !
dé{_) = — Z Z kale Yijko — (Zzg + HJkQ))ZZ
& i, J kl,kQ 1
d*A(a)

de_ = Z Z ngklkg Z Z

%,J J k1,ko=1

Therefore, we approximate the distribution of a by

. -1
O{|9J, 3_2 z/r\zsi {(Z Z QZ]kle Z Z)

1,J J klkgl

(555t ) (£ 4 3 s

1,7 -7 kl,kg 1 -7 kg 1
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By the same methodology, we approximate the distribution of §; by

0,la,0;2 ™ {(Z QJ> N (Z Q5 (y,, — g@) , o7 (Z QJ> _1} (2.5)

We use the Gibbs sampler to generate 1000 estimates of a, 6 drawing from (2.3),
(2.4) and (2.5) in turn; the convergence was rapid. In fact, we dropped out the first
100 and took the next 1000 iterates to make inference.

Finally, we deduce the corresponding 1000 p;;, as explained in Appendix B from
the Gibbs estimates so we have an estimate of the distribution of the p;j;; each based
on 1000 samples. The idea is to have smooth estimates of the p;j;. This is a slightly
refined procedure relative to the first one presented in the previous section.

We could have separated out 6;;, into its components as in the first approximation

but we simplify the computations somewhat.

2.2.2 Estimates

We look at two cases. In the first case the reference parameter is other cancer and

the second case the reference parameter is prostate cancer.
Reference Parameter is Other Cancer

Tables 2.3 and 2.4 present the means over the 1000 simulations of the parameter
estimates. The estimates follow the patterns of the observed mortality data. All the

parameters are significant except poverty.

In Table 2.5 we present E(.|d) and SD(.|d) for the age specific and age adjusted
(age class 8) rates average over HSAs. They look similar to the observed ones except

for colon cancer for which the estimated rates are underestimated after age class 2 and
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Covariates Estimates
Mean Std Interval Ratio

% Income | -0.112 | 0.018 | [-0.124,-0.100] | -6.22
% College | -0.007 | 0.003 | [-0.009, -0.006] | -2.33
% Poverty | -0.004 | 0.0027 | [-0.006, -0.003] | -1.48
Epapm25 | -4.709 | 0.988 | [-5.387 ,-4.034] | -4.77

EpaSO2 | 0.7217 | 0.251 | [0.553, 0.883] 2.87

Table 2.3: Mean and Standard Deviation of the Estimates of «

Prostate Colon Lung
Age Class | Mean | Std | Mean | Std | Mean | Std
1 -13.713 | 0.350 | -2.780 | 0.081 | -3.087 | 0.078

-15.624 | 0.325 | -1.761 | 0.047 | -0.740 | 0.038
-4.721 | 0.107 | -1.857 | 0.046 | 0.127 | 0.037
-2.894 | 0.047 | -1.749 | 0.042 | 0.478 | 0.035
-1.636 | 0.038 | -1.529 | 0.040 | 0.499 | 0.035
-0.659 | 0.035 | -1.250 | 0.036 | 0.220 | 0.034
0.037 | 0.035 | -0.948 | 0.039 | -0.484 | 0.037

N| O O x| W N

Table 2.4: Mean and Standard Deviation of the Estimates of 6

for prostate cancer for which the estimated rates are underestimated until age class 6.
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All Cancer Prostate Colon Lung
Age Class | Mean | Std | Mean | Std | Mean | Std | Mean | Std
1 6.078 | 1.160 | .0000 | .0000 | .2745 | .0534 | .2020 | .0393
37.51 | 5.198 | .0000 | .0000 | 3.367 | .4914 | 9.342 | 1.364
152.8 | 20.69 | .5323 | .0748 | 9.292 | 1.305 | 67.56 | 9.488
512.3 | 62.19 | 9.123 | 1.141 | 28.65 | 3.582 | 265.6 | 33.21
1069 | 149.2 | 62.64 | 8.991 | 69.68 | 10.00 | 529.6 | 76.01
1887 | 187.6 | 294.1 | 29.68 | 162.9 | 16.44 | 708.2 | 71.48
2723 | 260.6 | 853.5 | 82.02 | 318.7 | 30.63 | 506.7 | 48.69
159.9 | 17.42 | 11.28 | 1.105 | 11.10 | 1.215 | 70.01 | 8.103

O[O x| W N

Table 2.5: Mean and Standard Deviation per 100,000 population of the Death Rates
(Aijr) over HSAs
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In Figure 2.6 we present the distribution of the proportions of death (p;;x) by
disease. The patterns of the box plots across the age classes look similar to the one
obtained from the observed proportions in Figure 1.4 for prostate, lung and other
cancers but smoothed. The patterns across age classes and the estimated proportions

are similar.
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Figure 2.6: Box Plots of the Estimated Proportions of Death by Disease
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Reference Parameter is Prostate Cancer

Tables 2.6 and 2.7 present the means over the 1000 simulations of the parameter
estimates. The estimates follow the patterns of the observed mortality data. All the

parameters are significant except epapm25.

Covariates Estimates
Mean | Std Interval Ratio
% Income | 0.232 | 0.039 | [.206,.258] 5.95
% College | -0.037 | 0.006 | [-.041,-.033] | -6.17
% Poverty | 0.008 | 0.004 | [.005,.011] 2
Epapm25 | 2.987 | 2.098 [1.59,4.39] 1.42
EpaSO2 | 1.188 | 0.538 | [.829,1.55] | 2.21

Table 2.6: Mean and Standard Deviation of the Estimates of «

Prostate Colon Lung
Age Class | Mean | Std | Mean | Std | Mean | Std
1 8.938 | 0.160 | 10.392 | 1.393 | 17.511 | 1.364

9.431 | 0.190 | 12.234 | 0.676 | 15.569 | 0.411
2.253 | 0.177 | 5.218 | 0.443 | 6.514 | 0.213
-0.186 | 0.088 | 2.637 | 0.146 | 2.886 | 0.091
-0.842 | 0.073 | 1.588 | 0.086 | 1.760 | 0.075
-1.110 | 0.073 | 0.591 | 0.079 | 1.128 | 0.074
-1.173 | 0.074 | -0.597 | 0.088 | 0.774 | 0.082

N[O O x| W N

Table 2.7: Mean and Standard Deviation of the Estimates of 6

In Table 2.8 we present E(.|d) and SD(.|d) for the age specific and age adjusted
(age class 8) rates average over HSAs. They look similar to the observed rates except

for colon and prostate cancer for which the estimated rates are underestimated.

In Figure 2.7 we present the distribution of the proportions of deaths by disease.
The patterns of the box plots across age classes and the estimated proportions of death

little bit different from the one obtained from the observed proportions in Figure 1.4
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All Cancer Prostate Colon Lung
Age Class | Mean | Std | Mean | Std | Mean | Std | Mean | Std
1 6.078 | 1.160 | .0000 | .0000 | .0029 | .0006 | .0345 | .0066
37.51 | 5.198 | .0000 | .0000 | .0858 | .0119 | 1.686 | .2336
152.8 | 20.69 | .1399 | .0183 | 1.708 | .2314 | 34.04 | 4.610
512.3 | 62.19 | 12.20 | 1.421 | 12.71 | 1.547 | 213.7 | 26.02
1069 | 149.2 | 71.54 | 9.612 | 38.59 | 5.422 | 438.5 | 61.62
1887 | 187.6 | 250.1 | 23.95 | 103.2 | 10.49 | 565.7 | 57.49
2723 | 260.6 | 568.2 | 54.19 | 220.2 | 21.71 | 391.9 | 38.63
159.9 | 17.42 | 10.36 | .9589 | 5.500 | .5681 | 53.54 | 6.003

O[O x| W N

Table 2.8: Mean and Standard Deviation per 100,000 population of the Death Rates
(Aijr) over HSAs
for prostate, lung and other cancers. Indeed the proportions of death for prostate
and colon cancer are underestimated.

The box plots obtained with other cancer as the reference match the observed

ones better.

43



— — — — — — — — — ——
— — — — —~ —~ <> <> — ——
— < — <> — <> — <> —

L L L L L L L L L L

T

Figure 2.7: Box Plots of the Estimated Proportions of Deaths by Disease
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2.2.3 Maps

Since the results are similar but match the observed mortality rates better with other

cancer as the reference parameter, we only drew and analyzed the corresponding maps.

In Figures 2.8 and 2.9 we present the maps for age specific (40, 70) and age ad-
justed mortality rates by disease. The same pattern of concentration of high mortality
rates around the Appalachian region (Mississippi to West Virginia) is observed for
each age class across disease. Only a slight improvement is observed compared to the

first approximate model fitted in Section 2.2.

In Figures 2.10 and 2.11 we present the maps for age specific 40 and 70 of the
proportions of deaths by type of cancer. The map for prostate cancer at age 40
clearly show that the model encounters major difficulties. The remaining maps show
some improvement from the first model since they match the maps of the observed

proportions presented in chapter 1 better.
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Figure 2.8: Maps of the Estimated Death Rates by Disease
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Fig. 2.9: Maps of the Estimated Death Rates by Type of Cancer
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Fig 2.10: Maps of the Proportions of Deaths (10-2)
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2.3 Concluding Remarks

In this section we introduced two simple approximate models for the p;;; that seem
to account well for heterogeneity among Health Service Areas for each disease. The

maps have the same pattern for each disease.

Only slight improvements were observed with the second model. The estimates
are still very smoothed and our mapping still suggests that the proportions for each
disease category do not change among HSA. Besides the distribution of the propor-
tions of death by disease obtained from the second approximation are closer to the

observed ones.
Since the data are very sparse for prostate cancer, we fitted the model twice, once
with reference parameter others cancer and once with prostate cancer. The results

are slightly closer to the observed data with other cancer as the reference.

In Chapter 3, we follow up further by first fitting the model used previously

for the \;; to the A;j; and then fit an improve model to the p;j.
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Chapter 3
An Exact Model

The objective in this chapter is to investigate if there are different map patterns for

each type of disease, and to obtain improved precision.

The models we studied in the previous chapters did not fit the data well because
they produce one map pattern among the different types of cancer. In this chapter,
we first focus on a model for the \;j; which is a generalization of the model presented
in Chapter 2 for the \;; to each disease, and then we deduce the proportions of death

by disease pijx.

Note, in particularly, in this chapter we use all 10 age classes.

3.1 Model for the \;j;

The basis model generalized from (1.7) is as follows
log \iji = &; Bk + Vi + Ojk

where z; = (1, decade;, (decade;)?, (decade;)?, maz{0, (decade;—knot)*}) with decade; =
0.25, decade; = j —1for j =2,...,10 and k = 1,... ,4 for each disease prostate,

colon, lung and others cancer respectively.
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It is assumed that vg|o?, N(0,0%,), k|03, w N(0,03,), and the value of the

knot that maximizes the likelihood of U.S. marginal data is 6 for “all cancer”.
Here, p(8) = 1 and 07,057 ~ I'(£,%) where a = b = 0.002 to obtain a proper
diffuse prior.

The Metropolis-Hastings algorithm was used based in a manner similar to that in

Appendix A but applied to each disease.

By trial and error, we chose the tuning constants between 6 and 10 (see Appendix
A).
The computations were done by region. We ran 11, 000 iterates, “burning in” 1000

and choosing every tenth to obtain 1000 iterates which we used for output analyzes.

3.2 Assessing the Model Fit

We have used two different measures to assess the model.
The first measure that we used to assess the model is the posterior predictive

p-value; i.e.,
Pr{T(d"",N) = T((d*, ) | d}. (3.1)

Very small or very large values of (3.1) are sometimes used to discredit a model
(Gelman et al. 1995, Chapter 6). A model is considered acceptable if the p-value is
between 0.05 and 0.95. We have used three checking functions, 7'(d"", ), analogous

to the three discrepancy measures, P(d°*®, d""):

1. Chi-square

Z Z(diﬂf — NijNijk)? Mg N

i g
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2. Rank-based

VI2) > e/ (a+1) = 0.5} (dij — s Aie)

where a = 10 and ¢;;, = rank(dijx — nijA\ijk)-

3. Poisson-based

QZ Z {(dijk +0.5)In (

dijk + 0.5
nij)\ijk + 0.5

) — (dije — nij)\ijk)} :

Region Prostate Colon
Chi-Square | Poisson-based | Rank-based | Chi-Square | Poisson-based | Rank-based
1 0.157 0.185 0.125 0.418 0.116 0.126
2 0.920 0.642 0.237 0.519 0.149 0.055
3 0.935 0.745 0.406 0.271 0.000 0.001
4 0.222 0.051 0.060 0.458 0.005 0.072
5 0.928 0.540 0.418 0.884 0.318 0.328
6 0.791 0.532 0.283 0.305 0.000 0.005
7 0.729 0.099 0.036 0.220 0.282 0.461
8 0.923 0.721 0.637 0.615 0.876 0.568
9 0.348 0.227 0.188 0.305 0.002 0.022
10 0.426 0.117 0.165 0.373 0.372 0.388
11 0.948 0.454 0.393 0.275 0.676 0.779
12 0.874 0.395 0.103 0.187 0.002 0.001

Table 3.1: Posterior Predictive P-values by Region for Prostate and Colon Cancer

In Table 3.1 and 3.2 we present the p-values of the three checking functions of the

model by region for each disease. Most of the chi-square p-values lie between 0.05 and

0.95 across region for prostate and colon cancer but not for lung and other cancer.

The fit for lung cancer seems unreasonable based on this measure. These p-values

are very sensitive to outliers and an extreme outlier could force them to zero.

The second method of evaluating the model is to use a cross-validation. Let d;

denote the set of all d’s except for (ijk). Then define the cross-validation residual as

aijie = Tijk — E(riji | d(ijk)), and the standardized cross-validation residual as

DRES,x =

Tije — E(riji | dgjr))

93

SD(rijy | d(ijk))

(3.2)




Region Lung Others
Chi-Square | Poisson-based | Rank-based | Chi-Square | Poisson-based | Rank-based
1 0.120 0.044 0.018 0.575 0.628 0.303
2 0.238 0.000 0.002 0.000 0.000 0.000
3 0.083 0.000 0.004 0.000 0.000 0.020
4 0.004 0.000 0.000 0.000 0.000 0.000
5 0.134 0.000 0.000 0.194 0.061 0.121
6 0.008 0.000 0.000 0.428 0.515 0.611
7 0.312 0.255 0.019 0.009 0.024 0.205
8 0.103 0.000 0.000 0.011 0.045 0.009
9 0.097 0.000 0.000 0.068 0.037 0.029
10 0.062 0.000 0.000 0.093 0.066 0.030
11 0.258 0.024 0.058 0.194 0.356 0.285
12 0.218 0.022 0.008 0.002 0.000 0.046

Table 3.2: Posterior Predictive P-values by Region For Lung and Other Cancer

That is, the (ijk)-th observed 7, is “held out” and compared with its point estima-
tor, E(riji | d;jry), which is evaluated without using the observed d;;;. We employ the
cross-validation residuals and standardized residuals as absolute measures of the con-
cordance of the data with a proposed model. To summarize we count (a) the number
of (ijk) such that | DRES;;; |> ¢ which we call “# outliers” and (b) the number of
HSAs such that | DRES;;x |> ¢ for at least one j, which we call “4# HSAs”. In Table
3.3 we present the number of HSAs with outliers > 3 and 4 by region. (Table 1.4
contains the number of HSAs per region). As can be seen regions 4 and 9 have the
most number of HSAs with residuals greater than 3 and 4. It indicates that regions
4 and 9 are not fitted well. Table 3.4 contains the number of HSAs with outliers > 3
and 4 by age class. The model does not seem to fit the data very well at the age
classes 5 and 9 for prostate cancer, 3 to 5 for colon cancer, all the age classes for lung
cancer and all the age classes but the last one for other cancer.

The large number of HSAs with outliers comes from the fact that the data are

very sparse across age class.

Finally we decide to assess the model by looking at the residual plots for all dis-
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Region Prostate Colon Lung Others
#HSA>3 | #HSA>4 | #HSA>3 | #HSA>4 | #HSA>3 | #HSA>4 | #HSA>3 | #HSA>4
1 1 1 5 2 17 0 2 0
2 4 2 5 1 11 5 7 5
3 3 1 8 2 18 2 10 2
4 38 20 10 2 28 2 11 2
5 5 3 8 1 14 0 5 0
6 12 6 19 4 44 1 7 1
7 2 1 6 2 4 3 10 3
8 5 4 13 5 21 7 13 7
9 10 6 21 8 43 3 13 3
10 5 2 5 3 24 1 4 1
11 0 0 8 3 4 3 7 3
12 4 0 12 7 8 2 8 2

Table 3.3: Number of HSAs with Absolute Values of Residuals >3 and >4 by Region

Age Prostate Colon Lung Others
#HSA>3 | #HSA>4 | #HSA>3 | #HSA>4 | #HSA>3 | #HSA>4 | #HSA>3 | #HSA>4
1 0 0 0 0 8 7 17 8
2 1 1 3 1 6 5 13 3
3 7 5 20 8 18 13 13 3
4 3 3 32 11 17 7 9 3
5 24 16 20 4 12 6 8 3
6 9 6 12 1 34 5 14 4
7 8 2 8 3 42 19 8 1
8 9 2 8 5 67 36 5 1
9 23 10 10 5 27 10 9 3
10 5 1 7 2 10 4 1 0

Table 3.4: Number of HSAs with Absolute Values of Residuals >3 and >4 by Age
Class

eases simultaneously.

In Figures 3.1 we present the plot of residual against standard deviation of resid-
ual, SD(7jk|d;jx) and the plot of a;jr versus number of death. We provide bands of
[rijk — E(rijr|dejry)] < 2 SD(ryk|dijx) which in fact gives it a funnel shape, where
both sides of the funnel have some outliers. The other plot is residual a;;; against

number of death d;j;. This is indicating that the model provides a good fit.

Figures 3.2 are the plots of residual a;;, against age and region. The plot against

age shows the increase in variation as the age increases, the highest being age class
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10, i.e. 85 years and above. There is symmetry about zero as can be seen from the
two types of plots, against age and region. These are further good indications of the

fit of the model.
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Figure 3.3 shows the plots of residual a;; and standardized residuals against the

predictive rates, A, for the 4 diseases simultaneously. In a Normal distribution model,

these plots should be a null plot, i.e. no pattern, but in our case it is a Poisson distribution

model. The mean of the Poisson is directly proportional to the variance, hence the

megaphone shape is expected. The interesting characteristic is its symmetry about zero.

\
Residua
0.w7’ t \ I
[FURE TR AN ! Yoy
ows oo, + o',0 LN W
' K ! Lo 4 Lt
ows_ oo, i tuq *. ‘H”‘ “H
' ’;"«“ [T S Hn .
K TR ¢ I
0m4 a.% ' [ A ‘“m 1
# +
w i
4 ‘ I‘Y:Q’«"f‘:'“' Y
PH o +
0|w2 w'“fn‘ \
* ‘ &‘0“ ?’i%ﬂh".. 1
ot Y, ky,ﬁp“f{;.z‘.::g
' W i ﬁw&; o
:,*:.:m ’3’ :“w‘n‘ W
¥ +
00 iy
i i 'l’.,a, y Wy
IR
-0m2 , "".*"?\‘u ’*W
u
0031 ’ el
' i ) h ‘“1 ! ,*o ,
n oyt w Fray
'0.w4' '!l"\\" I ! Ly ‘o‘ N
AT L R potattoy
+ +# ' 1 1 " \ '
-01w57 B T A
1 t . , +t , ‘N , W # t
-Olmsi , + + o Rl W ,
-0 : 3

|HHHHI‘IIHIHH‘\HHHHl\ll\llHIlHHHlHIHIIHIH‘IHHHII‘

0000 002 004 0006 008 000 00 00M

Pred rate

Std Resicual

LR

y’?‘ uH*t# “Y?‘ &
m\ ity g N‘* !
i
{2 m’m;g%’:’j‘ Il

Quu

|H\HI\HIIHIIHH‘HHH\HlH\HHHI\HIIHI\‘HIHIH\lHHHHw

0000 0002 0004 0006 0008 000 00R 00U

Pred rate

Figure 3.3: Plots of Residuals and Standardized Residuals versus Predicted Rates
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The box plots of the standardized residuals versus age class, region and type of
cancer presented in Figures 3.4, 3.5, and 3.6 do not show any departure from the

symmetrical pattern about zero.

Std Residual
5 |

Age class

Figure 3.4: Box Plots of the Standardized Residuals versus Age Class
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Figure 3.5: Box Plots of the Standardized Residuals versus Region
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Figure 3.6: Box Plots of the Standardized Residuals versus Type of Cancer
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3.3 Estimates and Maps for the Death Rates

Table 3.5 presents the mean and standard Deviation of the death rates, Az, over
HSAs. The death rates increase with age class for each disease. They are very similar

to the observed ones presented in Table 1.5.

All Cancer Prostate Colon Lung
Age Class | Mean | Std | Mean | Std | Mean | Std | Mean | Std
3.686 | .4384 | .0548 | .0655 | .0297 | .0300 | .0097 | .0164
3.551 | .4011 | .0121 | .0071 | .0345 | .0171 | .0117 | .0119
5.584 | .6812 | .0114 | .0058 | .1127 | .0413 | .0609 | .0291
11.68 | 1.375 | .0262 | .0202 | .6111 | .1648 | .6845 | .1791
36.20 | 5.016 | .1576 | .0694 | 3.140 | .5620 | 7.519 | 1.876
151.7 | 21.71 | 2.263 | .4328 | 13.94 | 1.662 | 55.86 | 13.02
509.6 | 64.12 | 22.68 | 3.269 | 47.51 | 5.335 | 213.8 | 42.93
1090 | 124.1 | 107.6 | 15.99 | 108.9 | 14.74 | 427.6 | 76.03
1870 | 188.1 | 326.8 | 47.80 | 214.1 | 27.43 | 572.9 | 86.58
2711 | 255.1 | 714.8 | 107.7 | 365.1 | 42.67 | 510.7 | 74.37
160.3 | 18.13 | 14.97 | 2.184 | 16.01 | 1.874 | 56.95 | 10.50

= =
D S| N|o|of kx| w| |-

Table 3.5: Mean and Standard Deviation per 100,000 population of the Death Rates
(Aijr) over HSAs

In Figure 3.7 and 3.8 we present the maps for age specific 40, 70 and age adjusted
mortality rates by disease. Since the data are very sparse for age younger than 40
years for prostate and colon cancers, the corresponding maps have to be interpreted
with caution. The maps show interesting hot spots for prostate cancer in the North
West and North Central regions. For colon cancer, the high mortality rates are con-
centrated in the regions of the North East and east North Central. The high mortality
rates for lung cancer and all cancers are both concentrated in the South East region

for each age class.
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Fig. 3.7: Maps of the Estimated Death Rates by Type of Cancer
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Fig. 3.8: Maps of the Estimated Death Rates by Type of Cancer
Lung All Cancer

Age Adjusted
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3.4 Analyses of Relative Occurences

3.4.1 Model Description
The model we fit is

log (i”k> = Z;Q + 7 + M + 05k + ¢,
54

where i = 1,...,798, j = 1,...,10, k = 1,2,3, and ¢; ~ N(0,02), 0,° ~
I'(%,2) for a =b=0.002.

Here Z, is the matrix containing the 5 predictor variables such as per capita
income, percentage of people below poverty level, education, epapm25 and epaso2.
The variable income, epapm25 and epaso2 were divided by 10, 000 for computational
stability. The p;j; are the MLEs with an adjustment for zeros.

The corner point restrictions are 73 = 0, v3 = 0, 61 = 0, for k£ = 1,2,3,
0j3=0, for j=2,...,7.

. 4
We can define \;j, = Aijpijr and since ), pijr = 1 we have

i = ik
ik = Ty
D1 Ak
Thus, we take
)\(t)
~(t) Tk

Pijh = S0 @)
Zk 1 )\Uk
where S\SL for ¢t = 1,...,1000 are the 1000 iterates from the Metropolis-Hastings

samples.

Then, we fitted the model for each iteration ¢t = 1,...,1000

A(t)
b '
10g(A(Jt;€> :Zz‘a()‘i")’()‘i‘??k +9 +¢(t

ij4

Once we obtained the least square estimates we then deduce ¢§t) such as

A(t)
o 1 Dijk N (t) (t
¢ 3*102{10g(p(t)>_(zig)+73 +77k 93k>}
54
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ik

When estimates of a, v, 7,0 are obtained, we use them to obtain Pijx, again.

3.4.2 Estimates and Maps

Table 3.6 contains the mean, standard deviation and credible intervals of coefficients.
Most of the covariates are significant and the estimates are different from the one
obtained in Chapter 2 (see Table 2.2). The intercept and income are not significant
anymore. Epapm25 and Epaso2 are the two most signifiacnt covariates. The pa-
rameters accounting for age class are all significant except for the second age class.
The estimates of the interaction between age class and disease are clearly significant
except for colon cancer at age class 2. The parameters accounting for type of cancer

are significant.
In Figure 3.9 we present the distribution of the proportions of deaths p;j; by dis-

ease. The patterns of the box plots across age classes look similar to the one obtained

from the observed proportions in Figure 1.4.
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Figure 3.9: Distribution of the Proportions of Death by Disease
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B8 Mean | Std Interval

Intercept | 0.013 | 0.008 | [ 0.008, 0.018]
Income -0.030 | 0.046 | [-0.059, -0.000
% Poverty | -0.002 | 0.001 | [-0.003, -0.002
College 0.001 | 0.000 | [0.000, 0.001]
Epapm25 | -6.571 | 2.171 | [-8.052, -5.062]
Epaso2 2.610 | 0.463 2.279, 2.920
Y2 0.001 | 0.000 0.001, 0.001
Y3 0.009 | 0.001 0.009, 0.009
Y4 0.065 | 0.002 0.063, 0.066
Y5 0.297 | 0.005 0.293, 0.300
Y6 0.710 | 0.006 0.706, 0.714
Y7 0.974 | 0.006 0.970, 0.978
8 0.986 | 0.005 0.982, 0.989
Y9 0.780 | 0.004 0.777,0.783
710 0.471 | 0.005 0.468, 0.474
0o 20.012 | 0.002 | -0.014, -0.011
031 -0.022 | 0.002 | [-0.024, -0.020
041 -0.077 | 0.003 | [-0.079, -0.075
051 -0.306 | 0.005 | [-0.309, -0.302
061 -0.696 | 0.007 | |-0.701, -0.691
071 -0.885 | 0.006 | [-0.889, -0.881
031 -0.751 | 0.006 | [-0.754, -0.747
091 -0.346 | 0.006 | [-0.350, -0.342
0101 0.180 | 0.009 0.174, 0.185
022 0.001 | 0.001 0.000, 0.002
032 0.004 | 0.001 0.004, 0.005
040 -0.013 | 0.003 | [-0.015, -0.011
052 -0.179 | 0.005 | [-0.182, -0.176
Os2 -0.538 | 0.006 | [-0.542,-0.534
072 -0.764 | 0.006 | [-0.767,-0.760
032 -0.741 | 0.005 | [-0.744, -0.738
B92 -0.495 | 0.004 | [-0.498, -0.493
0102 -0.140 | 0.005 | [-0.143, -0.136
m 0.013 | 0.002 | [0.011, 0.014
N2 0.006 | 0.001 0.005, 0.006

Table 3.6: Mean, Standard Deviation and 95% Credible Interval for the Estimates of
the Parameters
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Figures 3.10 and 3.11 show the empirical posterior densities for the 2 most sig-
nificant covariates epapm25 and epaso2 and also for the variable accounting for the
variation among HSAs, ¢;. They do not show much departure from the normal dis-

tribution.
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In Figures 3.12, 3.13 and 3.14 we present the maps for age specific (40, 70 and
85 and up) of the proportions of deaths by disease. The regions of Pacific, Mountain
North, Mountain South and West North Central-North present a concentration of
high proportions of death for prostate cancer for people older than 65 years old and
for other cancers for age 70 and younger. The Appalachian region and the South
Atlantic-South present a concentration of high proportions of death for lung cancer
for all age classes. The concentration of high proportions of death for colon cancer is

in the North East and North Central East regions for age 70 and older.
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Age 40

Prostate Lung
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Fig. 3.12: Maps of the Proportions (107-2) of Deaths for Age 40
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Age 70
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Fig. 3.13: Maps of the Proportions (107-2) of Deaths for Age 70
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Age 85 and older
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Fig. 3.14: Maps of the Proportions (107-2) of Deaths for Age 85 and Above




The maps for age 40 for prostate and colon cancer are difficult to interpret since
the data are very sparse. For prostate cancer, the regions of Mountain North, West
North Central-South and East South Central concentrate the high proportions of
death. For colon cancer, the high proportions of death are concentrated in the re-

gions of Mountain South, West North Central-North and East South Central.

In Figures 3.15, 3.16, 3.17 and 3.18 we present the maps of the proportions of
deaths for high and low values of epapm25 for prostate, colon, lung and other cancer
respectively. In Figures 3.19, 3.20, 3.21 and 3.22 we present the corresponding maps
for high and low values of epaso2. The maps do not show any strong pattern. Still,
we observe that the proportion of deaths by lung cancer are high n the South Eastern

states though there are high elsewhere as well.
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Epapm?25 for Prostate

High Epapm25 Low Epapm25
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Fig. 3.15: Maps of the Proportions (107-2) of Death for Prostate Cancer for High and Low Epapm25
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Epapm?25 for Colon
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Fig. 3.16: Maps of the Proportions (107-2) of Death for Colon Cancer for High and Low Epapm25
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Epapm25 for Lung
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Fig. 3.17: Maps of the Proportions (10"-2) of Death for Lung Cancer for High and Low Epapm25
77



Epapm25 for Other
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Fig. 3.18: Maps of the Proportions (107-2) of Death for Other Cancer for High and Low Epapm25
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EpaSO2 for Prostate

High EpaSO2 Low EpaSO2
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Fig. 3.19: Maps of the Proportions (107-2) of Death for Prostate Cancer for High and Low EpaSO2
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EpaSO2 for Colon
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Fig. 3.20: Maps of the Proportions (107-2) of Death for Colon Cancer for High and Low EpaSO2
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EpaSO2 for Lung
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Fig. 3.21: Maps of the Proportions (107-2) of Death for Lung Cancer for High and Low EpaSO2
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3.5 Concluding Remarks

First we fitted the NSP model to obtain the rates using the Metropolis-Hastings
algorithm. Then we deduced the proportions of deaths for each disease and fitted a
model which is a simple extension of the one discussed in Chapter 2 by incorporating

a random effect for the HSAs.
The maps for different age classes and diseases show interesting patterns and

highlighted some hot-spots. The maps for colon and prostate cancer for age less than

40 have to be interpreted with caution because of the sparseness of the data.
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Chapter 4

Concluding Remarks

Our goals in this project are to analyze mortality rates for all types of cancer and to

estimate their relative occurrences. We use Bayesian methods.

4.1 Review of Methodology

We make inference on the mortality rates by disease in two steps. Since our model
shows that the mortality rates by disease are the product of the mortality rates for

all cancer diseases and the proportions of death by disease, a two-part model is used.

To model the rates we used the NSP model of Nandram, Sedransk and Pickle

(1999). Then we needed to develop new models for the occurrences.

Because the data are very sparse especially in the first 4 age classes, we amalga-
mated them as follows: age classes 1,2,3,4 as group 1, 5 as group 2, 6 as group 3, ...,

10 as group 7.

We began by investigating the fit of an approximate model for the p;jx. The
parameter estimates, standard errors and maps were obtained. Unfortunately the

maps had a pattern that was similar for each age class and each disease. The model
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does not fit the data well. Then we fitted another approximate model. Only slight

improvements were observed. The maps did not show any interesting pattern.

Finally, we apply the model used for the )\;; to each disease so we got the estimates
of the \;j; and then we deduce the p;j;. Using Bayesian p-value and a cross-validation
exercise, we showed that this model performs well. The maps for the mortality rates
and for the relative occurrences showed different patterns for each disease across age
classes. The maps obtained for age 40 should be interpreted with caution because of

the sparseness of the data.

4.2 Final Results

The mortality rates for each type of cancer increase with age class, of course, with
different intensities. Prostate cancer presents the widest range of mortality rates.
The mortality rates for colon cancer increase across age classes but not as much as

prostate and lung cancer.

The maps of the mortality rates show some interesting hot spots for prostate
cancer in the North West and North Central regions. For colon cancer, the high mor-
tality rates are concentrated in the regions of the North East and east North Central.
The high mortality rates for lung cancer and all cancers are both concentrated in the
South East region for each age class. This is not surprising since lung cancer is the

leading cause of death by cancer.

The proportions of deaths for each type of cancer follow different patterns. The
proportions of deaths increase with age class for prostate and colon cancer while it

does so for lung cancer but only until age 55 where they begin to drop. Lung cancer
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is the leading cause of cancer death across age class except for the older men (age
85 and above) for which the proportions are similar to the one for prostate cancer.
One should note that the proportions of cancer deaths by prostate cancer increase

steadily while they do so for colon cancer but slowly.

With all factors being the same, the odds of occurrences of prostate, colon and
lung with respect to others decrease (increase) substantially with epapm25 (epaSO2).
We conjecture that particulate matters in the air affects mostly young people but
sulphur dioxide affects mostly the elderly.

The maps of the relative occurrences for age 40 for prostate and colon cancer are
difficult to interpret since the data are very sparse. For prostate cancer, the regions
of Mountain North, West North Central-South and East South Central concentrate
the high proportions of death. For colon cancer, the high proportions of death are
concentrated in the regions of Mountain South, West North Central-North and East
South Central. The regions of Pacific, Mountain North, Mountain South and West
North Central-North present a concentration of high proportions of deaths for prostate
cancer for people older than 65 years old and for other cancers for age 70 and younger.
The Appalachian region and the South Atlantic-South present a concentration of high
proportions of deaths for lung cancer for all age classes. The concentration of high
proportions of deaths for colon cancer is in the North East and North Central East

regions for age 70 and older.

4.3 An Alternative Approach

We assume that d;j|n;;, Ai; ind Poisson(n;jAij). We fit a hierarchical model with a

single regression coefficient. The basis model for the analysis is as follows
log \ij = g; B+ vi+9; (4.1)
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where z; = (1, decade;, (decade;)?, (decade;)?, maz{0, (decade;—knot)*}) with decade; =
0.25, decadej = 7 — 1 for 3 =2,...,10.

We assume that ;|02 % N(0,0%), 6;l03 w N(0,03) and the value of the knot
that maximizes the likelihood of U.S. marginal data is 6 for “all cancer”.

Here, p(3) = 1 and O, O ~ I'(s, g) where a = b = 0.002 to obtain a proper
diffuse prior.

This can be fitted easily for all cancer. If one can model the individual type of
cancer simultaneously through (4.1) the entire problem about the p;;; would be solved
automatically because

Pijk = );Jk

)

such that the constraint A\j; = >, Aiji.

Better methods are needed to show variability in disease mapping over the areas.
A model like the one in Chapter 2 but exact and with a random effect could incor-
porate better heterogeneity among areas. We attempted to do so already but with

little success.

The real difficulty is in modeling the p;;r. One could add a random effect in the

model so we get the mixed effects model

log (%) = Za +; + 0 + Oy + &
ij4

where ¢ = 1,...,798, j =1,...,10, k = 1,2,3, Z, containing the covariates,
¢; ~ N(0,02), 052 ~ T(.001,.001). The corner point restrictions are 73 = 0, 7, = 0,
91k :0, for k= 1,2,3, 9j3 :0, for ]:2, ,7.

The Metropolis-Hastings algorithm was used but with little success. Since the

estimates of the covariates contained in o were not stable, we tried using one covariate
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epapm25 and got better results. Besides that, the model was very sensitive to the
sparseness of the data for the first four age classes so we tried to amalgamate the age
classes so 5 age classes remain. The algorithm was working better but once we had
got the estimates to move well, they were highly correlated.

It seems that the data do not permit this kind of model, but further investigation
is required to fit this model.

Another aspect that would need to be addressed is to relate the variation among

HSAs for the \;; and for the p;;; by introducing a dependence such as

()= ((5)2)

Yet another important point would be to incorporate some spatial structure on

( ;’ ) . In this case one would need to delete the intercept from both models.
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APPENDIX A: Model for the \;;

A locally uniform prior distribution is used on 3 for each region and a proper

diffuse prior on o? and o2 as follows

b
p(8) =1 and 02,02 ~ F(g, 5) where a = b = 0.002.

To fit this model, we use the Metropolis-Hastings algorithm implementing the
product of Kernels Principle (Chib and Greenberg 1995) which essentially allows us
to draw successively from each conditional posterior distribution, instead of having
to run each of the conditional posterior distribution to convergence for every value
of the conditional variables (parameters). Whenever an opportunity arises, we also
use the technique of centering (e.g. Gelfand et al. 1995) to facilitate computations.

An independent chain is used in the Metropolis-Hastings step which permits blocking.

The key idea to obtain the proposal density in any of our Metropolis steps is to use
a second order Taylor’s series expansion about a convenient point (an approximation
to the mode) for each conditional posterior distribution. Letting M = 10 and N =
798, the joint posterior density is

N M
_ g iB+vi+d;
p(B,v,8,02%, 02)d) o H H {e(z BHvitd;) dig — nij €595 }

i=1 j=1

I\Y2 — Y M1\ -y
i 207 * _ 205 7
(=) HHG)

7j=1
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First of all, we make the transformation g;g + 0; = ¢; which leads to

p(g’z é 1’0-2|d X HH{ (vitd;) dij —nij e z+¢j}

i=1 j=1

N 12 4,y M U2 4 i
i=1 91 j=1 g

1 a/2+1 b 1 a/2+1 b
(AT o ()T
0’2 0’2 '
1 2

Then, we can deduce

ww| =

3 N—l—a b+
012|g)27970€7d ~ F( 9 Z )

M+a b+3( )

2 )
QM?Q?O—%? gd ( wa (Z¢J£ 02 Zl‘ ) (4)

p(6518,v,0%,03,d) ~ H{(‘” } e (5)

i

0-2_2|ﬁ)27970-%7d ~ F(

) N Vi tdg —LVg
p(Vi|ﬁ7 Q’ O’%’ U%)d) ~ H {e(Vz+¢])dz] — Nij € +; } e 20‘%
J
Since the conditional posterior densities (5) and (6) are difficult to work with, we
use the Metropolis algorithm in these two cases.

First, we consider conditional posterior density of ¢;|3,v,0%,03,d. We denote A(¢;)

the logarithm of the conditional posterior densities of ¢;|3, v, 02,02, d such as

Ag;) = ; {(Vi +¢5) dij — myj ew+¢j} N 2%%(@' —z,0)°
1 /
= A(¢;) — 27%(% —z;0)*.

Then,

2 5 o)

d*A(¢)) vitds
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Thus, based on A(¢;) alone we can get an estimator of ¢; by setting d(¢]) = 0:
1 iy U
¢J Og { ZZ nz‘jeyi

For the Metropolis step, we take

¢J|ﬁ7 v 017 27d appr(m Um'form(a,b),

where

a = E(¢8,v,0%,03,d) — k * SD(¢;|8,v,0%,03,d)
b= E(¢j|8,v,0%,03,d) + k * SD(¢;|8,v,01,03,d).

Second, we consider how to draw v. We denote the logarithm of the conditional

posterior distribution of 1|3, ¢, 01,03, d by A(v;) where

Alyy) = ; {(Vi + ¢5) dij — 1y eyi+¢j} - 2%‘%%'
1
A(d;) — 202"

Then,

dA(VZ) vito;

d*>A(v;)

— vi+d;
= - ni; e .
dv? Z
J

(2

Thus, based on A(v;) alone we can get an estimator of v; by setting dA(”Z) =0:

5 — g 2%

18,602 0%, d " Uniform(a,b),

and we can deduce that

where

a=E(vip,¢,0%,03,d) — k x SD(v]8,¢,0%,03,d)
b= E(wlB,¢,01,03,d) + k x SD(ulB, ¢,0%,03,d).
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APPENDIX B: First Approximate Model for the p;

Matrix Formulation of the Model

Let’s denote Yy, =

00
0 0
0 0
10
10
10
where A= 0 1
01
01
00
0 0
00
Then, the m

Y=XB+¢ Whereng(Q,UQW) andgz(

Yilna
Yi12
Yi1,3

Yij1
Yi,j,2
Yi,j,3

Yi,7,1
Yi,7,2
Yi,7,3

0

OO O OO o oo

1
1

odel can be

= eleleoNol =l el

OO O -

OO R OO OO oo

0
0
0

written as

- IN

O OO OO O oo o

O OO O OO oo o

OO OO OO oo

0 0 0|1 O
0 0 010 1
0 0 0/0 O
0 0 0|1 O
0 0 010 1
0 0 0/0 O
0 0 0|1 O
1 0 010 1
0 0 0/0 O
0 0 0 0
01
0 0 0/0 O

/
QY23 .. ’77521 572771772> .
6x%1

(7)

The weight matrix W is a block diagonal matrix of (21 x 21) matrices W; which are

themselves block diagonal matrices of (3 x 3) matrices w;;.

The estimators are such as

94

g= (XWX XWy,
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5? = (X—Xg)/(z—xg)/(m X — 26).

For computational purposes, we did not use matrix algebra to invert the matrices

but the following identities and transformations

XWX =Y X;W,'X; and X WY =) X, W'Y,

i=1 =1

Construction of the Weights

Since we assume that the d;j;’s follow a multinomial distribution such as

ind . . . diji Dijk  dijk
d..|p.. ~ Multinomial(d;;,p. ) and p;jr = —_ = -,
i (ds:2,;) Pk ="a, Dijs  dijs
ﬁijl Dij1 (1 - pijl) —Dij1Dijz2 —Dij1Dij3 —Dij1Dija
then Var ]2’72 = d% ~Dij1Pij2 pij2(1 — pij2) —Pij2Pij3 —DPijoPija
Dij3 i —Dij1Dij3 —Dij2Dij3 Dij3 (1 - pij?)) —Dij3Pija
ﬁz‘j4 —Dij1Dija —Dij2Dija —Dij3Pija pij4(1 - pij4)

Now, let T' be a vector with finite variance ¥ and mean p. Take any function

f(T), then the first order Taylor’s series expansion of f(T) is

f@) ~ f(p)+ (T - 1) G(p) where G(p) is the gradient vector.

Therefore,

Var (f(T)) =~ Var(( )G( ))
= G(w)" Var(T) G(p),

and

Cov (f1(D), f-(T)) =~

5 ()" Var(T) Gy, ().

Our three functions are fi(p) = log pijx — logpijs for k=1,...,3 .

95



Then Var (fi(p)) = 7 ( Ly 1 ) ~ 7 4+ -1 and

Dijk Dija ijk dz]4
1 1
Cov (f1(p), fo(p)) = Cov (fi(p), fs(p)) = Cov (falp), fs(p) = T—— ~ ——.
ij.Dija ij4
1 1 1 1
dij1 + dija dija dija
It follows that w;; = di1'4 d112 + di14 di1'4
1 Y 1 —1]- 1
dija dija dij3 dij4

Approximations

Approximations on the responses and the weights

Pija dija

In order to compute log (M> = log (d”’“>, 1 = 1,2,3, we used the new
Pijk=Pijk

definition df;, of dij

. { 1075 if dijr =0,
Wk dyx  otherwise.

Moreover, for small d;;;, Pickle et al. (1996) have shown that one will obtain
better estimates of the \;; and the p;;; using more stable quantities obtained which
can be obtained computing the averages by regions for small d;j;’s such as

Sier 2021 dijk Sier Sk dijk if diji < 3,

Z’kk = Sicr go1 Sk dijk nr
diji  if dijr > 3,

where R = region and n, = number of HSAs in the region R.

The last substitution is motivated by

10
Dicr 2j=1 dijk ~ dijk and icr 2k digh ~ Z d;i
ZiER Z]l'o=1 >k dijk 2 dijk nr kT

Methodology

After fitting model (7), we can deduce the p;;;’s by writing the model as follows

lOg(iZi ) 91‘]’1
109(22.1) _ x5 - Oij2
log(G2) | — B =1 by |



where

pij1 = 60ij1/(1 + elisn  ebisz 1 691']'3)
Dijp = 60ij2/(1 + elisn  ebisz 4 691']'3)
0 01 1 iz 1 obij (8)
pij?) 261]3/(1+ez]1 +ez]2 +ez]3)
Pt = 1/(1+ebon e + )

—

Then, we have obtained the estimates g and Cov @) — 3 and we have approxi-

mated the distribution of g by

B ~ NQG(Q, 2)

It is convenient to use a Bayesian approach. Then by taking the non-informative

prior for 3, i.e p(B) = 1, it is obvious that approximately

Bld ~ Nuy (@ 2) )

Therefore we can draw a sample of 1,000 §’s from (9). For computational purposes,

we partitioned the parameters as follows

ﬁl Y11 22 | X3

10«1 1010  10x8 | 10x8
g = B, and Y = | o1 o2 | a3 | . (10)
= 8x1 26x26 8%10 8x8 8%8
261 —oxl

B, Ss1 T \ a3

8x1 8%10  8x8 | 8x8

Then, we
i) generate B, using the marginal distribution gl|bl ~ Ng (él, EAH),

ii) generate the conditional distribution of 3 2| B, = by which is normal and has the

mean

~

A a o ao—1
B, + Xa1Xn (0 — ﬁ1)’
and covariance

~ N A =1 A
Z322 - Z3212311 Z312
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iii) and finally generate the conditional distribution of B3|81 = b1, 3, = bz which is

)

~ ~ -1 ~
. f o Y1 X X
S ) (0 72 ) (3

Normal and has the mean

~ ~ 1
5 fe Y11 22 b1
+ (X531, 2 N i =
Bs + (Xa1, X32) ( SR ) ( by —

[L;Q>|\9>

and covariance
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