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Abstract

We evaluated Internet connectivity in the United States, drawn from different
definitions of connectivity and different methods of analysis. Using DNS cache ma-
nipulation, traceroutes, and a crowdsourced site ping method we identify patterns in
connectivity that correspond to higher population or coastal regions of the US. We an-
alyze the data for quality strengths and shortcomings, establish connectivity heatmaps,
state rankings, and statistical measures of the data. We give comparative analyses of
the three methods and present suggestions for future work building off this report.



Contents

Contents i

List of Figures v

List of Code Snippets vii

List of Tables viii

1 Introduction 1

2 Background 3
2.1 Internet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Traceroutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Speed Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Domain Name System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5.1 Authoritative Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5.2 Recursive Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.3 Public Recursive domain name system (DNS) Servers . . . . . . . . . 7

2.6 Content Delivery Networks (CDNs) . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 IP Address Geolocation & Reverse Geocoding . . . . . . . . . . . . . . . . . 8
2.8 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8.1 “The Internet Connected Project” . . . . . . . . . . . . . . . . . . . . 8
2.8.2 Physical Mapping of Fiber-Optic Networks in the United States . . . 9

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Definitions of Internet Connectivity 10
3.1 RTT to Everywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 RTT to Regional Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Aggregate RTT to /24 Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 RTT to Top Websites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Aggregate Regional RTT to Other Regions . . . . . . . . . . . . . . . . . . . 12

i



CONTENTS ii

3.6 Advertised speeds per region . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 RTT to Internet Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.8 Data Cap by Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.9 IPv6 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.10 Connection Stability & Risk of Disconnection . . . . . . . . . . . . . . . . . . 13
3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Methods 15
4.1 Measurement Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Measurement Methods Not Pursued . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Road trip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Network Time Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.3 ISP Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.4 Data Collection via the Postal Service . . . . . . . . . . . . . . . . . . 19

4.3 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1 Z-Score Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Kruskal-Wallis test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.3 Distinguishability Graphs . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.4 Topologically-sorted state rankings . . . . . . . . . . . . . . . . . . . 21

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 RTT to Everywhere: Traceroute Analysis 23
5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Direct Ping Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 Indirect Ping Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.1 Data ETL Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 Data Cleaning & Filtering . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2 Primitive Connectivity Analyses . . . . . . . . . . . . . . . . . . . . . 33
5.3.3 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 State Rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 RTT to Top Websites: Site Ping 44
6.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.1 RTT Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1.2 Geolocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.3 Connection Type Reporting . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.4 Displaying Results to the User . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.2 Selection of Loaded Resources . . . . . . . . . . . . . . . . . . . . . . 46
6.2.3 Site Ping Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



CONTENTS iii

6.2.4 Back End and Database . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.5 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.1 Initial Site Ping Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.2 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Aggregate RTT by Region: DNS Cache Manipulation 55
7.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.1 Collection Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.1 Tools and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2.2 Candidate DNS server lists . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.3 Pre-processing Stages . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.4 Data Collection Stages . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.3 Collection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.1 Server Reliability Filtering . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.4.1 Distance Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4.2 Data Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4.3 Heat Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4.4 Aggregation by Server Pairs . . . . . . . . . . . . . . . . . . . . . . . 65
7.4.5 Aggregating Pairs by Recursive Server State . . . . . . . . . . . . . . 66
7.4.6 Aggregation by Authoritative State then Recursive State . . . . . . . 70

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Comparative Analyses 84
8.1 Data Distributions Across States . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.2 State Ranking Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.3.1 Areas with Superior Connectivity . . . . . . . . . . . . . . . . . . . . 87
8.3.2 Areas with Poor Connectivity . . . . . . . . . . . . . . . . . . . . . . 88
8.3.3 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.3.4 Rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9 Future Work 90
9.1 Improved Site Ping Data Collection . . . . . . . . . . . . . . . . . . . . . . . 90
9.2 More Accurate IP Address Geolocation . . . . . . . . . . . . . . . . . . . . . 90
9.3 More recursive and authoritative servers for each state . . . . . . . . . . . . 90
9.4 Backbone Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.5 Surveys & Subjective User Experience . . . . . . . . . . . . . . . . . . . . . . 91



CONTENTS iv

9.6 IPv6 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10 Conclusion 93

A Github Repositories 95

B Select Database Design 96

C List of Sites and Web Resources 98

Acronyms 101

Glossary 101

Bibliography 104



List of Figures

2.1 Diagram of how traceroutes work . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Diagram of DNS resolution [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Interpolated DNS map from “The Internet Connected Project”[6] . . . . . . . . 9

4.1 Sample NTP Mode 6 peers command output . . . . . . . . . . . . . . . . . . . 17
4.2 Distribution of NTP Mode 6 Servers in the US [36] . . . . . . . . . . . . . . . . 17
4.3 Maximum available connection speed across the United States (US) . . . . . . 18

5.1 Diagram of indirect traceroute ping calculation . . . . . . . . . . . . . . . . . . 24
5.2 RTT distribution, direct ping calculation . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Address pair distance distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Distribution of RTT between IP pairs, indirect ping calculation . . . . . . . . . . 31
5.5 Distribution of measurements count for each address pair . . . . . . . . . . . . 32
5.6 Distribution of address pair standard deviations . . . . . . . . . . . . . . . . . . 32
5.7 Distribution of address pair coefficients of variation . . . . . . . . . . . . . . . . 33
5.8 ms/km connectivities distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.9 Speed-of-light efficiencies distribution . . . . . . . . . . . . . . . . . . . . . . . 35
5.10 Traceroute scatterplot, colored by speed-of light-efficiency . . . . . . . . . . . . 36
5.11 Traceroute ms/km quadplot, generated by quadtree grouping . . . . . . . . . . 37
5.12 Traceroute speed-of-light efficiency nearest-neighbor diagram . . . . . . . . . . 37
5.13 Linear-interpolated traceroute speed-of-light efficiency heatmap . . . . . . . . . 38
5.14 Inverse distance weighting traceroute speed-of-light efficiency heatmap . . . . . 39
5.15 Indistinguishability graph of traceroute data as aggregated by state . . . . . . . 40
5.16 Distinguishability graph of traceroute data as aggregated by state . . . . . . . . 40
5.17 Traceroute confidence intervals for rankings; higher is better . . . . . . . . . . . 41

6.1 Site ping city view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Facebook site visits over time (2019) . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Involvement from Mechanical Turk by state . . . . . . . . . . . . . . . . . . . . 49
6.4 State view chloropleth map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5 Site ping live-updating state rankings . . . . . . . . . . . . . . . . . . . . . . . . 50
6.6 Distribution of site ping standard deviations by location . . . . . . . . . . . . . 50

v



List of Figures vi

6.7 Distribution of coefficients of variation by location . . . . . . . . . . . . . . . . 51
6.8 Continuous distribution function of state rankings . . . . . . . . . . . . . . . . . 52
6.9 Pings to sites on the Akamai CDN . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.10 Final heat map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1 DNS cache manipulation stages . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2 Map of authoritative DNS servers . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3 Map of recursive DNS servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4 DNS RTT median distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.5 DNS normalized RTT median distribution . . . . . . . . . . . . . . . . . . . . . 65
7.6 DNS true RTT heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.7 DNS normalized RTT heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.8 DNS true RTT indistinguishability graph . . . . . . . . . . . . . . . . . . . . . . 70
7.9 DNS true RTT state groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.10 DNS true RTT confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.11 DNS normalized RTT indistinguishable states graph . . . . . . . . . . . . . . . . 73
7.12 Normalized RTT indistinguishability graph . . . . . . . . . . . . . . . . . . . . . 73
7.13 DNS true RTT unweighted and population weighted “better than” map . . . . . 82
7.14 DNS normalized RTT unweighted and population weighted “better than” map . 82

8.1 Tennessee data distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2 Illinois data distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.3 Rhode Island data distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



List of Code Snippets

2.1 Truncated output from traceroute google.com . . . . . . . . . . . . . . . . . . 5

5.1 Traceroute hopper JSON loading . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 CAIDA and RIPE Atlas JSON pre-processing to intermediate format . . . . . . . 26
5.3 Direct, indirect, and ping mode calculation . . . . . . . . . . . . . . . . . . . . . 27
5.4 Aggregation and base filtering SQL query . . . . . . . . . . . . . . . . . . . . . 29
5.5 Pandas filtering of IP address pairs . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 JavaScript “ping” function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.1 Template dig command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Generic dig output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Sample parallel command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 DNS authoritative confirmation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.5 Authoritative server reliability measuirng (modified for formatting) . . . . . . . 60
7.6 DNS latency measuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.7 DNS lookup RTT measuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



List of Tables

5.1 CAIDA+Atlas topologically sorted state rankings . . . . . . . . . . . . . . . . . 41
5.2 Traceroute state confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Site ping state rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1 Overview of DNS batch runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 DNS Z-score filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.3 True RTT DNS pair CV filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.4 Normalized RTT DNS pair CV filtering . . . . . . . . . . . . . . . . . . . . . . . 67
7.5 DNS state rankings – recursive aggregation only – true RTT . . . . . . . . . . . 68
7.6 DNS state rankings – recursive aggregation only – normalized RTT . . . . . . . 69
7.7 DNS state confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.8 DNS state rankings – with authoritative aggregation – true RTT – unweighted . 74
7.9 DNS state rankings – with authoritative aggregation – true RTT – population

weighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.10 DNS state rankings – with authoritative aggregation – normalized RTT – un-

weighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.11 DNS state rankings – with authoritative aggregation – normalized RTT – popu-

lation weighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.12 DNS authoritative aggregation – Number of states better than – true RTT, un-

weighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.13 DNS authoritative aggregation – number of states better than – true RTT, popu-

lation weighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.14 DNS authoritative aggregation – number of states better than – normalized RTT,

unweighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.15 DNS authoritative aggregation – number of states better than – normalized RTT,

population Weighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.1 States-better-than correlations between methods . . . . . . . . . . . . . . . . . 86
8.2 Top 3 states for each data source . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.1 List of Github repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

viii



1

Introduction

Internet access is an increasingly important part of the American economy and everyday
life. Common tasks like applying for a job, keeping in touch with friends, and education all
require Internet connectivity. Major technology firms are often in the public spotlight, and
common Internet services can be found everywhere, such as music and video streaming,
e-books, and shopping. In 2018 an industry group comprised of major technology firms
estimated that the “internet sector” of the economy alone represented $2.1 trillion a year,
or about 10% of the US economy [30].

Unfortunately, not all parts of the US are as well connected as others, even by measures
from simple personal anecdotes. For example, in rural areas the best connection frequently
is not good enough to stream a movie, while driving just 45 minutes to a more urban area
will yield a connection an order of magnitude better. Subjective measures like this are
common everywhere across the US, but there is little scientifically-rigorous or complete
data available. For instance, the Federal Communications Commission (FCC) has a map of
estimated broadband deployment [7], but simple broadband deployment is not necessarily
a good measure of how well connected people in those areas actually are.

To address these problems, we set out to gather and analyze as much data as possible
on how well connected Americans are to the Internet, using various means and measures.
Our hypothesis is simple: although there may be some regional variations or “spottiness,”
there is a relationship between your location in the US and what sort of Internet service
you can expect. We hypothesized that areas near each other are likely to have similar
connectivity to one another, and that these similarities will form large-scale trends that
should be visible on a map, interpretable by non-technical readers.

The end goal of our project was to find if such relationships exist, and if so, to conduct
analyses on the data to make the differences between areas of the US clear. An important
quality of our work is that it should be scientifically rigorous and statistically valid – that
is, we should avoid systemic error and account for random error in our calculations – so a
great deal of effort was expended on ensuring the validity of our results.

The reminder of the report is organized into chapters as follows:
In Chapter 2 we present background information on the fundamentals of the Internet,

information relevant to our methods, and research conducted on prior works and attempts
at measuring connectivity.

1



CHAPTER 1. INTRODUCTION 2

In Chapter 3 we rely upon collected background research to define metrics for Internet
connectivity. These are not limited to traditional metrics used by consumers (such as
speed), instead taking a more expansive approach.

Chapter 4 describes a brief overview of our three main methods for collecting & analyz-
ing data on Internet connectivity. We also present a brief overview of the statistical methods
used, and an explanation of methods that were considered but ultimately rejected.

Chapters 5 to 7 present detailed methods of the design, implementation, and analysis
for each of our three methods for collecting data. Their analyses differ since each data
set is somewhat different, but the fundamentals (e.g. definitions of connectivity) remain
largely the same.

Chapter 8 contains our comparative analysis of the results of the three data analyses.
We present overall conclusions drawn from the data, in both assertions we are confident of
and matters we are uncertain of.

Finally, in Chapter 9 we suggest ideas for future projects to follow up on, drawing from
shortcomings noted in our methods and the unpursued methods explained in Chapter 4.



2

Background

This chapter presents an overview of the of foundations the Internet and elements critical
to understanding how our methods and analyses work. Section 2.1 covers the basics
of how Internet the Internet is organized, while Section 2.3 provides an example of a
common metric that consumers use to test their Internet access and Section 2.2 explores
how traceroutes can be used to analyze a network connection’s path. Section 2.4 explains
how various forms of caching, while Section 2.6 gives an overview of caching’s close cousin,
the content delivery network (CDN). Section 2.7 presents an overview of the methods used
to assign a location to an internet protocol (IP) address, which is critical to all parts of this
report. Finally, Section 2.8 details some past attempts to understand Internet connectivity
in the US.

2.1 Internet Architecture

The Internet is comprised of networks spread across the globe, connected together by high
speed links and data centers collectively referred to as the “backbone.” Although the
networks are distributed, they do not form a mesh network. Instead, data is generally
routed through hierarchical networks. These networks start at the small, local level, and
progress upwards (as needed, depending on the internet service provider (ISP)’s architec-
ture) through increasingly larger networks as data is routed to its final destination. Data
packets eventually repeat the process in reverse as they approach their destination server.

Since the Internet has a hierarchical structure, end users are prone to experiencing a
bottleneck that is the networks they are directly connected to: their ISP, its parent network,
and so on. As a result Internet connections vary in all ways across the US, with some areas
receiving over 50 megabits per second (Mbps) while others receive less than 1 according
to our own experiences.

2.2 Traceroutes

A traceroute is a method for determining which servers are along a packet’s route, and
determining the round trip time (RTT) to each of them. Most traceroute programs work

3
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using internet control message protocol (ICMP) but in theory anything that uses IP works.
Traceroutes hinge on the time-to-live (TTL) field of IP packets, an eight-bit field that

is decremented by one every time the packet is processed [28]. Typically the TTL is set
reasonably high so packets can take many hops to reach their destination, but low enough
that if undeliverable they will eventually be discarded. Upon discard, most servers respond
with an ICMP packet to the original host indicating TTL expiry. This message is received
by the machine running the traceroute, which uses the sender’s IP address and knowledge
of the TTL of the packet it sent out to place the server somewhere along the route. This
process is visualized in Fig. 2.1.

Figure 2.1: Diagram of how traceroutes work

The mechanics of a traceroute program are then a simple procedure. With i = 1 to start,
an ICMP-based traceroute program follows the below:

1. Send an ICMP ping with TTL = i to the destination server.

2. If an ICMP TTL-expired packet is received, mark the sender as hop i along the route.
If a timeout is reached, skip.

3. If an ICMP ping response is received (i.e. the destination was reached), mark the
destination server as the i-th hop and note the time it took to receive the packet.

4. Increment i by one and repeat from step 1.

This process produces a list of servers along the route and their associated RTTs. A
sample output from the aptly-named traceroute utility1 is shown in snippet 2.1. The * *
* instances on lines 2 and 10 indicate that no response was received from these hops, so
traceroute proceeded without them.

1traceroute and its variations can be found on virtually every system made in recent memory. Linux
distributions and Windows machines ship with command-line tools traceroute and tracert respectively,
while MacOS has its own dedicated GUI application as a system tool.



CHAPTER 2. BACKGROUND 5

1 192.168.1.1 16.529 ms
2 * * *
3 96.34.83.9 26.158 ms
4 96.34.84.212 30.452 ms
5 96.34.2.142 31.084 ms
6 96.34.0.51 31.012 ms
7 96.34.0.137 27.184 ms
8 96.34.3.89 23.049 ms
9 96.34.148.35 28.703 ms

10 * * *
11 108.170.246.33 26.405 ms
12 108.170.246.34 24.091 ms
13 172.217.164.142 24.720 ms

Snippet 2.1: Truncated output from traceroute google.com

2.3 Speed Tests

Speed tests are common measures used by consumers to figure out how “good” their
Internet connection is. The idea is simple – connect to a website and try to transfer as
much content as possible within some timeframe. The amount of data transferred can be
used to calculate a data transfer speed in Mbps, where higher is better. Examples include
Ookla’s aptly-named speedtest.net, or Netflix’s fast.com.

In theory speed tests are a sound idea, since speed of data transfer is immediately
obvious to a consumer. Connection speed dictates everything from how long it takes pages
to load, to how long videos have to buffer, to how fast you can download files. In practice,
though, speed testing is challenging and often inaccurate. In order to accurately measure
speed, you must have a server receiving and sending test data with at least the same
speed as the summed connections of all of its users at any one time, posing an immediate
performance challenge. Second, the measured connection is only the one between you
and whatever data center the speed test server is located in, which may not represent your
overall connectivity. Finally, ISPs are doubtless familiar with speed test sites and have a
serious motive to bias connections in favor of them, to trick their customers into thinking
they have better Internet than they actually do [31].

As a result of these combined factors, we decided against using speed tests as any
method for assessing Internet connectivity.

2.4 Caching

RFC 7234 describes caching as the process of storing “cacheable responses in order to
reduce the response time and network bandwidth consumption on future, equivalent
requests” [8]. Caches save frequently-used resources for a given amount of time to reduce
the load on upstream resources, from the origin server to Internet infrastructure that
provides service along the way. Several components of the Internet may contain caches:

speedtest.net
fast.com
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the user’s browser, CDNs (see Section 2.6), DNS servers, and others [25]. These all work
together to free up Internet bandwidth and provide a smoother experience to end users.

Most (if not all) web browsers implement hypertext transfer protocol (HTTP) caching,
saving commonly-used website resources locally [13]. For example, if users make frequent
requests to amazon.com, a cache between Amazon’s servers and their users may store a
copy of Amazon’s logo as it does not change frequently. When amazon.com then requests
the logo, the browser’s cache responds with the copy, preventing the request from going all
of the way to Amazon’s servers. This reduces network load that would normally be caused
by the request. Of course, sometimes resources do change, so an origin server can give
cacheable resources an expiration time after which the cache should validate the freshness
resource before fulfilling the request [8].

Outside of the browser, web resources are often cached by CDNs. These networks are
set up by companies that operate major websites and are intended to move the delivery of
frequently accessed resources closer to end users, both in network and geographic terms.
CDNs are discussed in more detail in Section 2.6.

Beyond caching resources that the end user sees and interacts with, other things, like
DNS results, use caching as well. As discussed in more detail in section 2.5, recursive DNS
servers retrieve requests from other DNS servers and often cache them for responding to
future requests [23]. Similar to the expiration time in HTTP caching, DNS caching has a
TTL that forces the DNS resolver to request a fresh answer.

2.5 Domain Name System

DNS, a key component of Internet infrastructure and connectivity, is a hierarchical system
responsible for converting domain names to IP addresses. Domain names are human-
readable names used to identify servers and websites. They are easier to remember than
IP addresses, and can point to more than one address depending on geographic location or
load-balancing constraints to provide higher-performance access to websites for end-users.
Domain names contain one or more parts called labels, separated by dots. The rightmost
label is the top level domain (TLD) (e.g. com, org, net, etc.). The DNS hierarchy tree
subdivides into “zones,” with each zone containing one or more domain names and sub-
domains. Databases of domain names are maintained by DNS Name Servers, which resolve
domains to IP addresses (Fig. 2.2). There are two types of name servers: authoritative and
recursive.

Beyond caching resources that the end user sees and interacts with, other things, like
DNS results, use caching as well. As discussed in more detail in section 2.5, recursive DNS
servers retrieve requests from other DNS servers and often cache them for responding to
future requests [23]. Similar to the expiration time in HTTP caching, DNS caching has a
TTL that forces the DNS resolver to request a fresh answer.

2.5.1 Authoritative Servers

Authoritative servers are the primary source for the domain names within a given zone.
When querying for any domain, the answer will ultimately come from the authoritative
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server for that domain. A DNS client can query an authoritative server directly, but it is
more common that an authoritative server will be queried by a recursive server on behalf
of a DNS client.

2.5.2 Recursive Servers

Figure 2.2: Diagram of DNS resolu-
tion [3]

Recursive DNS servers work to find an IP address
for a client, so that the client does not have to do
the leg work of searching through other DNS servers
[4]. DNS resolvers use a predetermined upstream
recursive DNS server, such as one provided by an
ISP [27]. This server then checks its cache and, if it
has a valid answer, returns it. Otherwise, the server
makes a series of iterative queries in order to find
the requested name.

Take for example, www.google.com. If the recur-
sive server has no knowledge of any parts of the
uniform resource locator (URL), it will first query a
pre-configured root DNS server for the authoritative
server for the .com TLD. It will then query that server
for google.com, then query the server provided from
that request for www.google.com itself. At this point,
the iterative component of the lookup is complete.
At each stage of this process, the recursive server
caches the results of its query, and assuming the TTL
has not expired, will use that cached value instead
of making a fresh query. Finally, the recursive server then returns the IP address it located,
completing the recursive request from the user.

2.5.3 Public Recursive DNS Servers

An important part of this project involves public recursive DNS servers. These servers are
DNS servers configured to respond to requests from anyone. Whereas most ISP servers do
not advertise their DNS servers to non-customers, public servers do. Some organizations,
like Google and CloudFlare, provide public DNS services because they believe doing so
improves the browsing experience for end users [11]. These provide the public with DNS
options outside of their ISP and provide this project with an important set of geographically
diverse servers.

2.6 Content Delivery Networks (CDNs)

CDNs are used by many popular websites across the Internet to deliver content quickly
and efficiently to their end users. CDNs are made of data centers distributed across the
world, often located near large population centers or elements of the Internet backbone.
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Some CDNs are even run by an ISP directly to help alleviate strain on their infrastructure.
Content owners, such as Reddit, pay CDN providers to host their content on the CDN’s
servers around the world to serve content more efficiently to users. One of the drawbacks
of CDNs are that they can make it more difficult to update content stored within. As a
result they are often used for static content that is infrequently updated, such as videos for
Netflix or user content that is posted to Reddit.

2.7 IP Address Geolocation & Reverse Geocoding

Geolocation services for this project are provided by two sources: Texas A&M University’s
reverse geocoding application programming interface (API), and the MaxMind GeoIP2
database.

The MaxMind database is a set of binary files and an software development kit (SDK)
designed to estimate the location (with varying resolution [19]) of an IP address, provided
by the company MaxMind. This process is referred to as IP geolocation. The database s
imperfect2 but is regarded as best-in-class and is suitable for our use. Unfortunately the
database is proprietary, so we have no information on how exactly MaxMind assembles
and verifies it.

The Texas A&M API provides a reverse geocoding service that converts a set of existing
coordinates into a city, state, zipcode, or other information. This is accomplished using
open reference data sets (used in reverse; the normal function is to map city/state/zipcode
into coordinates) and algorithms to efficiently query the database.

2.8 Prior Work

There have been several past attempts at evaluating US Internet connectivity, including a
previous Worcester Polytechnic Institute (WPI) major qualifying project (MQP).

2.8.1 “The Internet Connected Project”

In 2018, another MQP was run at WPI, also with the goal of mapping the Internet connec-
tivity across the US. They used traceroutes from Worcester, Massachusetts to top websites,
and also performed DNS cache manipulation to collect their data. They had mixed success
collecting data, but they were ultimately able to produce a map of all their DNS data
interpolated to cover the entire US, shown in Fig. 2.3. They did draw any conclusions on
the best or worst states [6].

The concept of DNS cache manipulation was ultimately used in our own research in
evaluating and ranking Internet connectivity, discussed in Chapter 7.

2Inaccuracies are less a result of quality of data and more a result of the fact that IP address allocation
does not follow a meaningful geographic pattern.
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Figure 2.3: Interpolated DNS map from “The Internet Connected Project”[6]

2.8.2 Physical Mapping of Fiber-Optic Networks in the United States

In 2015 researchers at the University of Wisconsin (Madison) mapped locations of fiber
backbone within the US, attempting to understand how the backbone was influenced
by existing infrastructure (e.g. railroads and highways). They found strong correlation
between the location of fiber lines and the locations of major roads built in the mid 20th
century. This result is significant for Internet connectivity because it further highlights that
cities that were well connected physically during the industrial revolution continue to be
the best connected [5].

2.9 Summary

In summary, we covered the basic architecture of the Internet and how it can be studied
through traceroutes or speed test, some common technologies that users will encounter
like caching and the domain system, and some techniques relevant to our project like IP
address geolocation and reverse geocoding. As part of our investigations we also covered a
pair of notable prior works, namely a past WPI MQP and a project that mapped fiber-optic
networks in the US.

All of this information was essential for the completion of our project and will be of use
in understanding later chapters.



3

Definitions of Internet Connectivity

To measure Internet connectivity it is important to concretely define Internet connectivity
To that end we have put together a list of possible metrics for defining it.

3.1 RTT to Everywhere

RTT is a measure of how long a packet’s round trip between source and destination is. It has
a major effect on latency, the quality of streaming applications such as videos, video calls,
voice over Internet protocol (VoIP) calls, and multiplayer gaming. Lower RTTs indicate a
better connection and a more responsive Internet experience.

By measuring a location’s average RTT to any other location, we can roughly determine
that connection’s average quality. For example, we might find that a particular source has
an average RTT of 50 ms while another has an average 150 ms, so we would say the second
has a worse connection than the first.

Normalized by Distance Unnormalized RTT is a valid metric on its own but when aver-
aged across many data points it is difficult to pin a meaningful number on. For instance, if
a user lives in San Francisco, CA and has a measured RTT to Sacramento, CA of 15 ms but
an RTT of 100 ms to Boston, MA (~3,000 miles away), between the two the user has an
average RTT of 57.5 ms. However, 57.5 ms has no particular meaning to a user because it
does not actually show up in the data. That is to say, 57.5 ms does correspond to any real
measurement point, and it fails to accurately represent both the Sacramento RTT and the
Boston RTT.

A possible solution is to normalize RTTs by distance, calculated by dividing RTT between
source and destination by the distance in kilometers between them. This results in a
measurement measured in ms/km, which is naturally a small number. This can be thought
of as a measurement of infrastructure quality.

10
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3.2 RTT to Regional Locations

It may be useful to group RTT values by region, likely either by distance or national
borders, based on the principle that an Internet user may be more likely connect to a server
in the same region than to one in another region. This measure of raw RTT shares the
same properties as raw RTT from Section 3.1, except with fewer high-RTT destinations
influencing averages.

Normalized by Distance Just like raw global RTTs, regional RTTs can be normalized by
distance. Regional RTT normalized by distance is a good measure of a region’s connectivity
within itself, could be a better indicator of typical Internet connectivity for residents of that
region.

3.3 Aggregate RTT to /24 Prefixes

A /24 prefix is the first 3 bytes of a internet protocol version 4 (IPv4) address, where the
subnet mask (when expanded) is represented as 255.255.255.0. This leaves the last byte
of the address free to vary, so a /24 prefix encompasses up to 256 individual addresses.

Aggregate RTT to /24 prefixes collects data for only one node per /24 prefix, assuming
that the other 255 addresses are accurately represented by the single data point from
their prefix. This analysis would demonstrate average connectivity between /24 networks,
similar in a way to analyzing connectivity between counties or zip codes. In doing so, it
would characterize the overall connectivity of that network. Additionally, we could link /24
networks to geographic areas and show which areas have the best and worst /24 prefixes.

3.4 RTT to Top Websites

Five websites (Google, Facebook, Youtube, Yahoo, and Amazon) dominate Internet traffic
in the US with over 30% of the traffic share. 67% of US Internet users visit Google to
search the Internet and 68% use Facebook for social media[32]. These websites (among
others) play a major role in Internet connectivity and usability for a large portion of Internet
users in the United States. Therefore, measuring connectivity to these websites provides a
window into user experience of the Internet for a geographic location.

Beyond direct usage of top websites, major websites adopting content delivery networks
(CDNS) contributes to Internet consolidation. According to the Internet Society, 87.5% of
the top 1000 websites in 2018 used CDNs to speed up the delivery of their content. Of
these 1000 sites, Amazon Cloudfront and Akamai provide CDN services to 474 websites.
The Internet Society states that four services (Dyn, Akamai, Amazon Web Services (AWS),
and Cloudflare) serve an estimated 50% of the top 1000 .com, .net, and .org domains
[35].

The reality of a more centralized Internet is that, as the web grows ever more con-
solidated around these cloud services, the ability to speedily connect to any IP address
becomes less of an issue for everyday users. From this vantage point, a better Internet
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connection is one that provides faster load times to the top content providers, regardless
of their location. This metric is similar to the RTT measurements described in 3.1, but is
more focused on the end user’s use case.

Normalized by Distance While users might only care about end result and how it impacts
their ability to browse the web, normalizing the data by distance to the website data center
could provide valuable information regarding regional infrastructure. A region showing
high latency to top websites and a high ms/km rating might have room to improve, while a
high latency region with low ms/km might not be able to improve. Network architects and
companies looking to expand could use this data to prioritize locations, while everyday
users could use it to determine if their area has the potential to improve.

3.5 Aggregate Regional RTT to Other Regions

This metric considers average connectivity measurements (such as RTT) in a political
region to all other regions. These regions could be U.S. counties, zip codes, census blocks,
or something else. Such aggregation does not necessarily follow the nature of network
architecture, but this aggregation would highlight certain potential inequalities on political
boundaries. Whatever these inequalities might be, focusing on these regions in this way
would be useful to local authorities and constituents looking to improve Internet access in
their areas.

3.6 Advertised speeds per region

One factor that can often dictate “internet connectivity” is the available “advertised” broad-
band connection speeds in a given region. It would provide an idea of both the infrastruc-
ture in the area and what the ISP can successfully market. Advertised connection speed per
region provides a strong metric on what average consumers can access across the US. Com-
paring the available advertised speeds between regions can show relative infrastructure
differences.

Maximum The maximum available connection speed across an area gives an idea of what
connections are possible. This metric can be used if cost is not considered and all that is
desired is the best possible connection.

Minimum The minimum connection speed available provides a strong summary of what
would be considered to be the most accessible to every American.

Average The average advertised connection speed offered by broadband providers in the
US provides a general metric for available speed across the US. The metric would be the
average of all of the connections offered for a region.
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3.7 RTT to Internet Backbone

For all non-local traffic – likely the majority, since major data centers are sparse compared
to residential locations – packets will inevitably pass through the backbone en route to
their destination. Backbone RTT is then a measurement of how long it takes for a user to
reach the nearest backbone entry point.

Normalized by distance Normalizing RTT to backbone by distance is as useful as in
other RTT methods, since it gives a better picture of infrastructure quality and avoids
outlier biasing. The effect of normalization will likely be diminished, however, since RTT
to backbone is technically a form of regional grouping.

3.8 Data Cap by Region

A data cap on broadband connections could reveal limited bandwidth in an area, and an
attempt by the ISP to limit how much traffic consumers are generating. This is not a direct
comparison, but possibly a correlation.

3.9 IPv6 Availability

Officially established as an Internet standard in 2017, internet protocol version 6 (IPv6)
expands IPv4 to 128 bits in order to address the exhaustion of 32-bit IPv4 addresses.
However, deployment of network hardware that supports IPv6 has been slow. According to
Google, as of September 2019, the US has only reached 36.4% IPv6 adoption [12]. While
this is not an immediate problem, determining where IPv6 has not been implemented in the
US might show which regions are being prioritized. Overall, this definition of connectivity
is a form of future Internet connectivity.

3.10 Connection Stability & Risk of Disconnection

Another way of looking at future connectivity involves determining how at risk a region is
of becoming disconnected from the Internet. A community or region may have sufficient
connection now, but if that connection is reliant on a single point of failure (or any degree
of failure lower than the rest of the population) in the network, its future connectivity is at
risk. Another form of this, although less technical, would involve whether a government
entity is capable and willing to sever or curtail Internet availability.

3.11 Summary

We presented many possible metrics for Internet connectivity. Some metrics are based
on technical measures (such as RTT to /24 prefixes) while others are more closely re-
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lated to user experience or advertised metrics. We also explored some other more exotic
connectivity metrics, such as data caps, IPv6 availability, or RTT to backbone.



4

Methods

Given the diversity in the possible definitions of Internet connectivity defined in Chapter 3
and the number of factors that determine internet connection quality, we saw a need for
multiple methods of data collection and analysis. With multiple methods of data collection
and multiple resulting sets of data, conclusion can be drawn by comparing the different
sets of data and looking for matching trends. This section provides an overview of the
methods we pursued and some that we considered but chose not to pursue.

4.1 Measurement Methods

We chose three methods for measuring Internet connectivity as described in Chapter 3:
mass traceroute data analysis, crowd-sourced “site ping” data, and DNS cache manipulation.
These methods were pursued in parallel in hopes that by the end of our project, their results
could be compared.

RTT to Everywhere: Traceroute Analysis Two different organizations, Réseaux IP Eu-
ropéens (RIPE) (through its Atlas project) and Center for Applied Internet Data Analysis
(CAIDA) have large, distributed networks of devices that run traceroutes to every part of
the Internet around the clock. This data is publicly available for download, and totals in
tens of terabytes of data. Analysis of the data can reveal useful information about connec-
tivity and networks in the US using the normalized RTT-to-everywhere metric described in
Section 3.1.

Data collection and analysis of this method is described in Chapter 5.

RTT to Top Websites: Site Ping The site ping method is a web-based, crowd-sourced
approach that involves a user’s web browser attempting to download a small asset from
popular websites and measuring how long it takes. This method allows us to estimate
how long it takes for a user to interact with a popular website, a measure of Internet
connectivity described in Section 3.4.

This method is detailed in Chapter 6.

15
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Aggregate RTT by Region: DNS Cache Manipulation The DNS cache manipulation
method is a continuation from the prior MQP [6]. It uses a set of geographically diverse
recursive and authoritative DNS servers. By measuring latency to the recursive DNS server
and then forcing it to go to a specific authoritative server, we can measure the RTT from
the location of the recursive server to the location of the authoritative server. This provides
data for the aggregate regional approach described in Section 3.2.

This method is explored in more detail in Chapter 7.

4.2 Measurement Methods Not Pursued

The below section details methods that were considered or attempted, but ultimately not
pursued. We leave this section here as both as advice to future researchers on what methods
to try, and as a warning on what to avoid.

4.2.1 Road trip

Before the CAIDA and RIPE Atlas data was uncovered, an idea for gathering everywhere-
to-everywhere data was conceived: take an enormous road trip across the US, collecting
data all along the way. The idea is simple enough in theory and in practice. Just assemble
a list of destinations and run constant traceroutes against them on the journey, mapping
them to global positioning system (GPS) coordinates along the way.

By the end of the trip there would be traceroutes from every point along the route to
all the different destinations in the list, many times over. This would yield a significant
amount of data. With two people in one car taking shifts in driving (or alternately, staying
in hotels for 7-8 hours at a time), it was estimated that the entire US could be roughly
circumnavigated in about 7 days.

Fortunately the CAIDA and RIPE Atlas data sets were discovered well before any serious
planning was underway. The idea was immediately nixed, since it turns out that nobody
actually wants to spend a week in a car.

4.2.2 Network Time Protocol

Network Time Protocol (NTP) is a protocol designed to synchronize computer clocks
around the world. Per the specification for the third version, NTP is designed to “maintain
accuracy and robustness” despite being implemented on “unreliable” networks with “dis-
persive delays” [21]. As part of this protocol, the delay, or delta, between the client and
server is calculated [22]. Given the precise nature of this protocol, it would be ideal for this
project, which is focused on measuring the network time between geographic locations.
The only requirements would be a geographically diverse set of NTP servers willing to
provide the calculated delay values to their peers. Luckily, both parts of this requirement
are met – mostly.

The NTP specification details a server “mode 6”, that allows for “remote control queries”,
providing a way for remote management of certain aspects of the server [14]. One of the
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these queries, the peers command, prompts the server to return a list of its peers, 1 along
with calculated statistics for these peers – including the delay. Figure 4.1 is an example of
such a command using the ntpq tool (with some fields removed for formatting).

>ntpq -c peers 127.0.0.1
remote refid delay offset jitter

=======================================================
*ntp1.wpi.edu 130.215.32.36 0.851 -0.076 0.134
+ntp2.wpi.edu 130.215.32.36 0.646 -0.366 0.182
+ntp3.wpi.edu 130.215.144.33 1.376 0.711 0.261

Figure 4.1: Sample NTP Mode 6 peers command output

As the example shows, the peers command response includes both delay and jitter
calculations for each peer. Coupled with IP geolocation, requesting the peers from a list of
mode 6 NTP servers would be a straightforward way of getting point to point measurements.
And there is no shortage of NTP servers with mode 6 enabled in the US: according to the
ShadowServer Foundation, which conducts period scans for such servers, as of January
22nd, 2020 there are 522,415 such servers in the country [36]. Additionally, as Fig. 4.2
shows, they are distributed across most of the country.

Figure 4.2: Distribution of NTP Mode 6 Servers in the US [36]

In theory, using these servers and conducting a simple survey of the delay times to
each of their peers would be an ideal method for this project. Unfortunately, one of the

1Peers are other NTP servers that a given server is configured use for synchronization.
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Figure 4.3: Maximum available connection speed across the US

commands included in mode 6 makes the servers vulnerable to being exploited for use
in amplified distributed denial of service (DDoS) attacks [37]. Thus, despite performing
frequent scans for mode 6 servers, the ShadowServer Foundation does not publish a list
of such servers, since doing so would pose a security risk. We found no other source of
potential servers and proceeded to attempt our own scan of potential IP address ranges.
While we found some potential servers, many lacked any peers and the search was time
intensive. Future work may include this method, provided a list of potential servers is
available or more time can be dedicated to scanning for them.

4.2.3 ISP Mapping

The FCC maintains a data set of broadband Internet deployment across the US [7]. The
data set is composed of a list of census blocks, and contains all of the providers that are
within the census block, as well as the maximum, minimum, and advertised speed offered
by each provider; this map is shown in Fig. 4.3. Unfortunately, the data set only considers
residential broadband connections, which may not be representative of what is actually
used in the region. Nonetheless, broadband connection availability could provide valuable
insight into what connections are available to the average American.
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4.2.4 Data Collection via the Postal Service

One data source we considered was to utilize the United States Postal Service (USPS)
to send a small cellular connected device such as a phone around the US via ground
shipping. As it traveled it would continuously run traceroutes to many other IP addresses
that are located across the US. This would give us data along the route there and back.
Unfortunately, it is not possible to send a package somewhere and then get it back easily
without someone to receive it on the other end. However, assuming this problem could be
solved it would be a viable method.

4.3 Statistical Methods

This chapter covers statistical methods used in all methods for processing data. Additionally,
since a list of states as ranked by Internet connectivity may be of interest for a quick
overview of our results, we present some analysis techniques used for generating them.
Unfortunately complications in the data (such as the nature of aggregation by arbitrary
political boundaries) make this process not as simple as conducting a sort.

4.3.1 Z-Score Filtering

To filter out statistical outliers from our data sets we choose use a technique known as
z-score filtering. Z-score filtering works by calculating the standard deviation of a data set
and then removing values that are greater then a set number of standard deviations away
from the mean. The z-score is number of standard deviations away as data point needs to
be for it to be considered an outlier. For this report, we choose to use a z-score value of 2,
and therefor 95% of the data will be preserved.

4.3.2 Kruskal-Wallis test

Regardless of the method of data collection used, if aggregating by state the data will
inevitably become a list of data points for each possible state. However, states are massive
regions with varying populations, infrastructure, etc. and there was not an established
relationship between states and Internet connectivity (which would normally make the
data much cleaner and easier to analyze) prior to this project. Within any state there may
be a large amount of variation in the data and a potentially complex distribution. For this
reason a proper statistical test is needed.

The requirements are simple: a non-parametric (i.e. does not assume a normal distri-
bution) test that determines if a ranking of two or more categorical variables is impossible,
on variables with unequal sample sizes. The chosen test that meets these requirements is
the Kruskal-Wallis H test, also known as a one-way analysis of variance (ANOVA) on ranks.
When used on a data set, the result is a H value that, assuming a chi-squared distribution,
can be used to calculate a p value [17]. In this case p should be interpreted as the proba-
bility that all the given samples come from the same distribution, i.e. that we cannot tell
a difference between them. For a more concrete example, if we run the Kruskal-Wallis
test on samples for the states of California and Tennessee and obtain p = 0.75, there’s a
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75% probability that the two states’ values come from the same distribution. This report
uses the p < 0.05 level for its analyses, so in this case the two states would be deemed
indistinguishable.

4.3.3 Distinguishability Graphs

The Kruskal-Wallis test cannot tell us if a ranking of 3+ variables is possible, only that
one sample dominates the others [17]. So, in a sample of 51 categorical variables2 the p
value may be low, but not all states can be directly compared. An important property of an
ordered list is that any two values should be comparable to all those before and after it in
a meaningful way. A traditional sorting algorithm running on means or medians cannot
be applied, as there is no way to control whether it will try to compare states that the
Kruskal-Wallis test says cannot be distinguished at the p < 0.05 level.

To visualize this we developed the concept of a distinguishability graph. Briefly, states
can be interpreted as vertices on a graph, and pairwise comparisons that are valid or invalid
based on the Kruskal-Wallis test can be visualized as edges. With some processing from the
SciPy toolkit, Pandas, and visualization + arrangement done by NetworkX or D3 [2, 15,
20, 39], we can generate graphs showing these relationships and relevant attributes.

Figure 5.15: Indistinguishability graph (at p ≥ 0.05) for pairwise state comparisons (re-
peated from page 40)

Figure 5.15 shows an example of such a graph, for pairwise state comparisons. Each
edge between states represents a comparison that cannot be made (making this an indistinguish-
ability graph), red-highlighted edges are bridges, and node colors correspond to the com-
munity that node belongs to. On this particular graph there are no disjoint subgraphs, so

250 states + the District of Columbia.
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ranking by clusters of states is not possible. In graphs where their are disjoint subgraphs,
however, ranking by clustered states would be possible.

Figure 5.16: Distinguishability graph (at p < 0.05) for pairwise state comparisons (repeated
from page 40)

Figure 5.16 shows an example of a distinguishability graph at the p < 0.05 level; since
edges here represent comparisons between states that are distinguishable, this graph is
drawn as a directed graph. The direction of the edge follows the order of which state has
better connectivity (the ancestor of a node has better connectivity). Topological sorting
thus opens up new possibilities for the ranking of states without relying on traditional
sorting algorithms.

4.3.4 Topologically-sorted state rankings

A graph of states that are distinguishable is most naturally represented as a directed graph.
When conducting comparisons it’s possible to calculate a ratio between the states based on
the fraction of connectivity quality that the worse state has to the second (a value ranging
from 0-1). These ratios can be used as weights along edges between states, allowing a
topological sort of the graph to be conducted. Edges with weights that are higher are
explored first (since they correspond to states that are closer to being equal). The result
may not be entirely intuitive at first and undoubtedly has some oddities from the unusual
sorting method, but may be useful in addition to a simple mean/median-based sort.

One drawback of the topological sort method is that it implicitly compares states that
according to the Kruskal-Wallis test cannot actually be compared. For instance, if you have
CA → MA and CA → TX, but the comparison between MA and TX is not supported by
the data, the topological sort method must choose between them somehow. That choosing
process is an implicit comparison, making the topological sort method a rough guess at
state rankings at best.
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4.4 Summary

In summary, we covered the basic architecture of the Internet and how it can be studied
through traceroutes or speed test, some common technologies that users will encounter
like caching and the domain system, and some techniques relevant to our project like IP
address geolocation and reverse geocoding. As part of our investigations we also covered a
pair of notable prior works, namely a past WPI MQP and a project that mapped fiber-optic
networks in the US.

All of this information was essential for the completion of our project and will be of use
in understanding later chapters.



5

RTT to Everywhere: Traceroute Analysis

As discussed in Section 3.1, one measure of Internet connectivity is an everything to
everything approach that collects the RTT between many devices in a region. Collection of
such data requires either moving one device to many places, or a distributed network of
devices. In either case the device(s) would ping as many different networked devices as
they can find.

5.1 Design

Fortunately, such projects exist. Two organizations, CAIDA and RIPE, maintain projects
that do almost exactly that. CAIDA and RIPE (the latter through its “Atlas” project) have
networks of thousands of small devices, typically Raspberry Pis or similar, that scan vast
swathes of the Internet, constantly running traceroutes (see Section 2.2). For example,
CAIDA’s project involves a technique they call “prefix probing” where their network tries to
run a traceroute to at least one device in every /24 prefix. Together these networks have
generated terabytes of data over many years, all of which is publicly available.1

5.1.1 Direct Ping Calculation

Since a traceroute is really just a series of pings, and a traceroute output reports the RTTs
for all of them, CAIDA and RIPE Atlas traceroute data can be used for the everything-
to-everything RTT approach. The technique is simple: for every hop in each traceroute,
record the source, the destination, and the RTT. IP address geolocation can be used to
determine source and destination coordinates, and the haversine formula can be used to
find a distance between them (formula 5.1). We refer to this technique as direct ping
calculation.

23



CHAPTER 5. RTT TO EVERYWHERE: TRACEROUTE ANALYSIS 24
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Formula 5.1: Haversine formula for distance; ρ1, ρ2 and λ1, λ2 are latitude/longitude re-
spectively for the two points in radians, and r is the radius of the Earth at 6,371 km.

Figure 5.1: Diagram of indirect traceroute ping calculation

5.1.2 Indirect Ping Calculation

A crude calculation of the RTT between each individual server in a traceroute can also be
performed without directly sending pings between them. Figure 5.1 shows roughly how
this process works. Red lines indicate the time between servers that we want to measure,
while black lines indicate data that the server running the traceroute can actually give us.
By subtracting a server’s RTT from the RTT of the server just behind it, we can estimate the
RTT directly between the two. The same technique applies to any two arbitrary pairs of
hops in the traceroute log, although a sanity check to guard against negative RTTs (caused
by jitter along connections compounded by the subtraction operation) is needed.

This method results in almost double the amount of ping data per traceroute, since if
you have a traceroute A → B → C → D, you have data for not only A → B,A → C, and
A → D, but you can also calculate B → C,B → D, and C → D. More formally, for a
traceroute of n hops, you can extract 2n − 2 RTTs. We refer to this technique as indirect
ping calculation, and can similarly involve distance calculations provided by formula 5.1.

5.2 Implementation

We collected as much CAIDA and RIPE Atlas data (from 2018-2019) as could store using
the common tool wget (and later an http-accelerator program axel). RIPE Atlas data is
stored in Javascript Object Notation (JSON) format while CAIDA developed its own binary
format “WARTS” for binary storage. While the code for reading it is open source, a toolkit
including a warts-to-JSON converter is available for download2 and once converted the

1CAIDA’s prefix probing data can be found at https://www.caida.org/data/active/ipv4_prefix_
probing_dataset.xml. The RIPE Atlas data set may be found at https://data-store.ripe.net/
datasets/atlas-daily-dumps

2http://www.caida.org/tools/measurement/scamper

https://www.caida.org/data/active/ipv4_prefix_probing_dataset.xml
https://www.caida.org/data/active/ipv4_prefix_probing_dataset.xml
https://data-store.ripe.net/datasets/atlas-daily-dumps
https://data-store.ripe.net/datasets/atlas-daily-dumps
http://www.caida.org/tools/measurement/scamper
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resulting JSON file is similar to the RIPE Atlas format. The total volume of data processed
is estimated at 5-10 terabytes.

5.2.1 Data ETL Pipeline

The pipeline was implemented as a bash script that operated in three stages. This process is
highly parallelizable and so the aptly-named parallel tool [33] was used to process 8-16
files at a time. A command-line interface (CLI) program was written in C++, called the
“traceroute hopper” while in development, capable of parsing JSON files and performing
ping calculation for the extract-transform-load (ETL) process listed below. C++ was chosen
for its performance3 and availability of performance JSON parsing libraries [34].

Extraction

RIPE Atlas distributes data in compressed (gzip) format, each file of which contains a single
10 GB JSON file. CAIDA distributes files in compressed WARTS format, which each expand
to 3 GB JSON files when extracted and converted. Since 10 GB files are unwieldy and the
file format permitted it, RIPE Atlas files were split into chunks of 100,000 traceroutes each
– about 3,000 files total. Each file was fed to a bash script that encompassed the entire
extraction and conversion process, in addition to running the traceroute hopper.

Internally, the traceroute hopper maps a traceroute file into memory with a read-ahead
flag set. This forces the operating system into loading the entire file into memory at once
so future reads to the file never hit the disk, freeing up disk usage for other processes (such
as the database). After loading, the program reads through the file line-by-line, as both
RIPE Atlas and CAIDA JSON files are composed of thousands of JSON objects per file, one
per line. This method is shown in snippet 5.1.

1 // Map file into memory for faster processing
2 struct stat st{};
3 stat(args.inputs[fileNum], &st);
4 int fd = open(args.inputs[fileNum], O_RDONLY, 0);
5 void* data = mmap(0, st.st_size, PROT_READ, MAP_PRIVATE | MAP_POPULATE, fd, 0);
6 std::stringstream file;
7 file.rdbuf()->pubsetbuf(static_cast<char *>(data), st.st_size);
8

9 // Loop over each individual traceroute and process it
10 vector<tuple<string, float» rawHops(50);
11 while(getline(file, line)) {
12 Document traceroute;
13 traceroute.Parse(line.c_str())
14 // ...
15 }

Snippet 5.1: Traceroute hopper JSON loading

3Python was originally used but known to be slow; switching to C++ yielded a 100% performance boost,
saving several days of processing time at a cost of a few hours of development.
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Transformation

The next step in the process is to perform specific processing on CAIDA and RIPE Atlas JSON
formats. The principle layouts of both are nearly identical, but the structure is different and
CAIDA files require DNS lookups on sources.4 Since it would be wasteful to construct two
entirely separate parsers, the traceroutes are converted to an intermediate format first. The
CLI requires a flag for whether the file is of CAIDA origin or RIPE atlas origin to distinguish
between the two. The entire sequence for converting to an intermediate format is shown
in snippet 5.2.

1 vector<tuple<string, float» convertAtlas(const Document& traceroute) {
2 vector<tuple<string, float» hops;
3 hops.reserve(traceroute["result"].Size());
4

5 const auto& hopsArray = traceroute["result"].GetArray();
6 for (const auto& hop : hopsArray) {
7 // Verification – not all hops have results
8 if (!hop.HasMember("result"))
9 continue;

10

11 string src = getHopSource(hop["result"].GetArray());
12 if (src.empty())
13 hops.emplace_back("", -1); // Error condition for this hop
14

15 hops.emplace_back(src, rttAverage(hop["result"].GetArray()));
16 }
17

18 return hops;
19 }
20

21 vector<tuple<string, float» convertCaida(const Document& traceroute) {
22 vector<tuple<string, float» hops;
23 hops.reserve(traceroute["hops"].GetArray().Size());
24

25 for (const auto& hop : traceroute["hops"].GetArray())
26 hops.emplace_back(hop["addr"].GetString(), hop["rtt"].GetFloat());
27

28 return hops;
29 }

Snippet 5.2: CAIDA and RIPE Atlas JSON pre-processing to intermediate format

The next stage involves actual ping calculation on traceroutes. The CLI accepts a flag
for this too, allowing the user to enable indirect calculation. Alternatively the user can
switch to “ping” mode, where only the RTT for the absolute endpoints of the traceroute
are calculated. The relevant section of calculation code is shown in snippet 5.3.

4CAIDA files are stateful; most lines only contain a JSON object describing a traceroute, but those leave
out the source IP address. At the top of each file (or sometimes, multiple times across each file) is a separate
JSON object that contains information about the source server, and all traceroute entries that follow are sent
from that source. The server is given as a hostname, so it needs DNS resolution to obtain an IP address.
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1 if (args.ping_given) {
2 // Ping mode – just do one entry, source to final destination
3 float rtt = get<1>(rawHops[rawHops.size() - 1]);
4 if (rtt < 0)
5 continue; // Can't parse this traceroute
6 hops.emplace_back(baseSrc, get<0>(rawHops[rawHops.size() - 1]), rtt, time, false);
7 } else {
8 // Either direct or calculated mode
9 int j = -1;

10 for (auto& hop : rawHops) {
11 j++;
12

13 // Add a hop for the direct source-> hop entry
14 if (get<1>(hop) < 0 || get<0>(hop).empty())
15 continue; // Bad hop
16 hops.emplace_back(baseSrc, get<0>(hop), get<1>(hop), time, false);
17

18 // If we're not on calculate mode OR we're at the first hop, skip. Processing the
first hop would be↪→

19 // redundant since direct mode already picks it up.
20 if (!args.calculate_given || j == 0)
21 continue;
22

23 // Make sure the last hop is valid, otherwise we can't calculate an rtt
24 tuple<string, float> lastHop = rawHops[j - 1];
25 if (get<0>(lastHop).empty() || get<1>(lastHop) < 0)
26 continue;
27

28 hops.emplace_back(get<0>(lastHop), get<0>(hop), get<1>(hop) - get<1>(lastHop),
time, true);↪→

29 }
30 }

Snippet 5.3: Direct, indirect, and ping mode calculation

Load

Once the traceroute hopper reaches its buffer capacity, it dumps the contents out to a
PostgreSQL database. This is performed as a streamed operation through libpqxx, the
official C++ client library for PostgreSQL [38].

PostgreSQL was chosen for its performance, advanced features, and in particular its
ability to generate spatial indices. Performing basic statistical analyses and fast joins was
also a sought-after feature.

Post-processing: Geolocation

Once all data was collected in the database it was possible to sort out unique IP addresses,
each of which was fed into a geolocation library (see Section 2.7) provided by MaxMind
to estimate the location of the machine the IP address belongs to. This step was delayed
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until after the ETL process for performance reasons. After processing was completed, the
database contained ~71 billion individual RTT measurements.

5.2.2 Data Cleaning & Filtering

The data required some cleaning before it could be considered viable for serious analysis,
since not all measurements or servers returned results consistent with nearby neighbors,
and RTT-based data is vulnerable to influence from outliers. Since threshold filters (ex.
removal of all points above x ms) risk biasing data, simple z-score filtering was selected as
the main filtering method. Filtering was performed at two levels: during aggregation, and
after aggregation by IP address pair.

Aggregating and filtering per IP address pair

For each IP address pair there are potentially many measurements. A pair may have 50
perfectly good measurements, for instance, but one measurement in the tens of thousands
of milliseconds that should be discarded. For each IP address pair the standard deviation
was calculated and each measurement for that pair was z-scored; points that exceeded 2.0
(absolute value) were discarded. Since this was performed at the raw data level (operating
on ~71 billion rows) it was integrated as part of the IP-pair aggregation query. This query
may be found in snippet 5.4. This process also involved assigning locations to the endpoints
of each of the IP address pairs using a prior-calculated table.

Filtering IP pair outliers

Some IP address pairs consistently performed poorly no matter the filtering at the individual
measurement level, with RTT values that far exceed the mean for the entire pool of address
pairs. Since these values are also likely to influence results in undesirable ways, they were
filtered out using the same z-score method. At this point the data was on the order of a few
hundred million rows and was thus suitable for export to more traditional data processing
tools, so from this point on filtering was conducted with the Python pandas library [20].
After all filtering and aggregating was complete, there were ~230 million data points.

Snippet 5.5 shows some of the code responsible for filtering out bad IP address pairs.
The df = [expression] format is repetitive but intended for improved readability; there
are better ways of organizing pandas code. The code accomplishes several things at once.
Line-by-line:

1. Filter the data by direct or indirect ping calculation. args.indirect parameratizes
this for CLI use. At the same time, filter to IP address pairs where the distance
between endpoints is greater than 0 (indicates geolocation imprecision) and the RTT
is greater than 0 (indicates timing error).

2. Filter IP address pairs by the z-score of their rtt_avg field, or the mean of the RTT
for that address pair.

3. Calculate a primitive “connectivity” value as milliseconds per kilometer, for all IP
pairs.
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1 CREATE MATERIALIZED VIEW hops_aggregate_view AS (
2 SELECT
3 agg.src,
4 agg.dst,
5 agg.indirect,
6 src_loc.coord as src_loc,
7 dst_loc.coord as dst_loc,
8 haversine_distance(src_loc.coord[0], src_loc.coord[1], dst_loc.coord[0],

dst_loc.coord[1]) AS distance,↪→
9 agg.rtt_avg,

10 agg.rtt_stdev,
11 agg.rtt_range,
12 agg.measurements
13 FROM (
14 SELECT hops.src,
15 hops.dst,
16 hops.indirect,
17 AVG(RTT) AS rtt_avg,
18 STDDEV_SAMP(RTT) AS rtt_stdev,
19 MAX(RTT) - MIN(RTT) AS rtt_range,
20 COUNT(*) AS measurements
21 FROM hops
22 INNER JOIN hops_stats hs
23 ON hops.src = hs.src
24 AND hops.dst = hs.dst
25 AND hs.stddev_samp != 0
26 AND hops.indirect = hs.indirect
27 AND ABS((hops.rtt - hs.avg) / hs.stddev_samp) <= 2
28 GROUP BY (hops.dst, hops.src, hops.indirect)
29 ) agg
30 INNER JOIN locations src_loc ON agg.src = src_loc.ip
31 INNER JOIN locations dst_loc ON agg.dst = dst_loc.ip
32 )

Snippet 5.4: Aggregation and base filtering SQL query

4. Z-score filtering for IP pairs based on connectivity, i.e. throw out all pairs whose
“connectivity” is too far one way or the other.

1 df = df[(df["indirect"] == (1 if args.indirect else 0)) & (df["distance"] >
0) & (df["rtt_avg"] > 0)]↪→

2 df = df[np.abs(stats.zscore(df["rtt_avg"])) <= 2.0]
3 df["connectivity"] = df["rtt_avg"] / df["distance"]
4 df = df[np.abs(stats.zscore(df["connectivity"])) <= 2.0]

Snippet 5.5: Pandas filtering of IP address pairs
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Figure 5.2: RTT distribution, direct ping calculation

5.3 Analysis

The following sections describe analysis of the CAIDA and RIPE Atlas data in a natural
progression from analysis of data quality, to basic connectivity analysis, and finally to
geographic plotting and geographic information system (GIS) tooling.

5.3.1 Data Quality

To determine the quality of the data, we made a series of kernel density estimation (KDE)
charts with the Python library seaborn [41]. Since histograms are vulnerable to binning
effects and cumulative distribution charts tend to be less intuitive to read, distributions
in this report are presented as () charts. Briefly, these work by drawing a Gaussian
distribution around each point of data, summing all distributions together, and normalizing
so the area under the curve is equal to 1. The y axis, then, does not represent a real value,
instead only a probability density. KDE charts contrast cumulative distribution function
(CDF) charts which can be used to more easily extract median, percentiles, etc.; however,
the point of the charts here is more to show clustering than anything, which KDE charts
excel at intuitively presenting.

The most immediately useful distribution is that of the RTT between IP pairs, shown
for direct-calculated RTTs in Fig. 5.2. The distribution appears weakly bimodal, which we
hypothesize is due to the global nature of RIPE Atlas and CAIDA’s individual measurement
networks. The leftmost peak corresponds to measurements to a device that shares a land
mass with the device performing the traceroute, while the rightmost peak corresponds
to a combination of devices on a different land mass and devices with lower-performing
connections. Figure 5.3 appears to confirm this hypothesis, since it too is similarly bimodal.
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Figure 5.3: Address pair distance distribution

Figure 5.4 shows the distribution of RTTs calculated using the indirect ping calculation
method, of which a calculated ~29% are below zero – an impossible value. Since a
significant fraction of the data points are completely impossible it was decided that this
data was too unreliable for further analysis. The remainder of the data analyses in this
section are based on the direct ping calculation method only.

Figure 5.4: Distribution of RTT between IP pairs, indirect ping calculation

To further assess data quality we turned to measures of the data spread for each data
point. Figure 5.5 shows the distribution of measurement counts between each IP address
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pair, showing that although most pairs had on the order of 1-20 measurements, a sizeable
fraction had more than that, and there were even some in the 500+ measurements range.
This effect is likely a result of the way RIPE Atlas and CAIDA nodes are networked. A node’s
local gateway would always show up on a traceroute (unless configured to not respond to
pings), as would common paths through a node’s ISP, so these IP addresses are measured
extremely frequently.

Figure 5.5: Distribution of measurements count for each address pair

Figure 5.6: Distribution of address pair standard deviations
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The first measure of data quality used is standard deviation. Figure 5.6 shows the distri-
bution of standard deviations across all measured IP address pairs (for charting purposes,
pairs with only one measurement were interpreted as 0 standard deviation). The chart
shows an incredibly smooth curve where the overwhelming majority of pairs have standard
deviations well below 20 ms.

Since standard deviations are all relative, we next calculated a coefficient of variation
(CV) for each IP address pair as a measurement of data quality. Figure 5.7 shows the
distribution of CVs for all IP address pairs, with the majority of CVs below 0.1 – in other
words, excellent-quality data with low spread for each pair.

Figure 5.7: Distribution of address pair coefficients of variation

5.3.2 Primitive Connectivity Analyses

Each data point comprises an IP address pair, but each destination IP address – that is, each
IP address that a CAIDA or RIPE Atlas node ran a measurement against – appears many
times, at least once for every node that ran a measurement against it. Averaging these will
not work (it makes little sense to average together measurements from a server in Boston
with a server in Moscow against a server in New York, since the Moscow measurement node
will naturally report a much higher RTT), so normalization is needed. The first method
used was simple normalization by distance, which returns values in ms/km. This may be
unconventional, but milliseconds and kilometers are natural units for RTTs and distance,
respectively.

The ms/km distribution shown in Fig. 5.8 is uninformative on its own, but it does
demonstrate an important feature. Normalization succeeds in removing the bimodality of
the RTT distribution shown in Fig. 5.2 without removing all the spread of the data. This
both further affirms the earlier hypothesis about the cause of the bimodality, and gives
cause to believe that geographic charting may yield interesting results.
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Figure 5.8: ms/km connectivities distribution

Unfortunately this metric is challenging to chart with any color scale. The majority of
values are between 0.0 and 0.05 ms/km but values an order of magnitude higher must
also be charted, and a log scale fails to capture important but relatively small variances
between areas. To solve this, we devised a new metric based on efficiency relative to the
speed of light.

The speed of light is 299.79246 km/ms, so the theoretical minimum RTT between two
points ~300 km apart is ~2 ms – one ms one way, and another on the return trip. All
telecommunications happen over electromagnetic mediums,5 be it fibre optic cables or
copper wires, so communications always have a transmission delay proportional to the
speed of light. If the RTT was higher than two milliseconds, there must logically be some
loss in speed somewhere in the network, whether that means poor infrastructure or wiring
that does not follow a straight line to its target – either way, an inefficiency. The smaller the
RTT, the higher the efficiency, and vice versa. This has the desirable quality that extreme
outliers are always between zero and one regardless of how high the RTT is. The formula
for speed-of-light-efficiency based on RTTs is shown in formula 5.2.

E =
2d

t× 299.79246
(5.2)

Formula 5.2: Speed-of-light efficiency; E is efficiency as a scalar from 0-1, d is distance in
kilometers, and t is the RTT in milliseconds.

5With the possible exception of internet protocol over avian carrier (IPoAC), which has been successfully
demonstrated [1, 40]
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Speed-of-light efficiency can also be thought of as a scalar multiplied by c, the speed of
light – it’s the equivalent “speed” of a ping. With this improved normalization scheme to
work with, the subtle differences and patterns like those in Fig. 5.9 can be seen in the data
when mapped. Also important is that this normalization method provides another means
of filtering data – anything above 1.0 efficiency can be removed since it violates the laws
of physics by exceeding the speed of light.

Figure 5.9: Speed-of-light efficiencies distribution

5.3.3 Mapping

The simplest way of mapping a set of points on a coordinate plane with values attached
to each of them is a simple scatterplot, but with massive amounts of unevenly distributed
data it becomes tough to visualize and draw conclusions. For example, in Fig. 5.10 we
see a point for every single pinged device in the CAIDA and RIPE Atlas data set that was
collected and analyzed – at least, those in the US.

Some simple relationships can be inferred with moderate difficulty, like better Internet
connections near the coast or possibly major cities, but otherwise this map is only good
at confirming that geolocation of IP addresses works. Many areas simply do not have
measurements either, and those that appear covered look that way because the dots for
each measurement were inflated for visual effect. If they were more accurately represented
to-scale as single pixels, the map would be sparse.

To solve this problem the map needs some interpolation to fill in the gaps and make
the data easier to understand. Ideally someone looking at the map should be able to point
to a spot on the map and get an estimate for connectivity at that location, even if there
was not a measurement at precisely that location. However, even after z-score filtering,
aggregation by source-destination pairs, and more filtering, there were still millions of
data points within the US alone. To that end we tried some unusual techniques for further
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Figure 5.10: Traceroute scatterplot, colored by speed-of light-efficiency

aggregating the data together, in ways that were more manageable for visualization tools.
It was also decided that we should not lose resolution as the density of points increased.
For example, drawing a grid of static boxes on top of the map and grouping using those
would not do because there may be a city with thousands of points in one, and a rural area
with only a few points in another, but they’d both take up the same area on the map.

Quadtree grouping

One of the first techniques tried for grouping data together was a technique we dubbed
“quadtree grouping”. The technique is adapted from methods used to optimize collision
detection in 2D games where the screen is cut into four boxes based on the number of
entities in each quadrant, then each box is cut into four more with the same metric, and so
on until some threshold with an optimal number of entities per box is reached. This process
was performed on the data set here and adjusted for different parameters like maximum
tree depth, maximum nodes per box, etc.

Figure 5.11 shows a plot generated using this technique, with brighter areas correspond-
ing to the higher RTT-per-km metric, indicating worse connectivity. Smaller boxes tend
to denote areas of higher population density, as they were areas the algorithm needed to
subdivide the most. This technique appears to show a pattern in connectivity, with the East
coast having overall better connectivity, but it’s also visually difficult to read and difficult
to interpret the data from – it’s displeasing to the eye.. The only way of assigning a single
point to each quad is based on its center,6 but this results in points at odd positions, even
out in the ocean.

6Technically it’s possible to use some form of clustering within each quad to find an area with the highest
density to pin the point on, but at that point you may as well just use clustering on the whole map.
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Figure 5.11: Traceroute ms/km quadplot, generated by quadtree grouping

Nearest-neighbor interpolation

At this point it was discovered that, due to the fairly low resolution of IP address geoloca-
tion, many measurements from different IP address pairs share the same coordinates. This
made even further grouping by location possible, down to only ~55,000 data points. This
is much more manageable to visualize, so the next interpolation method tried was simple
nearest-neighbor interpolation (which prior to grouping would have been infeasible).

Figure 5.12: Traceroute speed-of-light efficiency nearest-neighbor diagram

Figure 5.12 shows a nearest-neighbor plot, otherwise known as a Voronoi diagram
[18], of the CAIDA and RIPE Atlas data combined, generated with Python matplotlib and
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scikit-learn [16, 39]. The colormap is a divergent linear colormap, where blue is worse-
than-average and red is better-than-average efficiency. This does an arguably better job
of presenting the data than quadtree grouping, but it’s visually noisy and suffers from
expanded influence of points in sparse areas. For instance, consider the large splotch in
Utah, which corresponds to areas arounhd Salt Lake City. While it’s likely accurate that the
city has far better Internet connectivity than its desert surroundings, it is likely inaccurate
to say that the areas within the few hundred mile radius shown on the map have the same
level of connectivity.

Linear interpolation

Since nearest-neighbor interpolation proved insufficient, the next method tried was linear
interpolation. Instead of assuming that all points nearer to a given data point than any
other have the same value as the data point does, linear interpolation assigns values at
each point between the different data points according to a simple linear scaling model.
This has the effect of making the map look far less discrete.

Figure 5.13: Linear-interpolated traceroute speed-of-light efficiency heatmap

Figure 5.13 uses the same divergent colormap as Fig. 5.12 but with linear interpolation
instead, showing a far smoother map that preserves the same patterns. It does not look as
discrete but it still has an angular affect to it, with sharp angles showing through where
Voronoi cell bounds and intersections previously were.

Inverse Distance Weighting

Inverse distance weighting (IDW) is a method for interpolating point data, operating under
the assumption that areas closer together are more likely to be similar. The influence of
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any given point on the interpolated data falls off with the inverse of the distance to that
point, producing much smoother, much more easily understood (and likely more accurate)
results.

Figure 5.14 shows the data as interpolated with IDW and touched up to include state
lines, major cities, and a key. This is what we consider to be the final heatmap generated
from the CAIDA & RIPE Atlas data. It roughly confirms our expectations that the more
densely-populated coasts would have have better connectivity on average while adequately
highlighting large-scale trends.

Interestingly, no matter how the data is visualized it always has a great deal of variance
from one area to another – that is, the map looks “splotchy”. Loosely speaking, this is
also what we would expect to see, since people tend to report a great deal of subjective
difference in Internet quality from one area to another.

Figure 5.14: Inverse distance weighting traceroute speed-of-light efficiency heatmap

5.4 State Rankings

Using the statistical and (in)distinguishability graph methods described in Section 4.3, we
were able to develop both graph visualizations of state distinguishability and a possible
ranking of the states.

Figure 5.15 shows an indistinguishability graph of comparisons between the states
(previously seen in Section 4.3), where node colors correspond to communities and bold
red lines correspond to bridges.7 As noted earlier, this graph has no disjoint subgraphs, so

7Bridges can be thought of as indicators of comparison quality; any state on the end of a bridge can be
compared to all but one of the other states.
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Figure 5.15: Indistinguishability graph of traceroute data as aggregated by state

ranking by clusters is not possible. Figure 5.16 shows the corresponding distinguishability
graph, which is much more connected, indicating this data is a good candidate for the
topological sort method.

Figure 5.16: Distinguishability graph of traceroute data as aggregated by state

When sorted we obtain a list of 49 states (including the District of Columbia; Hawaii
and Alaska were unreachable); two states were not reachable by a maximal topological
sort (described in Section 4.3.4). Table 5.1 shows this ranking, which roughly confirms
what we would expect based on prior notions and the heatmaps. Since the topological sort
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Table 5.1: CAIDA+Atlas topologically sorted state rankings

Rank State Rank State Rank State Rank State Rank State
1 DC 11 TX 21 LA 31 TN 41 WY
2 DE 12 AL 22 NV 32 MN 42 NE
3 MD 13 CT 23 PA 33 OH 43 NM
4 CA 14 RI 24 VT 34 WI 44 OR
5 NJ 15 NC 25 NH 35 KY 45 IA
6 NY 16 MA 26 UT 36 KS 46 WA
7 SC 17 AZ 27 IN 37 MO 47 ID
8 GA 18 IL 28 WV 38 MI 48 MT
9 VA 19 CO 29 MS 39 AR 49 ND
10 FL 20 ME 30 OK 40 SD

method is based on a graph interpretation and not a traditional sort of means or medians,
those values are not shown alongside the states.

Figure 5.17: Traceroute confidence intervals for rankings; higher is better

Figure 5.17 shows an alternate way of displaying state ranks, using the mean of each
state for comparisons. Since data for each state does not follow a normal distribution
(see Section 8.1 for a variety of KDEs on the subject) the bootstrapping method was used
to calculate confidence intervals. Loosely speaking, for each state the “true” mean could
be anywhere between the upper and lower bounds of the intervals. Table 5.2 shows the
specific values for each of these points.

The confidence intervals for each state’s mean are large, indicating that there are few
meaningful comparisons to be made here. The same conclusion can be drawn from the
indistinguishability graph in Fig. 5.15; there are no disjoint subgraphs so a ranking by
groups of states cannot even be drawn. The topological sorting results shown in Table 5.1
are interesting but they have the fundamental flaw of topological sorts as described in
Section 4.3.4: the sorting relies on implicit comparisons that cannot be made according to
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Table 5.2: Traceroute state confidence intervals

State Min Mean Max State Min Mean Max
DC 0.369 0.406 0.435 WA 0.336 0.348 0.359
DE 0.342 0.390 0.432 TN 0.335 0.347 0.357
CA 0.383 0.389 0.394 ME 0.338 0.346 0.354
MD 0.366 0.378 0.390 IN 0.337 0.346 0.354
NJ 0.367 0.375 0.383 OK 0.334 0.345 0.356
AZ 0.361 0.372 0.381 OR 0.332 0.345 0.357
TX 0.365 0.370 0.375 KY 0.332 0.343 0.354
NV 0.352 0.369 0.385 MS 0.331 0.342 0.353
GA 0.361 0.369 0.376 OH 0.334 0.342 0.349
NY 0.363 0.369 0.375 MO 0.332 0.340 0.347
SC 0.359 0.369 0.377 MI 0.332 0.338 0.344
FL 0.357 0.364 0.370 KS 0.328 0.337 0.347
NC 0.356 0.364 0.370 WY 0.326 0.337 0.347
RI 0.343 0.363 0.379 WI 0.329 0.336 0.342
VA 0.355 0.362 0.369 NM 0.320 0.335 0.350
CT 0.352 0.361 0.371 NE 0.324 0.333 0.343
MA 0.352 0.360 0.368 AR 0.326 0.333 0.339
IL 0.354 0.359 0.364 SD 0.317 0.332 0.346
UT 0.348 0.359 0.369 WV 0.318 0.331 0.345
AL 0.349 0.359 0.368 IA 0.321 0.331 0.340
LA 0.345 0.355 0.365 ND 0.308 0.326 0.341
VT 0.337 0.354 0.369 MT 0.310 0.325 0.339
CO 0.341 0.350 0.359 ID 0.312 0.322 0.333
NH 0.338 0.350 0.362 AK
MN 0.340 0.349 0.356 HI
PA 0.342 0.349 0.355

this data set.
The underlying problem is not with variance in the data itself (as shown by Fig. 5.7

and Fig. 5.6 the data spread is low, proving quality data), but in the aggregation method.
As visualized in Fig. 5.14 there is simply too much variation within a state, prohibiting a
statistically-valid ranking of all 50 of them. We can make simple assertions where confi-
dence intervals do not overlap, or between two states where p < 0.05, but unfortunately
nothing beyond that.

The conclusions that we can draw on a state level are that, loosely speaking, states that
are more populated or more urban tend to have better Internet than those are are less
populated or more rural on average. The District of Columbia, being only a city and also
the seat of the US federal government, has the best Internet. On the other hand, sparsely
populated states like Montana or North Dakota rank at absolute last. To get an accurate
idea of Internet connectivity, the only statistically-valid choice is to use aggregation by a
narrower area, or a continuous interpolation method like the IDW heatmap in Fig. 5.14.
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5.5 Summary

The analysis of traceroute data from CAIDA and RIPE Atlas provided a massive quantity of
data. During the process we developed a program that could process it all and store it in a
database of ~71 billion rows, which we were able to analyze. We devised a new method
for normalizing by distance alongside several unique methods of plotting the data, before
ultimately settling on an inverse distance weighting (IDW) heatmap.

We attempted to perform statistical analyses on the data set to determine if ranking
states by Internet connectivity was possible, but unfortunately the data did not support
such a ranking. We managed to generate a confidence intervals chart and associated table,
however, that allow us to at least compare the extreme ends of the data.
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RTT to Top Websites: Site Ping

A common use for the Internet is accessing web sites. Connection speed to different sites
often vary based on a variety of factors. In this chapter we attempt to measure end users
connection speeds to top websites. This metric of Internet connectivity is discussed further
in Section 3.4.

6.1 Design

The “site ping” site was developed as a tool for crowd-sourced Internet speed testing. The
site attempts to measure RTT between an end user and multiple websites in the top 50
Alexa list. The Alexa top 50 list was chosen as a source for sites since it represents a
significant fraction of sites that users are most likely to use. The complete list of the sites
used by the site may be found in appendix C.

6.1.1 RTT Measurement

There is no standardized protocol for measuring the RTT to an arbitrary web server using
only client-side browser technologies. Our solution was to request objects from web servers
and measure the time taken for the client to receive them. Due to cross-origin resource
sharing (CORS) restrictions,1 the only way for client-side Javascript to request external
objects is using the Hypertext Markup Language (HTML) img tag, which is limited to
requesting image resources.

Transmission control protocol (TCP), the underlying transport protocol used for HTTP,
performs a handshake between server and client when establishing a connection. This
handshake requires additional packets to be exchanged, adding time to the overall transac-
tion. In addition, modern websites use hypertext transfer protocol secure (HTTPS), which
adds transport layer security (TLS) encryption, and a TLS handshake following the TCP

1CORS is a security policy implemented by browsers, designed to guard against cross-site scripting attacks
by preventing scripts from loading resources or sending data to another domain. For instance, if a malicious
user injects a script into another user’s view of foo.com, that script would only be able to send or receive
data from foo.com, and not bar.com.

44
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handshake. As a result, simply measuring the time it takes to request an object includes
much more then just the time to transfer the data.

To work around this, the website makes two requests for an object from a web server.
The first request includes the HTTP keep-alive parameter, which keeps the TCP connection
open after the transaction is complete. The second request is timed, and because the
connection was kept open the timing results do not include the overhead of the TCP and
TLS handshakes.

Because our goal is to measure RTT, we want data received by the image tag to be
transmitted in a single packet – any more would incur additional delays from extra TCP
packets and acknowledgements. We wrote a plugin for the Google Chrome browser that
uses the Chrome developer tools API to find the smallest image loaded by each of the
websites we wanted to test.

6.1.2 Geolocation

Site ping creates and displays a map of the US with colored data points representing users.
The color of the points corresponds to RTT, and the point’s location is that of the user.
Texas A&M’s API is used to determine a user’s city in cases where the user’s device reports a
location (e.g. a smartphone) in geographic coordinates. Otherwise, IP addresses are stored
for offline processing using the MaxMind database.

6.1.3 Connection Type Reporting

Since it is important to compare RTTs for comparable devices (e.g. wired (Ethernet), WiFi,
or cellular), site ping makes a best-effort attempt to determine each user’s connection type.
This is done using the “network information” browser API. This experimental API is only
enabled by default in Google Chrome and Opera but can be manually enabled on Mozilla
Firefox. On mobile devices it is only available on Android browsers, and not iOS.

6.1.4 Displaying Results to the User

The site displays a map to the user. This allows users to see not only real-time results of
their test when their device reports a location, but also compare their results to others.
This was intended to create appeal for users.

6.2 Implementation

To measure Internet connectivity from a users browser we had to to develop ways to collect
data via a user’s browser, and find ways of distributing the site to users.

6.2.1 Data Collection

JavaScript does not have an easy or well-supported method for client-side browsers to
measure Internet connectivity. After researching alternatives to the network information
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API, we settled on the idea of timing how long it takes for the client to load small images.
Early prototypes were based on a similar tool called PingJS [9]. To collect data, the site
dynamically inserts HTML img tags pointing to a number of small resources, each owned
by one of the top 45 sites in the US. The site records the time prior to img tag insertion and
again upon completion of loading; this method is shown in snippet 6.1. Once resources
from all 45 sites have been loaded, the client packages the data into a JSON object and
sends it via web socket to the server, which stores the data in a MongoDB database [24].

1 function ping(url) {
2 return new Promise(function (resolve, reject) {
3 const start = (new Date()).getTime();
4 const response = function () {
5 let delta = ((new Date()).getTime() - start);
6 resolve(delta);
7 };
8 request_image(url).then(response).catch(reason => reject(reason));
9 });

10 }

Snippet 6.1: JavaScript “ping” function

6.2.2 Selection of Loaded Resources

Initially we decided to load favicons as our images. Favicons are small images that browsers
use to display an icon for the site, usually in the address bar. These images work well
because they were easy to find and every website had them. Unfortunately they often
varied greatly in size. Ideally all of the images loaded would have been under 1500 bytes
so that they would fit in a single TCP packet. To get the consistency and small image size
needed, we developed an extension for the Chrome web browser that visits each of the top
45 sites and loads all of the images available, choosing and outputting the smallest one; a
complete list may be found in appendix C. Unfortunately, a few of the chosen images were
in a file format that was not readable by some browsers and as a result fewer data points
were received from those sites.

6.2.3 Site Ping Front End

For the website itself we used the JavaScript Library D3.js (“D3”) to draw maps. D3 is
a library specifically designed for visualization of large data sets [2]. To draw the states
themselves, D3 loads a JSON file containing a definition of the map and renders it as an
scalable vector graphics (SVG) image on the screen. To draw points for each city, collected
data is passed into D3. D3 then converts the longitude and latitude to coordinates on
the screen and uses a color gradient based on RTT to determine the color of the dot. An
example of such a map is displayed in Fig. 6.1.

Initially, we used the absolute minimum and maximum values of the data to determine
the limits of the gradient, but we found that color gradients would often be skewed towards
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outliers. To solve this problem, we switched to using the inter-quartile range (IQR) of the
data set for the color gradient. All of the points outside this range are displayed as pure red
or pure white. This eliminates outlier effects while staying fast enough to be performed on
the server or in the browser, as opposed to slower methods like z-score filtering.

Figure 6.1: Site ping city view

6.2.4 Back End and Database

When a client sends data to the server, the server uses geolocation to assign the data a
latitude and longitude. All of this information is stored in the database, and additionally is
sent via web sockets to all of the other connected clients so the site map can update in real
time. For the back-end database, we chose to use MongoDB to host all of our data [24],
which is queried by the server when a client connects. We chose MongoDB because of its
simple and free cloud hosting platform (known as Atlas), as well as the ease of integration
with NodeJS (our chosen server platform) [26]. The backend web server was a NodeJS
server hosted on an AWS Amazon Elastic Compute Cloud (EC2).

6.2.5 Distribution

We used multiple methods to distribute the site to people across the US. These methods
included posting to social media, using crowd sourcing, and word of mouth. To track site
usage and gauge the success of these methods, we used Google Analytics, a website ana-
lytics tool. Analytics uses embedded JavaScript that gathers information about the user’s
browser and activity. The script can also read other cookies and metadata to determine
where the user came from and how long they remained on the site. Finally, the collected
information is encoded into the metadata of a request for a one pixel image [10].
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Figure 6.2: Facebook site visits over time (2019)

Reddit

The site was first properly distributed on Reddit, a popular message board and content
aggregation site. We posted in two communities, /r/dataisbeautiful (14.2 million readers)
and /r/samplesize (121k readers). Unfortunately, posting on Reddit proved unsuccessful
and gained only around 10 views. Our posts failed to gain traction on either of these
subreddits and thus few people saw them.

Facebook

One of our most successful methods for distributing the site was through Facebook. Initially,
one of our members posted it on his own personal page, after which the site received a few
views. Soon afterwards, a family member posted the link into the WPI parents’ Facebook
group, resulting 125 views across the US. Finally, a group member posted the link to four
of the WPI undergraduate Facebook groups, resulting in a further 70 views of the site.
We intentionally waited to post to the WPI undergraduates Facebook group until winter
break started, hoping to maximize geographic diversity. The timeline of visits to the site
originating from Facebook is displayed in Fig. 6.2. Despite this distribution, geographic
diversity was limited to areas where family lives or WPI undergraduates are typically from
– Colorado and the Northeast, respectively.

Amazon Mechanical Turk

To reach people in states lacking data, we turned to Amazon’s Mechanical Turk service.
Mechanical Turk is a crowd sourcing platform that allows people to pay others (“workers”)
to complete small online tasks (“HITs”2). We paid 1-50 cents for users in states that we
had little data for, with higher incentives for states with sparser results. When someone
selected our task, they were directed to a special on the site ping website. After they began
data collection and waited for two cycles worth of data, they were given a token which
they copied and pasted into Mechanical Turk to ensure that they actually completed the
task. The tokens were generated using a JSON Web Token (JWT) module for NodeJS. Once
the worker submitted the task, an AWS Lambda (with the same server-side secret used to
generate the token), validated the token and approved payment. Using Mechanical Turk
resulted in an additional 221 visits to the site, bringing the total of covered states up to
47. Figure 6.3 shows the nationwide distribution of Mechanical Turk users. Note that this

2Human Intelligence Tasks

https://reddit.com/r/dataisbeautiful
https://reddit.com/r/samplesize
o
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includes users that visited the site but did not complete the task (including completing it
incorrectly and returning it).

Figure 6.3: Involvement from Mechanical Turk by state

6.3 Analysis

The site ping website yielded data across the entire US. We had to find ways of visualizing
the data and analyzing trends.

6.3.1 Initial Site Ping Analysis

The first analyses was conducted live, directly on the site for users to see on the aforemen-
tioned D3-powered map view (see Fig. 6.4). This map allowed us to both come to early
conclusions about the data, and allowed participants to be able to see the data in real time.
This map is calculated by averaging all of the cities in the state and then using the IQR to
scale the color scheme.

Figure 6.4: State view chloropleth map

Data was aggregated server-side by state and city to rank them from best and worst and
display the rankings on the site. Every new data point caused an update in the analyses –
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both for our own uses and to help users understand how their state performs. An example
of these rankings is shown in Fig. 6.5.

Figure 6.5: Site ping live-updating state rankings

6.3.2 Data Quality

The first measure of data quality tried was standard deviation. Figure 6.6 shows the
per-location distribution of these values, which follow a fairly smooth curve.

Figure 6.6: Distribution of site ping standard deviations by location

The overwhelming majority of points have standard deviations of around 150 millisec-
onds. This is a fairly high standard deviation, most likely caused by the small number of
data points for each location.

Next, we calculated the CV for each location, shown in Fig. 6.7. CVs are dimensionless
values that can be judged independent of the original source, making them useful for
gauging the spread of any data set. The lower the CV, the lower the spread of the data and
the better the quality. Most of the states are around 1, meaning there is significant variance
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Figure 6.7: Distribution of coefficients of variation by location

in the data. Again, this is most likely related to the relatively small number of data points
that exist for each location.

6.3.3 Filtering

To remove outliers in our data we used a simple z-score filter with z-score of two. More
info on z-score filtering can be found in Section 4.3.1. When the data was filtered, we
found that it brought the resulting value standard deviation from 511 to 175 while still
keeping 95% of the data points.

We also filtered out all of the data that came from mobile devices. This was due to the
unpredictability of it and the fact that we could not tell if they were connected to a cellular
connection or a broadband connection.

Evaluating State Rankings

To examine whether or not it was statistically allowable to aggregate the data by state, we
used the Kruskal-Wallis test, as described in Section 4.3. From there we grouped the states
into cliques based on whether or not they could be compared with all the other states.
Figure 6.8 shows a CDF of all of the groupings of states.

Table 6.1 only provides a rough estimate of Internet Connectivity. It was created based
on the median RTT of all of the data points within a state after z-score filtering the entire
data set. Median was chosen because we felt it gives the best representation of the state
while not being highly influenced by outliers. While this is not a comprehensive rank, it
does provided a strong high level view of Internet connectivity across the US. As expected,
the more densely populated areas have better connectivity, like DC and Delaware. More
rural areas, like Alaska and Montana have worse connectivity. North Dakota was filtered
out with z-score filtering.
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Figure 6.8: Continuous distribution function of state rankings

Table 6.1: Site ping state rankings

Rank State (ms) Rank State (ms) Rank State (ms)
1 DC 73.0 17 WY 108.0 35 WA 129.0
2 DE 75.5 19 FL 109.0 36 MN 130.0
3 CT 76.0 19 IL 109.0 37 NM 132.0
4 NH 80.0 21 CO 110.0 38 AL 133.0
5 NJ 83.0 22 WI 113.5 39 OH 134.0
6 PA 85.0 23 WV 115.0 40 MS 140.0
7 MI 88.0 23 MO 115.0 41 KS 142.5
8 SC 89.0 25 TX 116.0 42 UT 148.0
9 VA 90.0 26 SD 116.5 43 IA 153.0
10 OK 98.0 27 AR 117.0 44 HI 157.0
11 MD 100.0 27 CA 117.0 45 ID 162.5
12 NY 101.0 29 NV 118.0 46 RI 164.0
13 MA 102.0 30 AZ 119.0 47 LA 169.0
14 VT 104.0 31 GA 120.0 48 KY 179.5
15 IN 105.0 32 NC 121.0 49 MT 197.5
16 OR 106.0 32 TN 121.0 50 AK 217.0
17 ME 108.0 34 NE 122.0 – ND –

6.3.4 Results

CDNs

When searching for the small image files we discovered that the vast majority of websites
use a CDN for serving their content, including both JavaScript as well as static content. As
such, our ping results are a reflection of a user’s connection to each CDN. To determine
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if there was a strong correlation between user location and speed to a given CDN we
attempted to determine the CDN each site was using through ICMP pings and reverse DNS
lookups, then mapped the pings for a given CDN (including pings to all the sites that use
that CDN). We found that the RTT to a given CDN tended to be similar across a given area.

Figure 6.9: Pings to sites on the Akamai CDN

Final Heat Map

The final heat map produced from the site ping data shows clear trends. The coastal and
central areas have significantly lower ping times than the southeast and northwest. In
states with high ping times there are pockets of low ping times around major cities, such as
in Tampa, Jacksonville, Orlando, and Miami, Florida; Knoxville and Memphis, Tennessee;
and Colorado Springs, Colorado. There are some areas with surprising, and somewhat
dubious results. For example, New York City, New York; Seattle, Washington; and Los
Angeles, California all appear to be in pockets of poor RTT surrounded by good RTT.

Figure 6.10: Final heat map
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6.4 Summary

Using our Site Ping technique we successfully gathered data from many points across the
US including at least one point from all 50 states. The data we collected provided a view
into the connectivity that Americans get to the part of the internet they use most, websites.

Overall we found that the coastal and central regions tend have significantly lower
ping times then those in southeast and northwest. While it was difficult to statistically
differentiate between states in the middle of the ranking, those on the ends were clearly
defined. Over all District of Colombia (DC) proved to have strong connectivity. More rural
states, such as Alaska and Montana had the worst connectivity.
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Aggregate RTT by Region: DNS Cache
Manipulation

This chapter focuses on evaluating Internet connectivity based on the “RTT to Regional
Locations” (Section 3.2), with a focus on measuring DNS infrastructure connectivity as a
proxy for overall connectivity. DNS is a crucial component of the Internet. By measuring
a region’s ability to resolve domain names using servers in other regions, we can evaluate
how well the first region is connected to the rest of the country. To accomplish this, we
used a method called DNS cache manipulation and over 900 DNS servers spread across
the United States and measured the RTT between them. The following sections detail the
design, implementation, and results of this method.

7.1 Design

The DNS cache manipulation method is largely derived from the method used in “The
Internet Connected Project,” a 2018 MQP preceding this one [6]. The method makes use of
two sets of geographically diverse DNS servers: one list each of recursive and authoritative
servers. The basic principle rests on the concept of making requests directly to each of the
recursive servers that must make their way to the authoritative ones and deducing the time
between the two. As DNS includes no mechanism for reporting the time taken between
two servers, DNS cache manipulation must rely on the RTT from when the local request is
dispatched to when an answer is received.

7.1.1 Collection Stages

Collecting data via DNS cache manipulation takes six stages of processing: three for pre-
processing and three to make the actual measurements. The preparatory stages, server
confirmation, reliability checks, and geolocation, eliminate servers that are not appropriate
to include in the study.

Figure 7.1 shows the three stages required for data collection: priming the DNS cache,
measuring latency to the recursive DNS server, and measuring the lookup time. We will
now discuss all six stages in more detail.
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Figure 7.1: DNS cache manipulation stages

Confirmation of Server Status and Type

Prior to running any tests, two lists of candidate recursive and authoritative servers are
fed into tools that confirm their status as usable servers. For recursive servers, this process
confirms that they are indeed public recursive servers. For authoritative candidates, it
verifies that the server provides an answer for the domain it is expected to.

Testing Reliability

Before actually using any of the servers for testing, we tested their reliability – i.e. how
consistent their response times were under constant parameters. After making repeated
requests to each server, that in theory should have similar response times, we filter servers
based on the CV for the measured response times. This eliminated any servers with high
variation from the testing. For recursive servers, priming the cache (Section 7.1.1) and
then making repeated requests for the primed value served as the repeated requests. For
authoritative servers, this was accomplished by making repeated requests for a random
subdomain that the servers are authorities for through the WPI recursive DNS server. This
server is close enough to the machine we ran the tests on that the latency was minimal.
The justification for running the filtering prior to testing is that each server included in the
test increased the time required to run the entire test suite exponentially, as each recursive
server was paired with each authoritative server.

IP Geolocation

Just as in Chapter 5 and Chapter 6, the DNS cache manipulation used IP address geoloca-
tion provided by MaxMind to determine the location of the servers under test. We collected
both state and coordinate information for each server. If a server could not be located
using the database, it was discarded from the test at a later point.
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Priming the DNS Cache

The first step of the actual testing involves priming the target recursive server’s cache.
Say the target recursive server’s IP address is 1.2.3.4 and the target authoritative server
provides answers for example.com. By making a DNS query to 1.2.3.4 for example.com,
we get the target DNS server to cache the answer to the query.

Measuring Latency

After the target recursive server has cached the answer for the query for example.com, it
will use that cached answer to respond to subsequent requests without making any iterative
requests. We can then make another request, identical to the one in the priming stage,
and time it. To get a latency measurement, we do this several times back to back and
take the lowest value, which indicates the best possible latency between the machine the
measurements are being taken on and the recursive server.

Measuring the Total RTT

The final step in the process is to measure the RTT between the local machine and the
target authoritative server and subtract the latency to get the final result. To do this, we
make a query to the recursive server for random.example.com, where random is a randomly
generated sub-domain that is unlikely to actually exist on the targeted domain. This
random sub-domain forces the recursive server to get an answer. Because it already knows
the authoritative server for example.com, it can skip the process of querying the root and
.com servers and make an immediate query to the server for example.com. We measure
the time for this entire process and then subtract the previously measured latency, leaving
only the time between the target recursive server and the target authoritative server, which
is recorded.

7.2 Implementation

This section details the implementation of the methodology designed in the Section 7.1.
The implementation utilizes the command line utility dig to make DNS requests, Python
to wrap around dig to make parsing its output easier, a bash script, and the parallel
command line utility to enable parallel processing.

7.2.1 Tools and Setup

The entirety of the data collection for DNS cache manipulation took place on two WPI
servers: ccc.wpi.edu and rambo.wpi.edu.

At its core, this method used the dig utility for making DNS requests - this is the same
tool used in the prior project [6]. The template command used for all stages of testing is
shown in snippet 7.1.

Notably, this command template does not include the +noall flag, unlike the prior
project [6]. By omitting this flag in our version, we preserve the status and records actually
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>dig [@<target server>] <target_domain> time=2 tries=1 +stats

Snippet 7.1: Template dig command

produced by the recursive DNS server. snippet 7.2 is an example of such output (modified
slightly for formatting). This output includes the status flag NXDOMAIN which would be
omitted with the +notall parameter. This status flag confirms that the random subdomain
for a given domain does indeed not resolve to anything - this is important for the testing
because if it did, the recursive server may have had a cache for that subdomain, invalidating
the lookup time check. Additionally, this version of the command include the ANSWER and
AUTHORITY sections (depending on the lookup) which aid in validating the type of server
and the responses they give. These too would be left out with the +noall flag.

1 >dig @8.8.8.8 doesnotexist.wpi.edu +time=2 +tries=1 +stats
2

3 ; «» DiG 9.11.3-1ubuntu1.11-Ubuntu «» @8.8.8.8
4 doesnotexist.wpi.edu +time=2 +tries=1 +stats
5 ; (1 server found)
6 ;; global options: +cmd
7 ;; Got answer:
8 ;; -»HEADER«- opcode: QUERY, status: NXDOMAIN, id: 31928
9 ;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1,

10 ADDITIONAL: 1
11

12 ;; OPT PSEUDOSECTION:
13 ; EDNS: version: 0, flags:; udp: 512
14 ;; QUESTION SECTION:
15 ;doesnotexist.wpi.edu. IN A
16

17 ;; AUTHORITY SECTION:
18 wpi.edu. 1799 IN SOA adns1.wpi.edu.
19 netops.wpi.edu. 2010473291 3600 600 1209600 3600
20

21 ;; Query time: 88 msec
22 ;; SERVER: 8.8.8.8#53(8.8.8.8)
23 ;; WHEN: Thu Feb 06 00:12:43 STD 2020
24 ;; MSG SIZE rcvd: 98

Snippet 7.2: Generic dig output

Instead of running the dig tool directly via a bash script, we wrapped it in a Python
script for ease of parsing. This utility itself utilized the subprocess module to make dig
calls.

As mentioned, each stage in this method was implemented using Python, separating into
several scripts. These were all brought together with a bash script and the parallel utility
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[33], which allowed for parallelization, greatly reducing the time required for testing.

>./parallel -a test_pairs.csv –colsep , –header '.*\n'
–progress –eta –jobs $JOB_COUNT
./run_test.py {1} {2} {3} $TEST_TRY_COUNT $TIMEOUT
» results/test_results.csv

Snippet 7.3: Sample parallel command

Snippet 7.3 shows the parallel command used to run the primary portion of the test. It
uses a comma separated value (CSV) listing the pairs of recursive and authoritative DNS
servers and pipes them into the Python script run_test.py before outputting the results.
This is done with JOBCOUNT parallel jobs, which was configured to 32 jobs for each batch.

7.2.2 Candidate DNS server lists

Initial lists of both types of DNS servers were provided to us by our advisor, Professor
Craig Wills. After performing initial verification of these servers, we augmented the list by
searching through a list of ‘.gov‘ domains filtered by the states we needed to fill in gaps for.
In total, these lists included 535 authoritative servers and 1225 recursive servers (prior to
final filtering). Note that the final list of recursive servers did not include any located in
the state of Rhode Island despite an extensive search for one.

7.2.3 Pre-processing Stages

These stages ran prior to any actual data collection in an effort to streamline and shorten
that collection processes. Each ran as one or more separate steps in the overall script, in
the order presented.

Confirmation of Server Status and Type

The code in snippet 7.4 is what we used to confirm that an expected authoritative server
was indeed an authoritative server. The request for the domain tied to the server was
directed directly to the its IP address. If there was a result (i.e. dig output a valid result),
the status of that result was NOERROR (the server was able to generate a response for the
given domain) and the AUTHORITY section of the response was non-zero in length, the
server was confirmed as a authoritative for the expected domain.

result is not None
and result.status == "NOERROR"
and result.AUTHORITY > 0

Snippet 7.4: DNS authoritative confirmation

The code use to confirm recursive servers, was similar: there must be a result with
an answer. However, it must also not have the phrase Recursion requested but not
available. Additionally, it is allowed to have responses in the ANSWER section instead of
just in the AUTHORITY section.



CHAPTER 7. AGGREGATE RTT BY REGION: DNS CACHE MANIPULATION 60

Testing Reliability

Snippet 7.5 is part of the code used to verify the reliability of candidate authoritative
servers. The code was passed a domain and IP address for the authoritative server under
tests. For a given number of trials, configured to 20 for every batch, the query time for a
request made directly to the authoritative server for a domain we have already confirmed
it was an authority for, was recorded 1. After all results were recorded, the authoritative
server’s IP address was output if there were at least two successful results and the CV was
less than or equal to the threshold, configured to 0.5 for all tests.

1 for _ in range(trials):
2 result = run_dig(domain=domain, target_server=target_ip)
3 if <result is valid>:
4 results.append(result.query_time)
5 if len(results) >= 2 and stdev(results)/mean(results) <= max_cov:
6 print("{},{}".format(target_ip, generate_statistics(results)))

Snippet 7.5: Authoritative server reliability measuirng (modified for formatting)

Similarly, the code for testing the reliability of an authoritative server is similar. A
domain for testing (cnn.com for all runs) and a recursive server IP address were passed in.
First, the cache is primed to ensure the domain is cached in the server and then the query
time for requesting that same domain from the server is recorded for a given number of
trials (again, configured to 20 for each batch). Finally, if there were at least two results
and the CV met the threshold (0.5 for all tests), the domain was output as reliable. This
is essentially making repeated latency measurements and ensuring that the results are
consistent.

Note that both checks also output other statistics alongside the servers. These included
the measurement mean, median, standard deviation, and variance. This gave us the option
to do further analysis on server reliability, which we opted not to pursue.

7.2.4 Data Collection Stages

These three stages are all contained within a single script and are run back-to-back-to-
back with each other. The two main parameters for the script are a single IP address,
recursive_ip, corresponding to a recursive server and a domain name, authoritative_domain,
and IP address, authoritative_ip, corresponding to the an authoritative server.

Priming the DNS Cache

Priming the DNS cache was performed by making a single DNS query to recursive_ip
for authoritative_domain. This request did not include any randomized subdomain and
occurred immediately prior to latency measurement.

1For a definition of a valid result, see Section 7.2.3 and snippet 7.4
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Measuring Latency

Snippet 7.6 shows the code that we used to measure the latency between the testing
location and the recursive DNS server under test. For all tests, tries = 10, meaning
that for each test for a given server pair, there were 10 latency measurements. Of the
measurements, we kept the lowest one, as this indicated the shortest observed latency.

[run_dig(domain=authoritative_domain,
target_server=recursive_ip,
time=TIME_LIMIT)

for _ in range(tries)]

Snippet 7.6: DNS latency measuring

The authoritative domain is provided without any subdomain, as we know that, due to
the cache priming stage, the domain is cached in the recursive server.

Measuring Lookup RTT

Similar to the snippet for measuring latency, snippet 7.7 shows the snippet for measuring
the total lookup time. Notably, a 12 character, randomized subdomain is added to the target
authoritative server’s domain. Once again, the number of observations was configured to
10 for all trials, and the minimum observed value was kept.

1 [run_dig(domain="{}.{}".format(rand_subdomain(), authoritative_domain),
2 target_server=recursive_ip,
3 time=TIME_LIMIT)
4 for _ in range(tries)]

Snippet 7.7: DNS lookup RTT measuring

To calculate the final RTT observed in a given test for a given pair of servers, we simply
subtracted the lowest latency measurement from the lowest round-trip measurement to get
the best possible RTT between the recursive DNS server and the authoritative DNS server.

7.3 Collection Results

Using the implementation outlined in the previous section, we ran four batches of data
collection. This section provides an overview of the results of that collection, including
issues we encountered and potential future mitigations for these issues.

7.3.1 Server Reliability Filtering

After filtering authoritative and recursive DNS servers for testing reliability (max coefficient
of variation in repeated tests = 0.75), we were left with 387 authoritative servers across
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50 states and the District of Columbia and 654 recursive servers across 49 states and the
District of Columbia. We could not locate an open recursive DNS server, even unreliable,
in the state of Rhode Island. Figure 7.2 and Fig. 7.3 show the locations of the final server
lists for authoritative servers and recursive servers respectively.

Figure 7.2: Map of authoritative DNS servers

Figure 7.3: Map of recursive DNS servers

7.3.2 Data Collection

Data collection was done in two main batches, along with two supplemental ones to
add additional servers and increase geographical coverage. All runs used cnn.com as



CHAPTER 7. AGGREGATE RTT BY REGION: DNS CACHE MANIPULATION 63

the domain used to confirm candidate server’s status as recursive servers and to test the
recursive server’s reliability.

Table 7.1: Overview of DNS batch runs

# Trial
Count

Timeout Records Runtime Notes

1 5 2s 1,831,495 62h
2 10 3s 3,763,311 244h
3 10 3s 4,920 9m Sup. for VT rec.
4 10 3s 7,320 11m Sup. for HI auth.

Total 5,607,046 306 hours

Again, as Table 7.1 shows, the vast majority of data was collected over the course of two
collection runs, #1 and #2. The first run only conducted five trials for each authoritative-
recursive server pair and limited the timeout to for each dig command to two seconds,
whereas subsequent runs ran with ten trials and a three second timeout. There are two
reasons for this. First, the initial batch was run on ccc.wpi.edu, which has more limitations
than the machine used for subsequent runs, rambo.wpi.edu. Additionally, that run was
the first major step up from the more limited development test runs and we wanted to
minimize time lost in the event something went wrong. On subsequent tests, we had more
confidence in the collection scripts and were able to let it run for longer unsupervised.

Batch #3 was run with a limited number of recursive servers located only in Vermont
(with the full authoritative server list) while batch #4 ran with a limited number of author-
itative servers located only in Hawaii (with the full recursive server list). These were run
after we discovered that we lacked data of the given type for these states.

We ran into one issue with batch #4: the collection scripts randomize the order of all
pairs under test to minimize the repetitive requests to the same DNS servers in too short
of a time period. However, in both supplemental tests, there were only small numbers of
recursive servers (for #3) or authoritative servers (for #4). In batch #4, this resulted in
repetitive requests to the same authoritative server in a short period of time, which in turn
caused WPI’s IT system to believe we were using a DNS tunnel. The use of such a tunnel
is prohibited under WPI’s Acceptable Use Policy and resulted in a temporary suspension of
network privileges.

7.4 Analysis

With the data we collected, we conducted two major approaches at analysis. The first
approach treated every measurement for a recursive server in a give state as equal and
gave each state a score based on these measurements aggregated together. The second
method first aggregated measurements within one state based on the authoritative state the
measurement was made with, which also gave us the opportunity to weight connections
to states differently.
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7.4.1 Distance Normalization

One of the initial steps in processing the data collected involved adding an additional field
for RTT normalized by the distance between the points being connected. As mentioned
earlier in this report, by normalizing for distance, we can form another measurement that
allows for analysis of connectivity as related to the ideal speed of connection, the speed of
light.

Additionally, calculating the speed of the connection, not just the total RTT, allowed us
to filter out measurements that were faster than the speed of light. Such measurements
were likely the result of anomalous latency readings, causing the calculated RTT to be far
lower than physically possible. In total, this initial filter eliminated 418,625 measurements
(7.5%) from the total dataset.

7.4.2 Data Characterization

Figure 7.4 shows the distribution of the median true RTT values for all locations. It shows
that the data takes on a bimodal distribution with peaks around 45ms and 68ms with a
heavy bias towards the former.

Figure 7.4: DNS RTT median distribution

Normalized RTT

After normalizing by distance, the bimodality all but disappears, as Fig. 7.5 shows. In this
chart, the distribution pears around 30km/ms.
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Figure 7.5: DNS normalized RTT median distribution

7.4.3 Heat Maps

Figure 7.6 shows a heatmap based on true DNS RTT measurements. This map shows
that a significant portion of Western US has poor DNS RTTs. In contrast to the West, a
majority of the the East Coast performs better. As we discuss later, this is likely due to the
higher quantity of authoritative servers present in the East. Another highlight is that the
South is rather inconsistent: Mississippi is probably the most homogeneous in being bad,
but Alabama, Georgia, Louisiana, Tennessee, Missouri, and even eastern Texas are rather
“splotchy”, for lack of a better term.

Figure 7.7 shows a similar heatmap, but for distance normalized DNS RTT data. In
stark contrast to the prior map, the West coast displays significantly better performance -
likely due to the distance to eastern authoritative servers being cancelled out. The Midwest
and mid-Atlantic regions fare much worse, while the South is far more consistent in its
poor results. The two main regions that remain consistent between the two maps are the
North East and Colorado/Wyoming.

7.4.4 Aggregation by Server Pairs

Since there we multiple data points for each recursive-authoritative server pair, the first
step in aggregating the data was to aggregate by these server pairs. To do this, we removed
points within each pair that had a z-score greater than a given threshold z as these were
considered outliers within their pairs. We then computed the CV of each pair with the
remaining values and discarded any pairs with a result greater than a given threshold v -
these pairs did not have consistent measurements and were considered unreliable.
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Figure 7.6: DNS true RTT heatmap

Figure 7.7: DNS normalized RTT heatmap

We chose to proceed with v=1.0 and z=2, which left the vast majority of pairs in the
data set excluding only the most inconsistent measurements. The reasoning behind this
is that we are not just interested in stable connections - so we left potentially unstable or
inconsistent measurements in the data set.

7.4.5 Aggregating Pairs by Recursive Server State

One option to further aggregate the pair data is to group it by the location of the recursive
server in each pair. This results in a list of RTTs, either true or normalized by distance, that
can be aggregated into a single value for each state. This is one way of making comparisons
between states.
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Table 7.2: DNS Z-score filtering

True RTT records dropped Normalized RTT records dropped
z=3 92,553/5,188,421 (1.8%) 63,008/5,188,421 (1.2%)
z=2 269,651/5,188,421 (5.2%) 237,353/5,188,421 (4.6%)
z=1 1,362,184/5,188,421 (26.3%) 1,389,031/5,188,421 (26.8%)

Table 7.3: True RTT DNS pair CV filtering

z=3 (n=381,333) z=2 (n=381,333) z=1 (n=381,333)
v=0.05 193,099 (50.6%) 167,618 (44.0%) 92,799 (24.3%)
v=0.10 111,294 (29.2%) 92,023 (24.1%) 40,889 (10.7%)
v=0.20 52,239 (13.7%) 40,353 (10.6%) 13,262 (3.5%)
v=0.50 9,330 (2.4%) 6,333 (1.7%) 1,809 (0.5%)
v=1.00 1,741 (0.5%) 766 (0.2%) 176 (~0.0%)

Table 7.4: Normalized RTT DNS pair CV filtering

z=3 (n=382,963) z=2 (n=382,963) z=1 (n=382,963)
v=0.05 192,522 (50.3%) 166,514 (43.5%) 87,383 (22.8%)
v=0.10 109,493 (28.6%) 89,906 (23.5%) 35,553 (9.3%)
v=0.20 48,414 (12.6%) 37,623 (9.8%) 10,579 (2.8%)
v=0.50 6,304 (1.6%) 4,570 (1.2%) 1,314 (0.3%)
v=1.00 1,038 (0.3%) 415 (0.1%) 126 (~0.0%)

Initial State Rankings

Table 7.5 and Table 7.6 show the results of ranking states by the median of each measure-
ment in that state. There are two different rankings, one each for the true RTT and the
distance normalized RTT, based on data filtered with z=2 and v=1.0. As with all DNS data,
there is no ranking for Rhode Island.

Notably, the two tables indicate that Wyoming ranks in the top five for both rankings.
No other state appears performs so consistently well. Additionally, the rankings show that
while Hawaii and Alaska rank near or at the bottom for true RTT, both states appear near
the top of the normalized ranking. This shows that while the some states, Alaska and
Hawaii in particular, may be inherently unconnected from the rest of the United States,
the quality of their connection could be relatively high and merely dominated by sheer
distances.

Evaluating State Rankings

To determine the validity of the rankings proposed above we used the Kruskal-Wallis test
to determine whether there was evidence that datasets for different states came from
different distributions. If we cannot reject the null hypothesis that they are from the same
distribution, we cannot rank them in distinct positions. After running Kurskals between the
datasets for each of the 49 states and DC, we used a p value threshold of 0.05 to determine
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Table 7.5: DNS state rankings – recursive aggregation only – true RTT

Rank State (ms) Rank State (ms) Rank State (ms)
1 WY 30.00 19 IN 43.00 34 NV 53.00
2 VA 31.00 19 GA 43.00 38 ID 54.00
2 DC 31.00 21 MN 45.00 39 SD 56.00
4 WV 32.00 22 OK 46.00 39 KS 56.00
4 NY 32.00 22 MO 46.00 41 ND 59.00
6 NJ 33.00 22 LA 46.00 42 CA 59.50
7 MD 34.00 22 AR 46.00 43 NM 60.00
8 SC 34.50 22 CT 46.00 43 HI 60.00
9 CO 38.00 27 FL 47.00 45 MS 62.00

10 NH 38.50 28 IA 48.00 46 OR 65.00
11 IL 39.00 29 KY 49.00 47 WA 67.00
12 MI 40.00 30 NE 49.50 48 ME 67.50
12 PA 40.00 31 UT 50.00 49 MT 71.00
12 WI 40.00 32 VT 51.00 50 AK 99.25
15 NC 41.00 33 TN 52.00 – RI –
16 TX 42.00 34 AL 53.00
16 MA 42.00 34 AZ 53.00
16 OH 42.00 34 DE 53.00

if we could differentiate two states from each other.
For true RTT, Fig. 7.8 shows a graph with a node for each of the 49 states and DC and

a link between each pair of nodes where the Kruskal-Wallis test between the two yielded a
p value greater than 0.05, indicating that there is no evidence of a difference between the
two states. Each the y-position for each state in the graph is dictated by its ranking in the
the initial ranking table (ties were broken up arbitrarily for readability and the x-position
is arbitrary).

Note that the top seven states in the true RTT ranking in Table 7.5, WY, VA, DC, WV,
NY, NJ, and MD, form a distinct sub graph. Similarly, the states ranked #9-12, IL, CO, NH,
and MI, form another distinct sub graph. This indicates that while the states that make up
these two groups cannot be distinguished from one another (i.e. there is no evidence that
Wyoming is better than Virginia), we can state the the entirety of the first group is better
than the entirety of the second group.

Similar to the groups at the top of the ranking, there are distinct groups at the bottom.
Kruskals identified Alaska, #50, as entirely different. However, the six preceding states
ranked #43(t) to #49, HI, MS, OR, WA, ME, and MT, are a distinct sub graph, as are the
three states preceding them, ND, NM, and HI. Note that in the initial ranking, New Mexico
and Hawaii are tied for #43, but are identified as distinct using Kruskals.

Also notable is Louisiana: the state ranks #22(t), but is labeled as indistinguishable
from Arizona, #34(t), and Nevada, #34(t).

Figure 7.9 maps the each distinct sub graph to a separate color (graphs are numbered
by in the order of their highest ranked consituent state). This highlights some patterns and
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Table 7.6: DNS state rankings – recursive aggregation only – normalized RTT

Rank State (ms) Rank State (ms)
1 HI 91.00 27 MI 31.54
2 WY 54.47 28 WI 30.61
3 AK 47.35 29 WV 30.61
4 CA 45.46 30 NM 30.35
5 OR 43.87 31 MN 30.00
6 NV 43.68 32 ME 29.79
7 CO 43.61 33 GA 29.59
8 NY 43.04 34 ND 29.41
9 UT 42.72 35 LA 29.33

10 ID 41.97 36 OK 28.91
11 WA 41.82 37 SD 28.63
12 NH 41.66 38 NE 28.28
13 AZ 41.03 39 IL 28.12
14 NJ 40.85 40 DE 27.56
15 MA 40.65 41 MO 26.41
16 VA 37.06 42 AR 26.19
17 FL 37.01 43 OH 25.40
18 TX 36.80 44 IA 25.03
19 MD 36.44 45 AL 24.45
20 DC 35.82 46 IN 24.40
21 SC 34.60 47 KS 22.87
22 CT 33.56 48 KY 21.89
23 PA 33.32 49 TN 21.55
24 NC 32.43 50 MS 20.44
25 MT 31.99 – RI –
26 VT 31.63

some oddities. For example, seven of the top eight states, represented by groups 1 and 2,
are located on the East Coast, with Wyoming being the odd state out. The Midwest and
the western Mountain region are dominated by states in groups 7 and 8. The Great Lakes
region consists primarily of states in groups 3 and four. The West Coast and Hawaii did
not fair as well as the East Coast with California, Oregon, and Washington (and Hawaii) in
groups 9 and 10. Meanwhile, the South is a bit of a “hodge-podge” of groups, indicating a
lack of consistency there.

Finally, for true RTT, Fig. 7.10 shows bootstrapped confidence intervals for each state.
This data is also show in Table 7.7 With a few exceptions, bounds are fairly tight, indicating
high confidence that the ranking listed in Table 7.5 is reliable. One of the notable exceptions
is Wyoming, which has a much higher confidence interval than its neighbors in the “good”
RTT region. One possible cause for this may be the fact that Wyoming only had one
recursive server in it. However, this was also the case for other servers that did not exhibit
the behavior that Wyoming did.
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Figure 7.8: DNS true RTT indistinguishability graph

Similar to the graph for true RTT, Fig. 7.11 is a graph of states in the normalized
RTT ranking that are indistinguishable. This graph includes a much larger and messier
middle group consisting of 27 states. Hawaii, ranked #1 is an independent node, as is
California at #4, with Alaska and Wyoming forming a pair between these two. At the
bottom, Mississippi is distinctly alone. The second largest distinct subgroup consists of 10
states spanning from #5 to #15, with Utah distinct from all of them, but ranked #9.

Overall, Fig. 7.11 shows that while there are more completely distinct states in the
normalized rankings, the states in the middle of the pack are dominated by a single large
cluster.

Mapping the distinct sub graphs for normalized DNS RTT shows a majority of the large,
mid ranking sub graph is on the East Coast and in the Midwest, with some states in the
Mountain region. The West Coast is comprised entirely of states in groups 3 and 4, which
also contain some states in the North East.

7.4.6 Aggregation by Authoritative State then Recursive State

One shortcoming of aggregating pairs directly by the location of the recursive server is that
this inherently weights the data by the number of authoritative servers in a single state.
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Figure 7.9: DNS true RTT state groupings

Figure 7.10: DNS true RTT confidence intervals

To compensate, this analysis approach first groups and aggregates by recursive server and
authoritative server location.

Given the presence of authoritative servers in every state, this creates a list of 51
measurements for each state with a recursive server. For example, all measurements
between a recursive server in California and an authoritative server in Massachusetts are
aggregated into a single measurement (using median) for California. This is then done for
every other state with measurements from California, giving California a 51 measurement
dataset, and then repeated for each state with a recursive server.

To get a final value for a given state, each of these 51 measurements is averaged. Back
to the example of California, this gives each state with measurements from California an
equal weight in the final value for California.

However, prior to averaging the 51 measurements for each state, we had the option of
applying weights to the values. Again with the California example, we could apply a weight
to the aggregated measurement between it and Massachusetts based on Massachusetts’
population, gross domestic product (GDP), or other metric. For example, Massachusetts
has a high population than Wyoming, so with a population based weighting scheme, the
measurement to Massachusetts is valued higher than the measurement to Wyoming.
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Table 7.7: DNS state confidence intervals

State Min Mean Max State Min Mean Max
DC 34.642 36.158 37.623 CT 49.122 50.823 52.518
VA 35.895 36.371 36.857 AZ 50.234 50.845 51.453
NY 36.709 37.096 37.467 NV 50.059 51.591 53.151
WY 33.712 37.217 40.108 DE 52.377 53.235 54.102
WV 36.010 37.287 38.587 VT 51.896 53.826 55.739
NJ 37.185 37.731 38.283 NE 53.199 54.082 54.971
MD 38.893 39.424 39.947 SD 53.899 55.469 57.001
CO 39.608 39.857 40.109 OK 54.724 55.873 57.010
SC 39.557 40.206 40.838 AL 55.873 56.326 56.781
IL 40.013 40.327 40.628 KS 55.873 56.531 57.184
MI 40.472 41.030 41.576 CA 56.905 57.239 57.566
WI 41.583 42.239 42.883 ID 56.847 57.748 58.656
NH 41.600 42.546 43.488 TN 57.146 58.225 59.291
TX 42.937 43.300 43.650 ND 57.222 58.318 59.386
IN 43.768 44.178 44.568 UT 57.256 58.678 60.129
OH 44.259 44.736 45.215 NM 57.846 59.624 61.423
MA 44.148 44.992 45.813 OR 62.018 62.600 63.187
NC 45.220 45.919 46.607 MS 63.705 65.195 66.525
MO 46.541 47.006 47.441 WA 67.500 68.164 68.820
PA 46.746 47.296 47.820 LA 65.691 68.208 70.634
GA 48.040 48.400 48.765 MT 69.931 71.042 72.139
AR 47.793 48.487 49.185 HI 69.600 71.892 74.191
MN 48.377 48.778 49.184 ME 70.274 72.446 74.624
IA 49.175 49.460 49.734 AK 92.841 95.128 97.335
KY 49.230 49.947 50.675 RI – – –
FL 50.038 50.353 50.662

We chose to proceed with unweighted and population weighted aggregations. Weight-
ing by population gives higher value to connections with states that have greater popula-
tions. Essentially, this creates a proxy for how well connected people in one state are to all
other people in the United States.

State Rankings

Table 7.8, Table 7.9, Table 7.10, and Table 7.11 show rankings based on this aggregation
method, unweighted and population weighted, for both true DNS RTT and normalized DNS
RTT. There are some shared patterns with the previous aggregation rankings: Wyoming
ranks highly in all four, Alaska and Hawaii are at the bottom in both true RTT metrics but
rise to top when looking at the normalized rankings. Under true RTT, all weighted RTT
values are lower than the values at the same rank in the unweighted column. This indicates
states with higher populations have generally lower values than their counterparts, driving
down the weighted metrics.
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Figure 7.11: DNS normalized RTT indistinguishable states graph

Figure 7.12: Normalized RTT indistinguishability graph

Evaluating State Rankings

As with the previous aggregation method, we began evaluating this approach by using the
Kruskal-Wallis test. States were compared against each other using the 51 measurement
dataset created by aggregating by the location of authoritative servers.

The results of this test indicate high unreliability for all four of these rankings. In each,
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Table 7.8: DNS state rankings – with authoritative aggregation – true RTT – unweighted

Rank State (ms) Rank State (ms)
1 VA 39.1 27 CT 52.7
2 NY 39.2 28 IA 53.2
3 WY 39.5 29 NE 53.5
4 NJ 40.0 30 VT 53.6
5 WV 40.3 31 FL 53.7
5 DC 40.3 32 ID 54.0
7 MD 40.7 33 AZ 54.3
8 CO 41.5 34 NV 55.4
9 SC 42.0 35 KY 56.0

10 MI 43.4 36 SD 58.7
11 IL 43.7 37 TN 59.3
12 WI 44.5 38 CA 60.1
13 PA 45.4 39 AL 60.7
14 NH 45.9 40 NM 60.9
14 NC 45.9 41 DE 61.4
16 TX 46.9 42 KS 61.8
17 OH 47.0 43 OR 63.2
18 UT 48.0 44 ND 64.6
19 MN 48.1 45 WA 67.3
20 IN 48.3 46 MS 67.4
21 MA 48.4 47 HI 69.7
22 AR 49.9 48 MT 71.9
23 GA 50.1 49 ME 77.6
24 OK 50.6 50 AK 100.4
25 MO 51.0 – RI –
26 LA 52.3

the large subgraph of states that are indistinguishable from each other is comprised of 49
or 50 states, which means that that a standard ranking based on the aggregated value is
too unreliable.

As a result, we continued by determining how many states each state is distinctly better
than for each ranking. For example, if California is ranked above Wyoming and the p-value
comparing the two is less than or equal to 0.05, California is considered to be distinctly
better than Wyoming. On the other hand, if California is also ranked above Massachusetts
but the p-value between the two is greater than 0.05, California does not gain credit for
being distinctly higher than Massachusetts. States initially ranked above California would
not be considered. Table 7.12, Table 7.13, Table 7.14, and Table 7.15 show the results of
this analysis.

Perhaps most notable is that for the normalized RTT data weighted by population, over
half of states were not distinctly better than a single other state. Overall, the unweighted
methodologies fared better at distinguishing states at the top and bottom.
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Table 7.9: DNS state rankings – with authoritative aggregation – true RTT – population
weighted

Rank State (ms) Rank State (ms)
1 WY 35.7 26 MO 48.7
2 VA 37.0 28 FL 49.1
3 NY 37.2 29 IA 51.1
4 MD 37.6 30 NE 51.2
5 SC 37.7 31 VT 52.6
6 DC 37.9 32 NV 52.9
7 NJ 38.5 33 KY 53.2
8 WV 38.9 34 AZ 53.4
9 CO 40.0 35 ID 53.7

10 IL 41.5 36 TN 54.7
11 WI 42.3 37 AL 56.2
12 MI 42.4 38 CA 56.9
12 NC 42.4 39 DE 57.1
14 TX 43.1 40 KS 57.9
15 PA 43.2 41 SD 58.3
16 NH 43.9 42 NM 58.8
17 OH 45.1 43 ND 61.7
18 GA 45.9 44 OR 63.4
19 MA 46.1 45 MS 63.9
20 MN 46.3 46 HI 65.3
20 IN 46.3 47 WA 66.8
22 OK 46.6 48 MT 70.7
23 AR 46.9 49 ME 75.5
24 UT 47.9 50 AK 99.1
24 LA 47.9 – RI –
26 CT 48.7

And again, Wyoming ranked highly in all tables - its worst rank is #8 for unweighted
normalized RTT. Alaska and Hawaii rank low in the true RTT metrics but are at the top for
normalized.

Figure 7.13 and Fig. 7.14, show maps of the results in the preceding tables, where
states with darker green coloring are distinctly better than more states than states that are
colored grey. In Fig. 7.13, which show the true RTT unweighted and weighted maps, East
Coast states, and to a lesser degree Midwestern states, perform prominently better, with
Colorado and Wyoming as the primary exceptions. When weights are applied, the only
states that remain clearly above the rest are a handful of East Coast states and Wyoming.

On the other hand, the normalized maps, Fig. 7.14 show Western states performing
far better than the rest of the country, although some on the East Coast do fairly well.
However, much of that performance is lost when weighted by population, where Western
states are far more muted. One possible explanation for this is that while the normalized
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Table 7.10: DNS state rankings – with authoritative aggregation – normalized RTT – un-
weighted

Rank State (ms) Rank State (ms)
1 HI 104.5 27 LA 31.6
2 WY 77.3 28 MI 31.5
3 AK 46.4 29 NM 30.9
4 CA 45.8 30 GA 30.8
5 NV 45.0 31 MN 29.8
6 ID 44.3 31 WI 29.8
6 UT 44.3 33 OK 29.7
8 AZ 44.2 34 IL 29.2
9 OR 43.2 35 MT 29.0

10 CO 41.7 36 AR 28.1
11 NY 41.1 37 NE 27.9
12 WA 41.0 38 SD 27.7
13 DC 39.1 38 ME 27.7
14 NJ 38.8 40 OH 27.1
15 VA 38.0 41 ND 26.4
16 NH 37.8 41 MO 26.4
17 FL 37.7 43 AL 26.0
18 TX 37.6 44 IN 25.7
19 MD 37.5 45 DE 25.4
20 SC 36.3 46 IA 24.8
21 MA 35.9 47 KY 23.1
22 CT 34.4 48 MS 22.9
23 WV 33.6 49 TN 22.4
24 NC 33.0 49 KS 22.4
25 PA 32.2 – RI –
26 VT 31.9

metric removes the distance barrier for the West, these states are also a great distance from
the denser East Coast.

Overall, these maps show that there are few meaningful conclusions that we can draw
from weighting states by population: when doing so, states are far too indistinguishable
from each other. However, the unweighted maps show that even if we cannot draw
conclusions about specific states when eliminating the implicit DNS weighting, we can
show that, for true RTT, the East Coast and the Midwest tend to perform better as a region,
as does the West Coast for normalized RTT.
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Table 7.11: DNS state rankings – with authoritative aggregation – normalized RTT – popu-
lation weighted

Rank State (ms) Rank State (ms)
1 HI 106.5 26 MN 32.7
2 WY 80.1 28 MI 32.2
3 AK 48.9 29 WI 31.8
4 ID 43.7 30 LA 30.8
5 CO 43.3 30 NM 30.8
6 UT 43.0 32 MT 30.6
7 CA 42.0 33 OK 30.5
8 OR 41.8 34 IL 30.1
9 NY 41.6 35 NE 29.8
9 NV 41.6 35 GA 29.8

11 WA 40.6 37 SD 29.6
12 NH 40.4 38 ND 29.5
13 NJ 39.1 39 ME 29.4
13 AZ 39.1 40 AR 28.2
15 MA 37.9 41 OH 27.4
16 MD 37.7 42 DE 27.3
17 DC 37.6 43 MO 27.2
18 VA 37.0 44 IN 26.4
19 TX 36.8 45 IA 26.2
20 FL 36.3 46 AL 25.2
21 CT 36.2 47 KS 24.1
21 SC 36.2 48 KY 23.4
23 WV 32.9 49 TN 23.0
23 PA 32.9 50 MS 22.0
25 VT 32.8 – RI –
26 NC 32.7



CHAPTER 7. AGGREGATE RTT BY REGION: DNS CACHE MANIPULATION 78

Table 7.12: DNS authoritative aggregation – Number of states better than – true RTT,
unweighted

Rank State (ms) Rank State (ms)
1 VA 40 26 CT 15
2 WY 39 26 FL 15
3 NY 36 29 IA 14
3 WV 36 29 NE 14
3 DC 36 31 VT 12
6 NJ 35 31 ID 12
6 MD 35 31 KY 12
8 SC 34 34 AZ 10
9 CO 32 35 TN 9
9 MI 32 36 NV 8

11 IL 31 36 SD 8
12 WI 30 36 AL 8
13 PA 28 39 KS 6
13 NC 28 39 DE 6
15 NH 26 41 NM 5
16 OH 23 42 CA 4
17 TX 22 43 ND 3
18 MN 21 43 MS 3
18 IN 21 45 OR 2
20 MA 20 46 WA 1
20 GA 20 46 HI 1
22 UT 19 46 MT 1
22 AR 19 46 ME 1
24 OK 18 50 AK 0
25 MO 17 – RI –
26 LA 15



CHAPTER 7. AGGREGATE RTT BY REGION: DNS CACHE MANIPULATION 79

Table 7.13: DNS authoritative aggregation – number of states better than – true RTT,
population weighted

Rank State (ms) Rank State (ms)
1 WY 24 22 UT 2
1 NY 24 22 AR 2
3 VA 23 22 OK 2
3 DC 23 22 CT 2
5 MD 21 31 CA 1
6 NJ 18 31 OR 1
7 WV 16 31 ND 1
8 SC 13 31 NM 1
9 MI 9 31 SD 1

10 CO 8 31 KS 1
10 IL 8 31 DE 1
12 WI 7 31 TN 1
12 NH 7 31 ID 1
14 PA 6 31 AZ 1
14 NC 6 31 KY 1
16 OH 5 31 NV 1
17 TX 4 31 NE 1
18 GA 3 31 AL 1
18 MA 3 45 MT 0
18 MN 3 45 WA 0
18 IN 3 45 ME 0
22 FL 2 45 MS 0
22 VT 2 45 HI 0
22 IA 2 45 AK 0
22 MO 2 – RI –
22 LA 2
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Table 7.14: DNS authoritative aggregation – number of states better than – normalized
RTT, unweighted

Rank State (ms) Rank State (ms)
1 HI 49 27 WV 9
2 AK 42 28 GA 7
3 CA 38 29 NM 6
3 ID 38 29 MN 6
5 NV 36 29 WI 6
5 UT 36 32 MT 5
7 OR 31 32 OK 5
8 WY 30 32 VT 5
9 AZ 28 35 ND 4
9 CO 28 35 ME 4
9 NY 28 35 SD 4
9 WA 28 35 AR 4

13 TX 26 35 IL 4
13 FL 26 40 NE 3
13 NH 26 41 MO 1
16 NJ 25 42 KY 0
17 DC 24 42 MS 0
18 MD 22 42 IA 0
18 MA 22 42 TN 0
18 VA 22 42 IN 0
21 SC 20 42 AL 0
22 NC 12 42 OH 0
23 CT 11 42 DE 0
23 MI 11 42 KS 0
23 LA 11 – RI –
26 PA 10
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Table 7.15: DNS authoritative aggregation – number of states better than – normalized
RTT, population Weighted

Rank State (ms) Rank State (ms)
1 HI 49 25 KY 0
2 AK 28 25 IA 0
3 WY 20 25 ND 0
4 CA 18 25 IN 0
5 NV 15 25 MO 0
6 OR 12 25 DE 0
7 UT 11 25 OH 0
8 ID 10 25 AR 0
8 WA 10 25 ME 0
8 AZ 10 25 SD 0

11 CO 9 25 VT 0
11 NY 9 25 NE 0
11 FL 9 25 IL 0
11 TX 9 25 OK 0
15 DC 8 25 MT 0
16 VA 7 25 NM 0
16 NH 7 25 LA 0
18 NJ 6 25 WI 0
18 MD 6 25 MN 0
20 MA 4 25 TN 0
20 SC 4 25 PA 0
22 MI 1 25 CT 0
22 NC 1 25 GA 0
22 WV 1 25 MS 0
25 KS 0 – RI –
25 AL 0
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Figure 7.13: DNS true RTT unweighted and population weighted “better than” map

Figure 7.14: DNS normalized RTT unweighted and population weighted “better than” map
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7.5 Summary

One of the general conclusions that we can draw from the DNS cache manipulation method
is that western states fair better when the data is normalized by distance, while states on
the East Coast are better with the true RTT metrics. This makes intuitive sense: the Eastern
US has a higher population density than the west, as well as a higher density of DNS
servers. By simple proximity it the East coast is more connected to more of the US. When
you take out that factor, the West coast shines, indicating higher overall quality of DNS
connectivity to other states in the United States.
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Comparative Analyses

Since chapters Chapters 5 to 7 cover three distinctly different methods with different
metrics and analyses for each, this chapter is dedicated to a comparative analysis of the
results from each. Here, we aim to determine to what extent the different methods report
similar results and present highlighted similarities and differences.

8.1 Data Distributions Across States

This section focuses on the differences in the distribution of measured Internet connectivity
as a means of demonstrating how the different methods vary in their results. Building off
the KDE charts from other chapters, we can filter to each state and plot the distributions of
each of the methods in order to compare and contrast them.

Because the different methods use different metrics — speed-of-light efficiency for
traceroutes, time to load data from the top 50 website for site ping, and RTT between DNS
server for DNS cache manipulation — there has to be some re-scaling of an x axis to show
a proper distribution. Traceroute data is reported as a fractionless scalar from 0-1, while
site ping and DNS cache manipulation reports data in units of milliseconds; if graphed
together without adjustment, one or the other would not even be visible. Consequently,
all charts in this section are based on simple normalization by maximum value recorded
across the US. The DNS and site ping x axes have been inverted for ease of understanding,
so higher along the x axis should always be interpreted as better.

As there are 51 charts total only a few are listed here, intended to provide the best
evidence for the different observations about the distributions:

Site ping is the most extreme Across all KDE charts for all graphs, data from traceroutes
and DNS cache manipulation tend to agree with each other (although spread differs). How-
ever, site ping consistently reports values near the best possible value on these normalized
axes, as demonstrated in Fig. 8.1. The peak for traceroute data (referred to as just CAIDA
on the charts) is sharper than DNS but close to its median value. In comparison, the peak
for site ping is incredibly sharp and narrow, and focused over the 0.95-1.0 range.

84
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Figure 8.1: Tennessee data distributions

This should not be taken as an indi-
cator that site ping reports consistently
good quality, but that there are less
common instances where it reports ex-
ceptionally poor. The fact that its dis-
tribution is centered over high values
is an artifact of normalizing by maxi-
mum value (and inverting) – it means
that somewhere to the far left, there’s
a small group of data points with poor
connectivities, just not enough to be
seen on the KDE charts. Keep in mind,
this is after z-score filtering to elimi-
nate outliers.

Put more concisely: the worst con-
nectivity reported by site ping are dra-
matically worse than the worst of either DNS or CAIDA data, even though on average it
reports good connectivity.

DNS data has higher spread than traceroute data In all charts, DNS cache manipula-
tion data shows a much larger spread than traceroute data does. For instance, in Fig. 8.2
we see consistent centering around the same point (approximately 0.65-0.7) for all mea-
sures1, with traceroute and site ping showing roughly the same spread, but with DNS much
more spread out.

Figure 8.2: Illinois data distributions

There’s a fairly simple explanation
for this, having to do with the way
data was collected. As described
in Section 7.1.1 the DNS method in-
volves taking several measurements
and performing subtraction operations
between them to determine a final
value. Since each measurement has a
margin of error (e.g. ±5 ms), and error
adds up with each addition or subtrac-
tion operation, it’s only natural to see
a wide distribution of data.

The downside to this, of course,
is that aggregate measurements – like
those displayed in the state distribu-
tions charts – are vulnerable to a wide
spread. This makes it more statistically

1Interestingly we see a smaller peak for site ping data at that point too. This helps confirm the prior
theory that there is a small subset of poor-connectivity site ping data points.
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challenging to draw comparisons between states, for instance, as represented in various
indistinguishability graphs across Chapters 5 to 7.

Site ping is more likely to be bimodal; traceroute is typically unimodal Although not
all KDE charts show it as strongly, site ping distributions are far more likely to be strongly
bimodal. In contrast, traceroute data is almost always unimodal, although with occasional
ripples on the outer edges of the distribution. Figure 8.3 is a good example of this behavior.

Figure 8.3: Rhode Island data distributions

The reasons for this are not en-
tirely clear. Figure 5.2, the global
KDE chart for all traceroute data in
Section 5.3, shows an unusual, very
weakly bimodal distribution, but not
an especially spread-out one. It may
be that the occasional leftward peaks
seen in site ping data area again due
to the hypothesized greater-extremes
from earlier before, but it’s difficult to
quantify.

8.2 State
Ranking Comparisons

Another way of examining the differ-
ences between methods is to conduct a test on the correlations between the state rankings
produced by each method. Since all methods have different distinguishability graphs, with
different valid and invalid comparisons, it’s difficult to analyze the similarities between
two sets of state rankings directly.

Logically, in any strict ordering, the number of elements that an element in a list is
greater than will correspond directly to its position in the list. That is, if an element is
#40 in a list of 50, it should have a “greater-than” count of 10. By counting all statistically
valid comparisons where one state has better connectivity than another we can establish
a statistically valid method of measuring the correlation between the different methods.
That is, if a state is position #40 according to one method, it should be position #40 in the
other two if the methods are perfectly correlated.

Table 8.1: States-better-than correlations between methods

Traceroute Site Ping DNS DNS (Normalized)
Traceroute 1.00 0.43 0.37 0.30
Site Ping 0.43 1.00 0.21 0.30
DNS 0.37 0.21 1.00 0.21
DNS (Normalized) 0.30 0.30 0.21 1.00
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Table 8.1 shows a table of each method’s correlation to every other method using this
technique, including DNS with and without normalization (traceroute is always normalized,
site ping never is). The highest correlation displayed is 0.43, between the traceroute and
site ping methods, while the lowest is DNS to normalized DNS at 0.21. Regardless, all of
these values are low, suggesting that all methods yield different rankings. Since they’re not
too low, however, it’s reasonable to assume that certain parts of the rankings are similar,
e.g. the tail ends of the rankings. Across all three methods, DC had the best connectivity
and Montana connectivity scores the worst connectivity.

8.3 Analysis

After three distinctly different methods – some overlapping on connectivity metrics and
some not – and comparative analyses to determine similarities and differences between
the results, there are some broad conclusions that we can draw.

8.3.1 Areas with Superior Connectivity

Table 8.2: Top 3 states for each data source

Rank Traceroutes Site Ping DNS
1 DC DC DC
2 DE DE VA
3 CA CT NY

Washington DC Across all three methods, the area with the best Internet connectivity by
far is Washington DC. DC consistently ranks highest among the states2, even with serious
contenders such as the coastal states taken into consideration. This is shown in Table 8.2,
which draws its rankings from Tables 5.2, 6.1 and 7.7.

As discussed in other chapters, this actually makes perfect sense. All heatmaps indicate
that areas with higher populations, especially cities, have better Internet connectivity on
average. Washington DC is a zone that is only a city, so it’s effectively a single point of good
Internet connectivity without rural areas to weigh it down in the rankings. It’s also the seat
of the US federal government, complete with the Pentagon just across a river, making the
entire area one enormous governmental hub where massive information flow is a necessity.
With this in mind, it’s no wonder the city has the best Internet connectivity.

Regions of Dense Population Areas of increased population density almost universally
have better Internet connectivity, which confirms expectations based on economic factors.
ISPs are more likely to expand into and prioritize areas with more paying customers, so
those areas receive better infrastructure, more upgrades, and so on, ultimately leading to
better connectivity.

2Or more accurately administrative areas considering DC is not a state, but for our purposes it’s acceptable
to lump DC in with the states.
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Figure 5.14: Traceroute speed-of-light efficiency heatmap (repeated from page 39)

Coastal Regions Broadly speaking, both the West coast and the East coast perform better
than the central US according to all metrics. This falls in line with the prior conclusion
about regions of dense population: the coasts are more densely populated, therefore they
have better Internet connectivity.

Both of these effects are demonstrated in Fig. 5.14.

8.3.2 Areas with Poor Connectivity

The Deep South States part of the “deep south”, in particular Alabama, Arkansas, Louisiana,
Mississippi, and to a lesser extent Tennessee, universally have poor Internet. Although there
are others with worse Internet, this region shows a strong unity in having poor connectivity.
The reason for this is unknown, but we hypothesize it involves economic or political factors
of the region.

The Central Northwest North states leaning central-North, such as Idaho, the Dakotas,
and Montana have been observed to have poor connectivity across all three methods.
Montana in particular is a region of egregiously poor Internet, consistently at or near the
absolute worst connectivity by every metric.

Both of these effects are demonstrated in Fig. 6.10.

8.3.3 Anomalies

Wyoming Wyoming, the least populous state in the nation, is rather anomalous. Under
CAIDA/Atlas, it ranks near the bottom, site ping data shows it as being upper/middle, while
with DNS cache manipulation, it is consistently in or near the top five. While we are not
certain, these discrepancies are likely do to the relative lack of data we have for state.
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Figure 6.10: Site ping heatmap (repeated from page 53)

Alaska Alaska is an anomaly simply because we lack data for it. It turns out that gathering
Internet connectivity data on Alaska is very difficult, even when offering high incentives
for workers on Amazon’s Mechanical Turk.

8.3.4 Rankings

Unfortunately, beyond the broad, region-based conclusions drawn here, devising a statistically-
valid ranking of all states is challenging. There are cluster-based approaches that can be
used where applicable, or topological sort methods that can give a rough estimate, but
nothing concrete. We can confidently assert that select states like California or Washington
DC are near the top, and states like Montana are near the bottom, but the non-extremes of
the states are difficult to distinguish between.

8.4 Summary

The takeaway from this analysis has to be that, although there were definitely some simi-
larities, the different methods yielded different results. Each of state KDE charts indicates
differences on a state level while the per-method KDE charts in earlier chapters indicate
differently shaped distributions. Although the DNS and traceroute methods seem to agree
with each other more than either do with the site ping data, they’re still different enough
to make it impossible to call them the same.

In a way, this makes sense. Consider that all three methods collect fundamentally
different kinds of data: traceroutes (as processed here) collect data related to infrastructure
quality, site ping assesses web page loading delays, and DNS collects time for DNS queries
to be resolved. At a pure surface level these have select elements in common (such as
a bottlenecked connection from a user to their ISP will naturally degrade all three), but
beyond that it’s only logical that they should report different results.
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Future Work

As we progressed with our data collection and analysis, we realized some ways in which our
methods were flawed, or could be improved should another group continue this research
in the future. This section outlines how we would approaching methods differently as well
as other methods we think are worth pursuing in the future.

9.1 Improved Site Ping Data Collection

One potential issue with the way we selected the images to load for site ping is that we
did not consider where the images were hosted. Most websites utilize a CDN to serve their
content, and most of the image files used for the “ping” were, in fact, located on a CDN.
The ping results are therefore more of a measure of the user’s connection to that particular
CDN than to the site as a whole. A revised Site Ping app could measure ping times for one
object from each domain a site loads content from and take an average.

9.2 More Accurate IP Address Geolocation

One of the things that could improve the quality of the data collected is more accurate IP
address geolocation. One way this could be done would be the use of more then one IP
geolocation service and flag data points where the services do not agree as questionable.
Another way geolocation could be improved would be through the use of up to date of a
constantly updating database. IP addresses to move around, even across state lines, based
on how the ISP decides to allocate them. Using a continuously updated database would
allow for each data point to be logged exactly where it is.

9.3 More recursive and authoritative servers for each
state

One of the issues with the DNS cache manipulation method is that it lacked a recursive
DNS server in Rhode Island. Additionally, several states had only a single server of a given

90
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type. Therefore, future iterations of this method could expand the geographic diversity of
servers under test.

9.4 Backbone Analysis

One of the methods discussed in Section 4.2 is “backbone analysis”. To briefly summarize,
the idea was to to examine every indirectly calculated hop (Section 5.3) from the CAIDA
and RIPE atlas dataset and consider those as edges on a graph, where the endpoints of the
hop are vertices on the graph. A massive graph could be established in this way, giving rise
to numerous possibilities for analysis based in graph theory.

Using graph theory methods it would be possible to identify nodes that are part of
the Internet backbone, and measure connectivity to those instead. This provides a far
more centralized region of the Internet to measure connectivity to, which may improve the
quality of the analyses if implemented. It would also give insight on what fraction of traffic
passes through the backbone, which could be another interesting metric for connectivity.

9.5 Surveys & Subjective User Experience

Although described in Chapter 2, we ultimately did not pursue methods of collecting
data on consumer-oriented statistics like cost, advertised speeds, data caps, or connection
stability. These are harder to gather data on using purely technical means – there is no
series of servers we can query like in the DNS method, and there are no databanks of this
sort of information available for scraping. To gather real data on the subject it would be
necessary to communicate with actual users instead of just their browsers.

This implies a survey of some kind, asking users to provide quantitative information
like how much they pay for Internet, how fast their Internet seems to be, or what their data
cap is. Although more challenging to analyze, gathering data on qualitative measures like
apparent connection stability may also be useful, although less reliable. These are methods
that we did not consider at the start of our project, but that future researchers may be
interested in pursuing.

9.6 IPv6 Availability

As mentioned in Chapter 3 it might be useful to measure the availability of IPv6 by region,
along with mitigating measures like IPv6-over-IPv4 tunnels. IPv4 address exhaustion is
becoming more and more urgent, with the RIPE Network Coordination Center recording
exhaustion of their pool in Europe on 25 November 2019 [29]. As difficulty of obtaining
an IPv4 address increases and network infrastructure is strained further, future researchers
will likely want to examine IPv6 availability as a metric for whether Internet connections
will even be possible in a region.
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9.7 Summary

While the methods we explored and the analysis we performed were highly informative,
there is still much room for future work. A number of key points in our methods could use
improved accuracy or more data points, while some other connectivity metrics and analysis
techniques could be applied to the data collected during this project. We also rehashed the
potential usefulness of collecting data for metrics that we chose not to pursue, such as IPv6
availability.
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Conclusion

Our research at the beginning of this project demonstrated that there is no single definition
of connectivity. Some metrics, such as aggregation by /24 prefixes, may focus on network
infrastructure, others on measured user experience, and yet others on connectivity adver-
tised to users. And these metrics can further focus on types of connectivity: the efficiency
of network in an area can show where improvements can be made, while the absolute
performance indicates which locations are most connected in the physical world.

In total we pursued three different definitions of connectivity using three different
methods: using traceroute data from CAIDA and RIPE Atlas, we gathered data about
RTT from everywhere to everywhere; with a crowd sourcing website, we collected data
about RTTs to the top websites in the United States; and leveraging DNS caching, we
measured aggregate RTT between geographic regions. Each of these produced different
results ranging from surprising to expected. For example, Washington DC and areas with
regions of dense population generally performed better across all metrics. This conforms
to expectations: ISPs are likely to prioritize better service for regions with more paying
customers. Meanwhile, the deep south did not perform as well, possibly due to economic
or political factors. One anomaly that stood out is Wyoming: the least populated state
performed poorly in CAIDA/Atlas, middle to upper range using the crowd sourced site ping
method, and consistently in or near the top five for the DNS cache manipulation.

While we conducted extensive research into Internet connectivity in the United States,
the nature of this project is that there will always be more to do. As IPv6 becomes in-
creasingly necessary, the availability of networks capable of handling the protocol could
shed light on a region’s future connectivity. Beyond that, backbone analysis would take the
infrastructure based metrics further in exploring connectivity to the core components of
the Internet. On the other hand, surveying users and exploring subjective user experience
would delve deeper into the day-to-day experiences of everyday Internet users. And of
course, our methods could always be improved on. Taking the location of the resources
being served into account would improve the site ping method, while DNS cache manipu-
lation could be made better by increasing the number of DNS servers being used.

In the end, we conducted in-depth analysis into three different definitions of Internet
connectivity and, as expected, developed at least three different evaluations. No two
definitions of connectivity will every agree completely and this report serves as evidence to
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that. While we might be able to make some generalizations, everywhere has its strengths
and weaknesses (some more than others) and at the end of the day, we leave it up to the
reader of this report to determine which is most applicable to their problem.



A

Github Repositories

Table A.1 is a list of repositories created for this MQP, available at:
https://github.com/Internet-Connectivity-MQP-2019.

Name Purpose
data Collection of datasets for this project.
DigForPy Python wrapper for the dig utility. Used by DNS_Test-

ing and Website Resolution.
DNS_Analytics Scripts used to analyze the DNS cache manipulation

data.
DNS_Testing Scripts for collecting DNS cache manipulation data.
fp Precursor project for SitePing. Created for CS4241

Webware.
JavaScript-Ping-Prototype Proof of concept code for the Site Ping methodology.
MTurkValidator Python script used to validate Mechanical Turk submis-

sions.
SitePing Collection site for the Site Ping method.
SitePingDataAnalysis Data analysis scripts for the Site Ping data.
small-file-finder Chrome extension to find small objects for use in the

Site ping method.
tracerouter Proof of concept code for constantly running tracer-

outes on a phone for the road trip concept.
traceroute-hopper-cpp Traceroute hopper, ported from Python to C++ for

better performance.
traceroute-processing-scripts Traceroute analysis & processing scripts for CAIDA,

RIPE Atlas, and more.
WebsiteResolution Tool for using the list of recursive DNS servers to deter-

mine where websites resolve to from across the coun-
try.

Table A.1: List of Github repositories
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B

Select Database Design

Some database optimization schemes were used to store CAIDA and RIPE Atlas tracer-
oute/ping data in a performance-friendly way. These are reproduced below for possible
future use and to clarify on the database design. The below shows the table, partition, and
index definitions for our raw data tables for CAIDA and RIPE Atlas data. Note that it was
somewhat naively assumed that IPv6 addresses would represent a relatively small portion
of the dataset.

1 CREATE TABLE hops (
2 src INET,
3 dst INET,
4 rtt REAL
5 );
6 CREATE INDEX src_index ON he USING HASH(src);
7 CREATE INDEX dst_src_BRIN_index ON hops USING brin(dst, src);
8

9 CREATE TABLE h0 PARTITION OF hops FOR VALUES FROM ('0.0.0.0') TO ('16.255.255.255');
10 CREATE TABLE h1 PARTITION OF hops FOR VALUES FROM ('16.255.255.255') TO

('32.255.255.255');↪→
11 CREATE TABLE h2 PARTITION OF hops FOR VALUES FROM ('32.255.255.255') TO

('48.255.255.255');↪→
12 CREATE TABLE h3 PARTITION OF hops FOR VALUES FROM ('48.255.255.255') TO

('64.255.255.255');↪→
13 CREATE TABLE h4 PARTITION OF hops FOR VALUES FROM ('64.255.255.255') TO

('80.255.255.255');↪→
14 CREATE TABLE h5 PARTITION OF hops FOR VALUES FROM ('80.255.255.255') TO

('96.255.255.255');↪→
15 CREATE TABLE h6 PARTITION OF hops FOR VALUES FROM ('96.255.255.255') TO

('112.255.255.255');↪→
16 CREATE TABLE h7 PARTITION OF hops FOR VALUES FROM ('112.255.255.255') TO

('128.255.255.255');↪→
17 CREATE TABLE h8 PARTITION OF hops FOR VALUES FROM ('128.255.255.255') TO

('144.255.255.255');↪→
18 CREATE TABLE h9 PARTITION OF hops FOR VALUES FROM ('144.255.255.255') TO

('160.255.255.255');↪→
19 CREATE TABLE hA PARTITION OF hops FOR VALUES FROM ('160.255.255.255') TO

('176.255.255.255');↪→
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20 CREATE TABLE hB PARTITION OF hops FOR VALUES FROM ('176.255.255.255') TO
('192.255.255.255');↪→

21 CREATE TABLE hC PARTITION OF hops FOR VALUES FROM ('192.255.255.255') TO
('208.255.255.255');↪→

22 CREATE TABLE hD PARTITION OF hops FOR VALUES FROM ('208.255.255.255') TO
('224.255.255.255');↪→

23 CREATE TABLE hE PARTITION OF hops FOR VALUES FROM ('224.255.255.255') TO
('240.255.255.255');↪→

24 CREATE TABLE hF PARTITION OF hops FOR VALUES FROM ('240.255.255.255') TO
('255.255.255.255');↪→

25 CREATE TABLE hZ PARTITION OF hops FOR VALUES FROM ('::') TO
('FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF');↪→



C

List of Sites and Web Resources

The below list identifies the sites in the US that were used for the site ping website:

Site Rank Resource

Google 1 Resource
Youtube 2 Resource
Amazon 3 Resource
Yahoo 4 Resource
Facebook 5 Resource
Reddit 6 Resource
Wikipedia 7 Resource
Ebay 8 Resource
Office 9 Resource
Bing 10 Resource
Netflix 11 Resource
ESPN 12 Resource
Salesforce 13 Resource
Live 14 Resource
Instructure 15 Resource
Chase 16 Resource
Apple 17 Resource
Instagram 18 Resource
CNN 20 Resource
Dropbox 21 Resource
Tmall 22 Resource
LinkedIn 23 Resource
Twitter 24 Resource
Twitch 25 Resource
Microsoft 27 Resource
Shopify 28 Resource
NYTimes 29 Resource
Walmart 31 Resource
Pornhub 32 Resource
Adobe 33 Resource
IMDb 35 Resource
Stack Overflow 36 Resource

Continued on next page
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http://www.google.com/images/searchbox/desktop_searchbox_sprites302_hr.png
http://s.ytimg.com/yts/img/favicon_32-vflOogEID.png
http://www.amazon.com/empty.gif
http://s.yimg.com/os/mit/ape/m/81f43c2/t.gif
http://static.xx.fbcdn.net/images/emoji.php/v9/t91/1.5/16/1f44d_1f3fc.png
http://www.redditstatic.com/desktop2x/img/renderTimingPixel.png
http://www.wikipedia.org/static/apple-touch/wikipedia.png
http://ir.ebaystatic.com/pictures/aw/pics/s_1x2.gif
http://a.fp.measure.office.com/apc/trans.gif
http://www.bing.com/favicon.ico
http://help.nflxext.com/helpcenter/fc264264a231904b0fce67cd98399e10.svg
http://a.espncdn.com/combiner/i?img=%2Fi%2Fespn%2Fnetworks_shows%2F500%2Fundefeated.png&w=60&h=60&scale=crop&cquality=80&location=origin
http://c1.sfdcstatic.com/etc/clientlibs/sfdc-aem-master/clientlibs_base/imgs/spacer.gif
http://logincdn.msauth.net/16.000.28394.11/images/ellipsis_grey.svg
http://www.instructure.com/sites/blog.instructure/files/uploaded-assets/menu/logo/starter.svg
http://creditcards.chase.com/R111-003/1110010/images/chasebank-logo-icon.svg
http://www.apple.com/ac/globalnav/5/en_US/images/globalnav/links/tv/image_large.svg
http://www.instagram.com/static/images/shared/nav-shadow.png/fae1c515f490.png
http://cdn.cnn.com/cnn/images/bulletin/arrow.png
http://cfl.dropboxstatic.com/static/images/icons/icon_spacer-vflN3BYt2.gif
http://g.alicdn.com/s.gif
http://static-exp1.licdn.com/sc/h/3z4gbn751g6l5onl9gg9s5ckg
http://abs.twimg.com/favicons/favicon.ico
http://static.twitchcdn.net/assets/favicon-32-d6025c14e900565d6177.png
http://www.microsoft.com/onerfstatics/marketingsites-eus-prod/_h/9be151e5/coreui.statics/images/1x1clear.gif
http://cdn.shopify.com/shopify-marketing_assets/static/shopify-favicon.png
http://www.nytimes.com/vi-assets/static-assets/icon-facebook-20x20-fullcolor-7312c440fd2b6f323c675d8a08c023e2.svg
http://www.walmart.com/favicon.ico
http://ci.phncdn.com/www-static/images/rightArrow.png
http://www.adobe.com/content/dam/cc/icons/device-web.svg
http://m.media-amazon.com/images/G/01/imdb/images/rating/spinner-3099941772._V_.gif
http://cdn.sstatic.net/Img/home/votes.svg?v=989b3861569f
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Site Rank Resource

AWS 37 Resource
Sohu 38 Resource
QQ 39 Resource
Indeed 40 Resource
Zillow 41 Resource
Wellsfargo 42 Resource
Spotify 43 Resource
MSN 44 Resource
Imgur 45 Resource
Yelp 47 Resource
Taobao 48 Resource
Etsy 49 Resource
Hulu 50 Resource

http://d1.awsstatic.com/webteam/homepage/solutions/60-windows-workloads.b5e9ac06613bcaf464fba96f7245e912aeaa7155.png
http://statics.itc.cn/web/v3/static/images/pic/service/pic02.gif
http://pgdt.gtimg.cn/gdt/0/precon.png/0?_=0.7358115759256028
http:// www.indeed.com/hp/rpc/frontendlogging?logType=trackEvent&moduleName=event&application=indeedmobile&pageId=homepage&data=%7B%22eventName%22%3A%22mobPageLoadInfo%22%2C%22type%22%3A%22mobPageLoadInfo%22%2C%22pageId%22%3A%22homepage%22%2C%22mobtk%22%3A%221dqo1t8694tgr800%22%2C%22pageName%22%3A%22hp%22%2C%22pixelRatio%22%3A1.5%2C%22scrWidth%22%3A2560%2C%22scrHeight%22%3A1440%2C%22scrOrientation%22%3A%22landscape%22%7D
http://www.zillow.com/apple-touch-icon.png
http://www01.wellsfargomedia.com/assets/images/css/template/homepage/homepage-magnifying-glass.png
http://www.scdn.co/i/home/hero-burst.svg
http://static-global-s-msn-com.akamaized.net/hp-eus/sc/9b/e151e5.gif
http://s.imgur.com/desktop-assets/desktop-assets/icon-leaderboard.2c7c197ab7cc58a23c14b83dcc3025a9.svg
http://s3-media0.fl.yelpcdn.com/assets/public/72x72_more_categories@2x.yji-e7be9a50bf8cf4a2eea9f7d7e2b5f194.png
http://img.alicdn.com/tfs/TB1VlKFRpXXXXcNapXXXXXXXXXX-16-16.png
http://www.etsy.com/assets/dist/images/favorite/dots.20190424142746.svg
http://www.hulu.com/static/hitch/static/icons/facebook.svg


Acronyms

Notation Description Page List
ANOVA analysis of variance 19, Glossary: ANOVA
API application programming interface 8, 45, 46
AWS Amazon Web Services 11, 47, 48

CAIDA Center for Applied Internet Data Analysis 15, 16, 23–26, 30, 32, 33, 35, 37, 39, 43,
84, 85, 91, 93, 96

CDF cumulative distribution function 30, 51
CDN content delivery network 3, 6–8, 11, 52, 53, 90, Glossary: CDN
CLI command-line interface 25, 26, 28
CORS cross-origin resource sharing 44
CSV comma separated value 59
CV coefficient of variation 33, 50, 56, 60, 65, Glossary: CV

DDoS distributed denial of service 18
DNS domain name system i, 6–8, 15, 16, 26, 53, 55–63, 65, 67, 70, 72,

76, 83–85, 87–91, 93, 95

EC2 Amazon Elastic Compute Cloud 47, Glossary: EC2
ETL extract-transform-load 25, 28, Glossary: ETL

FCC Federal Communications Commission 1, 18

GDP gross domestic product 71
GIS geographic information system 30
GPS global positioning system 16

HTML Hypertext Markup Language 44, 46
HTTP hypertext transfer protocol 6, 44, 45
HTTPS hypertext transfer protocol secure 44

ICMP internet control message protocol 4, 53, Glossary: ICMP
IDW inverse distance weighting 38, 39, 42, 43
IP internet protocol 3, 4, 6–9, 11, 17–19, 22, 23, 26–33, 37, 56,

57, 59, 60, 90
IPoAC internet protocol over avian carrier 34
IPv4 internet protocol version 4 11, 13, 91
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Notation Description Page List
IPv6 internet protocol version 6 13, 14, 91–93
IQR inter-quartile range 47, 49
ISP internet service provider 3, 5, 7, 8, 12, 13, 32, 87, 89, 90, 93, Glos-

sary: ISP

JSON Javascript Object Notation 24–26, 46, 48, 101
JWT JSON Web Token 48

KDE kernel density estimation 30, 41, 84–86, 89, Glossary: KDE

Mbps megabits per second 3, 5
MQP major qualifying project 8, 9, 16, 22, 55

NTP Network Time Protocol 16, 17

RIPE Réseaux IP Européens 15, 16, 23–26, 30, 32, 33, 35, 37, 39, 43,
91, 93, 96

RTT round trip time 3, 4, 10–16, 23, 24, 26, 28, 30, 31, 33,
34, 36, 44–46, 53, 55, 57, 61, 64–70, 72,
74–76, 83, 84, 93

SDK software development kit 8
SVG scalable vector graphics 46

TCP transmission control protocol 44–46
TLD top level domain 6, 7
TLS transport layer security 44, 45
TTL time-to-live 4, 6, 7

URL uniform resource locator 7
US United States v, 1, 3, 8, 9, 11–13, 15–19, 22, 35, 42,

45–49, 83, 84, 87, 88, 98
USPS United States Postal Service 19

VoIP voice over Internet protocol 10

WPI Worcester Polytechnic Institute 8, 9, 22, 48, 56, 57



Glossary

ANOVA Analysis of variance is a class of statistical models and methods for estimation,
used to analyze the difference between the means of a sample. Although there are
many types, they all fundamentally calculate the probability (a p value) that two
population means are equal.

CDN A content distribution network, sometimes called a Content Delivery Network, is a
network of proxy servers that form a kind of cache used to enhance delivery of
content to Internet users. Although helpful for Internet users, they complicate
measurements of connectivity to websites actually connecting to the site’s servers.

CV Coefficients of variation, or relative standard deviations, are defined as the ratio of the
absolute value of the mean of a variable divided by its standard deviation: |µ|

σ
. CVs

are dimensionless values that can be judged independent of the original source,
making them useful for gauging the spread of any data set. The lower the CV, the
lower the spread of the data and the better the quality.

EC2 EC2 is a service from Amazon Web Services that provides virtual machines in the cloud
for general-purpose or task optimized work. EC2 can be configured for different
performance and pricing classes, as well as complex auto-scaling schemes or virtual
private cloud setups.

ETL Extract-transform-load is a generic procedure for extracting data, transforming it into
a more useful format, and loading it into a large volume storage system, such as a
database. The term closer describes an architecture rather than a specific algorithm.

ICMP Internet Control Message Protocol is a protocol designed for error reporting and
other utility purposes across the Internet, typically used most by routers and other
intermediary devices.

ISP An Internet service provider is typically the "last mile" organization that provides a user
with Internet access — otherwise known as a tier 3 ISP. They are distinct from tier
2 and tier 1 ISPs which are responsible for much of the Internet backbone, although
ISP corporations may operate on multiple tiers. Common ISPs in the US include
AT&T, Comcast, and Verizon.

KDE Kernel density estimation is a technique for estimating the probability density function
of a variable. Briefly, KDEs work by processing each measurement of a variable as
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if it was at the center of some given probability density function, e.g. a gaussian
curve. These curves are then summed together to form one curve and normalized
so the area underneath the curve is equal to 1. A KDE chart can be read in the
same way as a histogram can, but the y axis corresponds to a density instead of an
absolute value. The advantage to using a KDE over a histogram is that KDEs are not
vulnerable to binning effects (from choosing the wrong bin size) while histograms
are.
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