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Abstract

The Finite Element Method (FEM) is a scheme that can approximate the solution of bound-
ary value problems. We study the fundamentals of FEM and construct a MATLAB code
to approximate the error of the solution for each refinement and compute the rate of con-
vergence of this discretization. Then, we study the article of Bramble and Schatz [2] to
construct MATLAB code to approximate better solution by averaging the FEM’s solution.

1



Acknowledgement

I want to thank Professor Marcus Sarkis for his guidance, his continual support and his
teaching. I would like to thank my friend, Thanacha Pi Choopojcharoen, for his guidance
in MATLAB. And I want to thank my mother for her support all four terms.

2



Contents

1 Introduction 5
1.1 The Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Domain and Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Boundary Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Weak form of FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Linear and Quadratic triangular . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 The Reference Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Basis function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Mesh Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Local vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Dirichlet boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Q3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Loval vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Dirichlet boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Finite Element Method 16
2.1 Left-hand side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Hat functions of P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Hat functions of P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Hat function of Q3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Right-hand side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 FEM of P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 FEM of P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 FEM of Q3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 More accuracy by averaging 24
3.1 Bramble and Schatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Averaging P2 in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3



3.3 Averaging Q3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Numerical Experiments 31
4.1 Numerical experiments of P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Numerical experiments of P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Numerical experiments of Q3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Conclusion 41

4



Chapter 1

Introduction

The Finite Element Method is a scheme that can approximate the solution of boundary
value problem described by a partial differential equation (PDE). In this paper, we focus on
polygonal R2 domain. To compute the solution, we divide our domain into many subdomains
called finite element. The simplest elements to compute are triangle and square, and they
are the ones we consider here. Then we construct stiffness matrices associated to the Poisson
problem.

1.1 The Model Problem

In our model problem, we start with definition of our domain and boundaries. Then, we
introduce basis function to solve the Poisson problem.

1.1.1 Domain and Boundary

Denote the polygon domain in R2 by Ω. Two boundary conditions, Dirichlet ΓD and Neu-
mann ΓN .

ΓN

ΓD

Ω

Figure 1.1: Domain Ω

• ΓD is the Dirichlet boundary where the solution is given.
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• ΓN is the Neumann boundary where the normal derivative is given

1.1.2 Boundary Value Problem

Consider the Laplace operator, or Laplacian

∆u =
∂2u

∂x2
+
∂2u

∂y2

The boundary value problem is

−∆u+ cu = f inΩ

u = g0 onΓD

∂nu = g1 onΓN

• u is an unknown function defined on the domain Ω

• c is a non-negative constant value. In this paper, we set c = 0

• f is a given function on Ω

• g0 , g1 are given on two different parts of boundary

1.1.3 Weak form of FEM

We now use the weak form of FEM. To get start, we introduce the Green’s Theorem. The
theorem states that ∫

Ω

(∆u)v +

∫
Ω

∇u · ∇v =

∫
Γ

(∂nu)v

Our boundary contains with Dirichlet and Neumann∫
Ω

(∆u)v +

∫
Ω

∇u · ∇v =

∫
ΓN

(∂nu)v +

∫
ΓD

(∂nu)v

Since c = 0 so that −∆u = f∫
Ω

∇u · ∇v =

∫
Ω

fv +

∫
ΓN

g1v +

∫
ΓD

(∂nu)v

Since the value on ΓD is given, we set v = 0 on ΓD

Therefore, we have a new formula of our problem∫
Ω

∇u · ∇v =

∫
Ω

fv +

∫
ΓN

g1v

In this project we assume that ΓN = ∅, that is, the boundary of Ω is all Dirichlet boundary.∫
Ω

∇u · ∇v =

∫
Ω

fv
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1.2 Triangulation

As we mentioned in domain and boundary, we have to divide our domain into subdomains.
We focus on linear and quadratic function of two variables P1 and P2.

K

Figure 1.2: Subdomains of Ω

1.2.1 Linear and Quadratic triangular

Define P1 : Linear Triangular and P2 : Quadratic Triangular
A linear function of two variables is

p(x, y) = ai + bix+ ciy

p ∈ P1 = {ai + bix+ ciy | ai, bi, ci ∈ R}

A quadratic function of two variables is

p(x, y) = ai + bix+ ciy + dixy + eix
2 + fiy

2

p ∈ P2 = {ai + bix+ ciy + dixy + eix
2 + fiy

2 | ai, bi, ci, di, ei, fi ∈ R}

1.2.2 The Reference Triangle

Given a subdomain K in Ω, define

• Fk is a function mapping K̂ → K

• K is a triangle on Ω

• K̂ is a reference triangle with v̂1=(0,0), v̂2=(1,0), and v̂3=(0,1)
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v1

v2

v3

K

Fk

v̂1 v̂2

v̂3

K̂

Figure 1.3: The function map to reference triangle

For any point (x,y) in K, (x, y) = Fk(x̂, ŷ)(
x
y

)
= Fk

(
x̂
ŷ

)
(
x
y

)
=

(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)(
x̂
ŷ

)
+

(
x1
y1

)
Define Bk =

(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)
(
x
y

)
=

(
x1
y1

)
(1− x̂− ŷ) +

(
x2
y2

)
x̂+

(
x3
y3

)
ŷ

The area of the triangle K = |detBk|/2

1.2.3 Basis function

The polynomials are defined on each triangle in the mesh, which form a set of basis functions
for the triangular element. Each basis function has a value of 1 at its node and a value of
0 at the other nodes giving it a pyramid shape over the triangle. Define vh be a piecewise
linear and continuous function on Ω so we can also define a basis function

φi(xi) = δij =

{
0 i ̸= j

1 i = j
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Figure 1.4: The hat function
(image credit: http://brickisland.net/cs177fa12/?p=302)

It is easy to see that

wh(x) =
∑
i∈N

wh(vi)φi(x)

where N is the index set of interior nodes, since we consider wh(x) = 0 for x ∈ ∂Ω.

1.3 Mesh Grid

Our domain is a square 1-by-1 to be easier to compute. We refine our domain into mesh
grid that we choose L = 1,2,3,... Here is the mesh grid for L = 1

1 2 3

4 5 6

7 8 9

Figure 1.5: The global vertices for P1 for L = 1
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 1.6: The global vertices for P2 for L = 1

1.3.1 Local vertices

To order the number of vertices, we have to choose the direction clockwise or counter-
clockwise. In this report, we use counter-clockwise for P1. In P2, three vertices in the middle
of each edges are ordered in opposite of vertices.

1̂ 2̂

3̂ 1̂

3̂

2̂

Figure 1.7: The ordering of vertices for P1

1̂ 2̂

3̂

4̂

6̂

5̂

1̂

3̂

2̂

4̂

6̂

5̂

Figure 1.8: The ordering of vertices for P2

For example, we map vertices of triangle in global to local by

13 15

5

14

9 10

1̂

2̂

3̂

5̂

6̂

4̂

Figure 1.9: Example of mapping vertices
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1.3.2 Elements

To compute each element, we order our element at the figure below.

1

2

3

4

5

6

7

8

Figure 1.10: The ordering of element for L = 1

By using the ordering of vertices above, we get the ordering of vertices in each element.

Element v1 v2 v3

1 1 2 4
2 5 4 2
3 2 3 5
4 6 5 3
5 4 5 7
6 8 7 5
7 5 6 8
8 9 8 6

Table 1.1: The order of vertices for P1

Element v1 v2 v3 v4 v5 v6

1 1 3 11 7 6 2
2 13 11 3 7 8 12
3 3 5 13 9 8 4
4 15 13 5 9 10 14
5 11 13 21 17 16 12
6 23 21 13 17 18 22
7 13 15 23 19 18 14
8 25 23 15 19 20 24

Table 1.2: The order of vertices for P2
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1.3.3 Dirichlet boundary

As we mentioned above, we are focusing only zero Dirichlet boundary condition, so all the
vertices are zero at the boundary. However, we can adapt to have Neumann boundary if we
want to. Here is the ordering of Dirichlet global boundary nodes and the Tables 1.3 and 1.4
of the ordering of vertices

1 2

3

4

56

7

8

Figure 1.11: The ordering of Dirichlet boundaries for L = 1

Dirichlet v1 v2

1 1 2
2 2 3
3 3 6
4 6 9
5 9 8
6 8 7
7 7 4
8 4 1

Table 1.3: The ordering of vertices for P1

Dirichlet v1 v2 v3

1 1 2 3
2 3 4 5
3 5 10 15
4 15 20 25
5 25 24 23
6 23 22 21
7 21 16 11
8 11 6 1

Table 1.4: The ordering of vertices for P2
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1.4 Q3

We introduce new element which is easy to compute for square domain. It is a square
element. As we define our mesh grid, coordinate, element, and Dirichlet boundary above.
We do the same thing in our Q3. Here is the global ordering of vertices for L = 1

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

Figure 1.12: The ordering of vertices for Q3

1.4.1 Loval vertices

We also define the order of each element in the same way. Here is the example of first element
for L = 1

1̂ 2̂ 3̂ 4̂

5̂ 6̂ 7̂ 8̂

9̂ 1̂0 1̂1 1̂2

1̂3 1̂4 1̂5 1̂6

Figure 1.13: The ordering of vertices for Q3

1.4.2 Element

Now our element is a square with four points on boundary of each element.
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1 2

3 4

Figure 1.14: The ordering of element for L = 1

Element v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

1 1 2 3 4 8 9 10 11 15 16 17 18 22 23 24 25
2 4 5 6 7 11 12 13 14 18 19 20 21 25 26 27 28
3 22 23 24 25 29 30 31 32 36 37 38 39 43 44 45 46
4 25 26 27 28 32 33 34 35 39 40 41 42 46 47 48 49

Table 1.5: The ordering of vertices for Q3

1.4.3 Dirichlet boundary

For the Dirichlet boundary, we also order in counter-clockwise.

1 2

3

4

56

7

8

Figure 1.15: The ordering of Dirichlet boundaries for L = 1 for Q3
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Element v1 v2 v3 v4

1 1 2 3 4
2 4 5 6 7
3 7 14 21 28
4 28 35 42 49
5 49 48 47 46
6 46 45 44 43
7 43 36 29 22
8 22 15 8 1

Table 1.6: The ordering of vertices for Q3
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Chapter 2

Finite Element Method

In this section, we decide to set all the boundary to be zero Dirichlet. Therefore, we get:
Find u ∈ Vh(Ω) such that ∫

Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ Vh(Ω),

where Vh(Ω) is the space of piecewise linear and continuous functions which are vanish on
∂Ω. We study this equation in two parts, left-hand side and right-hand side.

2.1 Left-hand side

We denote the i, j position of the stiffness matrix by∫
Ω

∇φi · ∇φj

Recall our solution u is of the form

u =
∑
j∈N

ujφj

then substitute ∇u ∫
Ω

∇u · ∇φi =
∑
j∈N

uj

∫
Ω

∇φj · ∇φi

We compute element K in Ω∫
K

∇φK
i · ∇φK

j = |detBK |
∫
K̂

(∇φK
i ◦ FK) · (∇φK

j ◦ FK)

Then, we use a change of variable to obtain∫
K

∇φK
i · ∇φK

j = |detBK |
∫
K̂

(B−T
K ∇̂φ̂î) · (B

−T
K ∇̂φ̂ĵ)
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Therefore, the entries of the stiffness matrix is given by∫
K

∇φK
i · ∇φK

j = |detBK |
∫
K̂

CK∇̂φ̂î · ∇̂φ̂ĵ

where

CK = B−1
K B−T

K =

(
cK11 cK12
cK21 cK22

)

2.1.1 Hat functions of P1

The basis function on K̂ is of the form:

φ̂î(x̂, ŷ) = a1 + b1x̂+ c1ŷ

Each φ̂î has three unknown coefficients ai, bi, ci. For instance, for φ̂1̂ we want φ̂1̂(0, 0) = 1,
φ̂1̂(1, 0) = 0, and φ̂1̂(0, 1) = 0. So, this implies that

a1 + b1x̂1̂ + c1ŷ1̂ = 1

a1 + b1x̂2̂ + c1ŷ2̂ = 0

a1 + b1x̂3̂ + c1ŷ3̂ = 0

so we can write it in matrix form as1 x̂1̂ ŷ1̂
1 x̂2̂ ŷ2̂
1 x̂3̂ ŷ3̂

a1b1
c1

 =

1
0
0


For all the three basis function in triangle, we get the equation of the form1 x̂1̂ ŷ1̂

1 x̂2̂ ŷ2̂
1 x̂3̂ ŷ3̂

a1 a2 a3
b1 b2 b3
c1 c2 c3

 =

1 0 0
0 1 0
0 0 1


Solve for coefficient matrix, we get each φ̂i in the form

φ̂1̂ = 1− x̂− ŷ

φ̂2̂ = x̂

φ̂3̂ = ŷ
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2.1.2 Hat functions of P2

The basis function on K̂ is of the form:

φ̂î(x̂, ŷ) = a1 + b1x̂+ c1ŷ + d1x̂ŷ + e1x̂
2 + f1ŷ

2

Each φ̂î has three unknown coefficients ai, bi, ci. For instance, for φ̂1̂ we want φ̂1̂(0, 0) = 1,
φ̂1̂(1, 0) = 0, φ̂1̂(0, 1) = 0, φ̂1̂(1/2, 1/2) = 0, φ̂1̂(0, 1/2) = 0, and φ̂1̂(1/2, 0) = 0. So, this
implies that

a1 + b1x̂1̂ + c1ŷ1̂ + d1x̂1̂ŷ1̂ + e1x̂
2
1̂
+ f1ŷ

2
1̂
= 1

a1 + b1x̂2̂ + c1ŷ2̂ + d1x̂2̂ŷ2̂ + e1x̂
2
2̂
+ f1ŷ

2
2̂
= 0

a1 + b1x̂3̂ + c1ŷ3̂ + d1x̂3̂ŷ3̂ + e1x̂
2
3̂
+ f1ŷ

2
3̂
= 0

a1 + b1x̂4̂ + c1ŷ4̂ + d1x̂4̂ŷ4̂ + e1x̂
2
4̂
+ f1ŷ

2
4̂
= 0

a1 + b1x̂5̂ + c1ŷ5̂ + d1x̂5̂ŷ5̂ + e1x̂
2
5̂
+ f1ŷ

2
5̂
= 0

a1 + b1x̂6̂ + c1ŷ6̂ + d1x̂6̂ŷ6̂ + e1x̂
2
6̂
+ f1ŷ

2
6̂
= 0

so we can write it in matrix form as

1 x̂1̂ ŷ1̂ x̂1̂ŷ1̂ x̂2
1̂
ŷ2
1̂

1 x̂2 ŷ2 x̂2ŷ2 x̂2
2̂
ŷ2
2̂

1 x̂3 ŷ3 x̂3ŷ3 x̂2
3̂
ŷ2
3̂

1 x̂4 ŷ4 x̂4ŷ4 x̂2
4̂
ŷ2
4̂

1 x̂5 ŷ5 x̂5ŷ5 x̂2
5̂
ŷ2
5̂

1 x̂6 ŷ6 x̂6ŷ6 x̂2
6̂
ŷ2
6̂




a1
b1
c1
d1
e1
f1

 =


1
0
0
0
0
0


For all the six basis function in triangle, we get the equation of the form

1 x̂1̂ ŷ1̂ x̂1̂ŷ1̂ x̂2
1̂
ŷ2
1̂

1 x̂2 ŷ2 x̂2ŷ2 x̂2
2̂
ŷ2
2̂

1 x̂3 ŷ3 x̂3ŷ3 x̂2
3̂
ŷ2
3̂

1 x̂4 ŷ4 x̂4ŷ4 x̂2
4̂
ŷ2
4̂

1 x̂5 ŷ5 x̂5ŷ5 x̂2
5̂
ŷ2
5̂

1 x̂6 ŷ6 x̂6ŷ6 x̂2
6̂
ŷ2
6̂




a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6
c1 c2 c3 c4 c5 c6
d1 d2 d3 d4 d5 d6
e1 e2 e3 e4 e5 e6
f1 f2 f3 f4 f5 f6

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Solve for coefficient matrix, we get each φ̂i in the form

φ̂1̂ = (1− x̂− ŷ)(1− 2x̂− 2ŷ)

φ̂2̂ = x̂(2x̂− 1)

φ̂3̂ = ŷ(2ŷ − 1)

φ̂4̂ = 4x̂ŷ

φ̂5̂ = 4x̂(1− x̂− ŷ)

φ̂6̂ = 4ŷ(1− x̂− ŷ)
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2.1.3 Hat function of Q3

For Q3, it is different from P1 and P2. We now have an element that is a square which in
each direction x and y is a polynomial degree 3 in x and y respectively. We first focus in 1D.

φ̂î(x̂) = a1 + b1x̂+ c1x̂
2 + d1x̂

3

Each φ̂î has four unknown coefficients ai, bi, ci, di For instance, for φ̂î we want φ̂1̂(0) = 1,
φ̂1̂(1/3) = 0, φ̂1̂(2/3) = 0, and φ̂1̂(1) = 0. So, this implies that

a1 + b1x̂1̂ + c1x̂
2
1̂
+ d1x̂

3
1̂
= 1

a1 + b1x̂2̂ + c1x̂
2
2̂
+ d1x̂

3
2̂
= 0

a1 + b1x̂3̂ + c1x̂
2
3̂
+ d1x̂

3
3̂
= 0

a1 + b1x̂4̂ + c1x̂
2
4̂
+ d1x̂

3
4̂
= 0

so we can write it in matrix form as
1 x̂1̂ x̂2

1̂
x̂3
1̂

1 x̂2̂ x̂2
2̂
x̂3
2̂

1 x̂3̂ x̂2
3̂
x̂3
3̂

1 x̂4̂ x̂2
4̂
x̂3
4̂



a1
b1
c1
d1

 =


1
0
0
0


For all the four basis function in x-axis, we get the equation of the form

1 x̂1̂ x̂2
1̂
x̂3
1̂

1 x̂2̂ x̂2
2̂
x̂3
2̂

1 x̂3̂ x̂2
3̂
x̂3
3̂

1 x̂4̂ x̂2
4̂
x̂3
4̂



a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Solve for coefficient matrix, we get each φ̂i in the form

φ̂1̂ = 9/2(1− x̂)(1/3− x̂)(2/3− x̂)

φ̂2̂ = 27/2(x̂)(1− x̂)(2/3− x̂)

φ̂3̂ = 27/2(x̂)(1− x̂)(x̂− 1/3)

φ̂4̂ = 9/2(x̂)(x̂− 1/3)(x̂− 2/3)

Also for y-axis,
φ̂1̂ = 9/2(1− ŷ)(1/3− ŷ)(2/3− ŷ)

φ̂2̂ = 27/2(ŷ)(1− ŷ)(2/3− ŷ)

φ̂3̂ = 27/2(ŷ)(1− ŷ)(ŷ − 1/3)

φ̂4̂ = 9/2(ŷ)(ŷ − 1/3)(ŷ − 2/3)

For 2D problem, there are 16 nodes in each elements which are φ̂îĵ(x̂, ŷ) = φ̂î(x̂)φ̂ĵ(ŷ) for

î, ĵ = 1̂, 2̂, 3̂, 4̂
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2.2 Right-hand side

Our computation of the right-hand side is ∫
Ω

fv

We approximate this integration by∫
Ω

fv ∼
∑
K

ci

∫
K

φi · φj

where
ci = f(xi)

Then, ∫
K

φK
i · φK

j = |detBK |
∫
K̂

(φK
i ◦ FK) · (φK

j ◦ FK)

Therefore, our Finite Element is∑
j

uj

∫
Ω

∇φj · ∇φi =
∑
K

ci

∫
K

φi · φj

or
Au = b

where

A =

∫
Ω

∇φj · ∇φi and b =
∑
K

ci

∫
K

φi · φj

2.3 FEM of P1

Recall our stiffness matrix∫
K

∇φK
i · ∇φK

j = |detBK |
∫
K̂

CK∇̂φ̂i · ∇̂φ̂j

where

CK = B−1
K B−T

K =

(
cK11 cK12
cK21 cK22

)
K̂xx =

∫
K̂

∂xφ̂i∂xφ̂j , K̂yy =

∫
K̂

∂yφ̂i∂yφ̂j , K̂xy =

∫
K̂

∂xφ̂i∂yφ̂j , K̂yx =

∫
K̂

∂yφ̂i∂xφ̂j

Then, our stiffness matrix with respect to the reference triangle is∫
K

∇φK
i · ∇φK

j = |detBK |(cK11K̂xx + cK22K̂yy + cK12K̂xy + cK21K̂yx)
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Recall our P1 basis functions has the following ordering

1 2

3

φ̂1̂ = 1− x̂− ŷ, φ̂2̂ = x̂, φ̂3̂ = ŷ

We start with construct Stiffness matrix.

∇̂φ̂1̂ =

(
−1
−1

)
∇̂φ̂2̂ =

(
1
0

)
∇̂φ̂3̂ =

(
0
1

)

K̂xx =
1

2

 1 −1 0
−1 1 0
0 0 0

 K̂yy =
1

2

 1 0 −1
0 0 0
−1 0 1


K̂xy =

1

2

 1 0 −1
−1 0 −1
0 0 0

 K̂yx =
1

2

 1 −1 0
0 0 0
−1 −1 0


The part |detBK | and cKij depend on element K For the right-hand side of FEM, we can
compute the Mass matrix

MassK̂ =

∫
K̂

φ̂i · φ̂j

Then, for P1, it is

MassK̂ =
1

24

2 1 1
1 2 1
1 1 2


And we compute for each element and sum in our matrix b

2.4 FEM of P2

Recall our basis functions of P2

1 2

3

4

6

5

φ̂1̂ = (1− x̂− ŷ)(1− 2x̂− 2ŷ), φ̂2̂ = x̂(2x̂− 1), φ̂3̂ = ŷ(2ŷ − 1)
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φ̂4̂ = 4x̂ŷ, φ̂5̂ = 4x̂(1− x̂− ŷ), φ̂6̂ = 4ŷ(1− x̂− ŷ)

We take the gradient of our basis functions and construct stiffness matrix as P1

∇̂φ̂1̂ =

(
4x̂+ 4ŷ − 3
4x̂+ 4ŷ − 3

)
∇̂φ̂2̂ =

(
4x̂− 1

0

)
∇̂φ̂3̂ =

(
0

4ŷ − 1

)
∇̂φ̂4̂ =

(
4ŷ
4x̂

)
∇̂φ̂5̂ =

(
−4ŷ

4− 4x̂− 8ŷ

)
∇̂φ̂6̂ =

(
4− 8x̂− 4ŷ

−4x̂

)

K̂xx =
1

6


3 1 0 0 0 −4
1 3 0 0 0 −4
0 0 0 0 0 0
0 0 0 8 −8 0
0 0 0 −8 8 0
−4 −4 0 0 0 8

 K̂yy =
1

6


3 0 1 0 −4 0
0 0 0 0 0 0
1 0 3 0 −4 0
0 0 0 8 0 −8
−4 0 −4 0 8 0
0 0 0 −8 0 8



K̂xy =
1

6


3 0 1 0 −4 0
0 0 −1 4 0 −4
1 −1 0 0 0 0
0 4 0 4 −4 −4
−4 0 0 −4 4 4
0 −4 0 −4 4 4

 K̂yx =
1

6


3 1 0 0 0 −4
1 0 0 0 0 0
0 0 0 4 −4 0
0 0 4 4 −4 −4
0 0 −4 −4 4 4
−4 0 0 −4 4 4


For the Right-hand side of FEM, we can compute by integrate Mass matrix

MassK̂ =

∫
K̂

φ̂i · φ̂j

Then, for P2, it is

MassK̂ =
1

360


6 −1 −1 −4 0 0
−1 6 −1 0 −4 0
−1 −1 6 0 0 −4
−4 0 0 32 16 16
0 −4 0 16 32 16
0 0 −4 16 16 32


And we compute for each element and sum in our matrix b

2.5 FEM of Q3

Recall our basis functions of Q3

φ̂îĵ(x̂, ŷ) = φ̂î(x̂)φ̂ĵ(ŷ)
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where

φ̂î(x̂) =


9/2(1− x̂)(1/3− x̂)(2/3− x̂) î=1

27/2(x̂)(1− x̂)(2/3− x̂) î=2

27/2(x̂)(1− x̂)(x̂− 1/3) î=3

9/2(x̂)(x̂− 1/3)(x̂− 2/3) î=4

φ̂ĵ(ŷ) =


9/2(1− ŷ)(1/3− ŷ)(2/3− ŷ) ĵ=1

27/2(ŷ)(1− ŷ)(2/3− ŷ) ĵ=2

27/2(ŷ)(1− ŷ)(ŷ − 1/3) ĵ=3

9/2(ŷ)(ŷ − 1/3)(ŷ − 2/3) ĵ=4

The gradient of Q3 is

∇̂φ̂îĵ(x̂, ŷ) =

(
∂x̂φ̂î(x̂)φ̂ĵ(ŷ)
φ̂î(x̂)∂ŷφ̂ĵ(ŷ)

)
î,ĵ =1,2,3,4

To compute stiffness matrix∫
∇̂φ̂îĵ(x̂, ŷ) · ∇̂φ̂m̂n̂(x̂, ŷ) =

∫ (
∂x̂φ̂î(x̂)φ̂ĵ(ŷ)
φ̂î(x̂)∂ŷφ̂ĵ(ŷ)

)
·
(
∂x̂φ̂m̂(x̂)φ̂n̂(ŷ)
φ̂m̂(x̂)∂ŷφ̂n̂(ŷ)

)
=

∫
(∂x̂φ̂î(x̂)φ̂ĵ(ŷ))(∂x̂φ̂m̂(x̂)φ̂n̂(ŷ)) + (φ̂î(x̂)∂ŷφ̂ĵ(y))(φ̂m̂(x̂)∂ŷφ̂n̂(ŷ))

=

∫
∂x̂φ̂î(x̂)∂x̂φ̂m̂(x̂) +

∫
φ̂ĵ(ŷ)φ̂n̂(ŷ) +

∫
φ̂î(x̂)φ̂m̂(x̂) +

∫
∂ŷφ̂ĵ(ŷ)∂ŷφ̂n̂(ŷ)

Therefore our stiffness matrix of Q3 is 16-by16.
For the right-hand side, we can directly integrate our equation with the basis functions∫

Ω

fv ∼
∑
K

cij

∫
K

fφ̂ij

where
cij = f(xi, yj)

There will be 16-by-16 as well as our stiffness matrix for Q3.
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Chapter 3

More accuracy by averaging

By the article of J.H. Bramble and A.H. Schatz [2], Higher Order Local Accuracy by Averag-
ing in the Finite Element Method, we can define a better approximation of any given point
x in Ω by averaging uh(x) of the neighborhood of that point. We denote this approximation
by ũh.

3.1 Bramble and Schatz

In the article of Bramble and Schatz [2], they give an example of subspaces generated by the
B-splines of Schoenberg.
For t is real number, define

χ =

{
1 |t| ≤ 1/2,

0 |t| > 1/2

and for l an integer, set convolution l− 1 times. Example, for l = 2 see Figure 3.1. For l = 3
see Figure 3.2.

ψ
(l)
1 (t) = χ ∗ χ ∗ · · · ∗ χ.

Let ψ
(l)
1 be the one-dimensional smooth spline of order l defined by above equation. For

l = r − 2 , r ≥ 2 given, find k0,k1, . . . , kr−2 by

r−2∑
j=0

kj

∫
R1

ψ
(r−2)
1 (y)(y + j)2mdy =

{
1 if m = 0,

0 if m = 1, . . . , r − 2.

The constants k′j are defined as

• k′−j = k′j , j = 0, . . . , r − 2.

• k′0 = k0 and k′j = kj/2, j = 0, . . . , r − 2,

where the kj , j = 0, . . . , r − 2.
We can compute new solution by averaging as

(Kh ∗ uh)(hγ) =
∑

γ,δ∈ZN

ajγ−δd
j
δ

24



where

djδ =
∑
β∈Z

k′β

∫
R
ψr−2(δ − β − η)φj(η)dη

In the article of Bramble and Schatz [2], they already gave us the Table of k′j and l

j\r 3 4 5

0 13/12 37/30 346517/241920
1 -1/24 -23/180 -81329/322560
2 1/90 6337/161280
3 -3229/967680

Table 3.1: k′j, l = r − 2, t = r − 1

3.2 Averaging P2 in 2D

By the Table k′j of Bramble and Schatz, we can construct a coefficient area k′i,j where
k′i,j = k′ik

′
j. For P2, we set r = 3, then our k′0 = 13/12 and k′1 = k′−1 = −1/24 for

defining ψ
(1)
1 .

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

Figure 3.1: The graph of coefficients in
∑1

j=−1 k
′
jψ

(1)
1 (x− j)

In 2D, we define the area of coefficients k′i,j as

1∑
i=−1

1∑
j=−1

k′i,jψ
(1)
1 (x− i)ψ

(1)
1 (x− j)
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where k′i,j = k′ik
′
j and ψ

(1)
1 is 1 for −1

2
≤ x ≤ 1

2
and zero otherwise.

k′−1,−1 k′0,−1 k′1,−1

k′−1,0 k′0,0 k′1,0

k′−1,1 k′0,1 k′1,1

To compute the weights for averaging the solution, we have consider 4 cases,

case1

case4

case2

case3

3.2.1 Case 1

As we can see in Figure 3.3, we show that to average the point (0, 0), we must find all the
weight d(m,n).

d(0,0)

d(-4,-4)

d(4,-4)

d(-4,4)

d(4,4)
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Figure 3.3: The first case of the weights d(m,n)

We define d(m,n) as

d(m,n) =

∫ −∞

∞

∫ −∞

∞
k′ik

′
jψ(x̂− i)ψ(ŷ − j)φ̂m,n(x̂, ŷ)dx̂dŷ,

where φ̂m,n is a basis function of P̂2.
Example: to find d(0, 0), we use triangles that are connected to the point d(0, 0)

Figure 3.4: The area to find d(0, 0)

Each part of triangle can be computed by mapping φ̂m,n to basis functions φ̂i.

d(−2, 0)
d(0, 0)

d(0,−2)

d(−1, 0)

d(−1, 1)
d(0,−1)

1̂

2̂

3̂

5̂

6̂

4̂

Figure 3.5: The mapping from φ̂m,n to basis functions φ̂i

By Figure 3.4, we can see the support of φ̂0,0. We note that the sum of d(m,n) = 1.
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3.2.2 Case 2

As we can see in Figure 3.6, we can compute d(m,n) in the same method as case 1.

d(0,0)

d(-4,-4)

d(4,-4)

d(-4,4)

d(4,4)

Figure 3.6: The second case of the weights d(m,n) and show the support of φ̂0,0

3.2.3 Case 3

As we can see in Figure 3.7, we can compute d(m,n) in the same method as case 1.

d(0,0)

d(-4,-4)

d(4,-4)

d(-4,4)

d(4,4)

Figure 3.7: The third case of the weights d(m,n) and show the support of φ̂0,0

28



3.2.4 Case 4

As we can see in Figure 3.8, we can compute d(m,n) in the same method as case 1.

d(0,0)

d(-4,-4)

d(4,-4)

d(-4,4)

d(4,4)

Figure 3.8: The fourth case of the weights d(m,n) and show the support of φ̂0,0

3.3 Averaging Q3

By the Table 3.1 k′j of Bramble and Schatz [2], we can construct a coefficient graph of k′j. In
2D, we have r = 4, our k′0 = 37/30, k′1 = k′−1 = −23/180 and k′2 = k′−2 = 1/90 for defining

ψ
(2)
1 .

−3 −2 −1 0 1 2 3

0

0.5

1

Figure 3.9: The graph of coefficients in
∑2

j=−2 k
′
jψ

(2)
1 (x− j)
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To compute the weight, we recall the basis function of Q3.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Figure 3.10: The basis function of Q3

φ̂i(x) =


9/2(1− x)(1/3− x)(2/3− x) i = 1

27/2(x)(1− x)(2/3− x) i = 2

27/2(x)(1− x)(x− 1/3) i = 3

9/2(x)(x− 1/3)(x− 2/3) i = 4

We consider the computation for 1D. Because of the square element of Q3, we can find the
weight in 2D by cross-product. We define the weight as

di =

∫
R
k′iψ

(2)
1 (x̂− i)dx̂

For example, in each element by the Figure 3.11, we show that d(m,n) can be computed by
cross-product. We map the node to the basis function of Q3.

d(1,1)

d(1,4)

d(4,1)

d(4,4)

Figure 3.11: The weight of Q3
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Chapter 4

Numerical Experiments

In this section, we consider an example where the exact solution is given by

u = sin(πx)sin(πy)(x+ πy)

We note that we can average the solution uh to obtain ũh only at nodes which are not too
close to the boundary.

4.1 Numerical experiments of P1

The domain Ω = (0, 1)2 and h = 1
2L
. The Figures 4.1-4.5 are the finite element solutions

with L = 1, 2, . . . , 5 respectively and f = −∆u. By the Table 4.1, we denote N1 to be a set
of all nodes of P1 and define the maximum error as

MaxErr = max
i∈N1

|uh(vi)− u(vi)|

where uh is the FEM solution and u is the exact solution.
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Figure 4.1: The solution of P1 for L = 1. MaxErr = 0.7934.

Figure 4.2: The solution of P1 for L = 2. MaxErr = 0.3026.

Figure 4.3: The solution of P1 for L = 3. MaxErr = 0.09007
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Figure 4.4: The solution of P1 for L = 4. MaxErr = 0.02304

Figure 4.5: The solution of P1 for L = 5. MaxErr = 0.005834

For the rate of convergence, we define that

Rate =
MaxErrL−1

MaxErrL
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L\Error MaxErr Rate

1 0.7934 -
2 0.3026 2.622
3 0.09007 3.3596
4 0.02304 3.9093
5 0.005834 3.9493

Table 4.1: The error value of each L for P1

4.2 Numerical experiments of P2

For P2, the domain Ω = (0, 1)2 and h = 1
2L
. The Figures 4.6-4.10 are the finite element

solutions with L = 1, 2, . . . , 5 respectively and f = −∆u. We denote N2 to be a set of all
nodes of P2. The maximum error of P2 is given by

MaxErr = max
i∈N2

|uh(vi)− u(vi)|

Since the averaging can be computed only the nodes that are not too close to the boundary,
we denote Ñ2 to be a set of the nodes of P2 that can be averaged. By the Table 4.2, we
define

MaxAvgErr = max
i∈Ñ2

|ũh(vi)− u(vi)|

MaxErrNode = max
i∈Ñ2

|uh(vi)− u(vi)|

where ũh is the solution by averaging
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Figure 4.6: The solution of P2 for L = 1. MaxErr = 0.1225.

Figure 4.7: The solution of P2 for L = 2. MaxErr = 0.001077.
MaxAvgErr = 0.02007. MaxErrNode = 0.002958.

Figure 4.8: The solution of P2 for L = 3. MaxErr = 8.1789e-4.
MaxAvgErr = 0.002054. MaxErrNode = 8.1789e-4.

35



Figure 4.9: The solution of P2 for L = 4. MaxErr = 5.2655e-5.
MaxAvgErr = 1.3146e-4. MaxErrNode = 5.2655e-5.

Figure 4.10: The solution of P2 for L = 5. MaxErr = 3.3291e-6.
MaxAvgErr = 8.2886e-6. MaxErrNode = 3.3291e-6.

For the rate of convergence, we define that

RateAvg =
MaxAvgErrL−1

MaxAvgErrL
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RateNode =
MaxErrNodeL−1

MaxErrNodeL

L\Error MaxErr Rate MaxAvgErr RateAvg MaxErrNode RateNode

1 0.1225 - - - - -
2 0.01077 11.374 0.02007 - 0.002958 -
3 8.1789e-4 13.168 0.002054 9.771 8.1789e-4 3.6166
4 5.2655e-5 15.533 1.3146e-4 15.624 5.2655e-5 15.533
5 3.3291e-6 15.816 8.2886e-6 15.860 3.3291e-6 15.816

Table 4.2: The error value of each L for P2

4.3 Numerical experiments of Q3

For Q3, the domain Ω = (0, 1)2 and h = 1
2L
. The Figure 4.11-4.15 are the finite element

solutions with L = 1, 2, . . . , 5 respectively and f = −∆u. We denote N3 to be a set of all
nodes of Q3. The maximum error of Q3 is given by

MaxErr = max
i∈N3

|uh(vi)− u(vi)|

we denote Ñ3 to be a set of the nodes of Q3 that can be averaged. By the Table 4.3, we
define the maximum error of Ñ3 nodes

MaxAvgErr = max
i∈Ñ3

|ũh(vi)− u(vi)|

MaxErrNode = max
i∈Ñ3

|uh(vi)− u(vi)|
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Figure 4.11: The solution of Q3 for L = 1. MaxErr = 0.007107.

Figure 4.12: The solution of Q3 for L = 2. MaxErr = 5.00002522e-4.

Figure 4.13: The solution of Q3 for L = 3. MaxErr = 3.3568e-5.
MaxAvgErr = 4.5854e-5. MaxErrNode = 2.7828e-5.
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Figure 4.14: The solution of Q3 for L = 4. MaxErr = 2.1258e-6.
MaxAvgErr = 8.7115e-7. MaxErrNode = 2.1246e-6.

Figure 4.15: The solution of Q3 for L = 5. MaxErr = 1.3059e-7.
MaxAvgErr = 1.0924e-8. MaxErrNode = 1.30589e-7.

The rate of convergence is given by

RateAvg =
MaxAvgErrL−1

MaxAvgErrL
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RateNode =
MaxErrNodeL−1

MaxErrNodeL

L\Error MaxErr Rate MaxAvgErr RateAvg MaxErrNode RateNode

1 0.007107 - - - - -
2 5.000e-4 14.214 - - - -
3 3.3568e-5 14.895 4.5854e-5 - 2.7828e-5 -
4 2.1258e-6 15.791 8.7115e-7 52.636 2.1246e-6 13.098
5 1.3059e-7 16.278 1.0924e-8 79.746 1.30589e-7 16.269

Table 4.3: The error value of each L for Q3
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Chapter 5

Conclusion

In this Chapter, we conclude our result of the errors in each refinement. In P1, by the
Table 4.1, we have the rate of convergence approximate to 4. Next, we compare the rate of
convergence of P2. The rate of convergence is 16 by the Table 4.2. That is, in P2, the FEM
generates a better solution at some nodes due to super-convergence for structured mesh. In
the corollary of Bramble and Schatz states that let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω and N0 = N/2 + 1, at
points hγ ∈ Ω0 and γ ∈ Z2

sup
hγ∈Ω0γ∈Z2

∣∣∣∣∣u(hγ)−∑
α

ajγ−αd
j
α

∣∣∣∣∣ ≤ C(h2r−2 ∥u∥2r−2+N0,Ω1
)

In P2, we have r = 3 so that the rate is h4 which is the same result from our FEM. And
it does not give us a better result. Therefore, we introduce the Q3 refinement of FEM. By
the Table 4.3, the rate of convergence is approximated to 16 and the rate of convergence by
averaging is approximated to 64. As Bramble and Schatz’s theorem, we have r = 4 which
give us h6 as same as the rate of convergence that we have from the averaged Q3 so that the
averaging method shows that our test has more accuracy. Furthermore, we can expect that
for Q4 or Q5 can give us a better result by using FEM solution.
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