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Abstract

The Finite Element Method (FEM) is a scheme that can approximate the solution of bound-
ary value problems. We study the fundamentals of FEM and construct a MATLAB code
to approximate the error of the solution for each refinement and compute the rate of con-
vergence of this discretization. Then, we study the article of Bramble and Schatz [2] to
construct MATLAB code to approximate better solution by averaging the FEM’s solution.
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Chapter 1

Introduction

The Finite Element Method is a scheme that can approximate the solution of boundary
value problem described by a partial differential equation (PDE). In this paper, we focus on
polygonal R? domain. To compute the solution, we divide our domain into many subdomains
called finite element. The simplest elements to compute are triangle and square, and they
are the ones we consider here. Then we construct stiffness matrices associated to the Poisson
problem.

1.1 The Model Problem

In our model problem, we start with definition of our domain and boundaries. Then, we
introduce basis function to solve the Poisson problem.

1.1.1 Domain and Boundary

Denote the polygon domain in R? by . Two boundary conditions, Dirichlet I'p and Neu-
mann I'y.

Figure 1.1: Domain 2

e ['p is the Dirichlet boundary where the solution is given.



e ['y is the Neumann boundary where the normal derivative is given

1.1.2 Boundary Value Problem
Consider the Laplace operator, or Laplacian

Pu  0u
Au=—+ —
4T Be2 * oy?
The boundary value problem is
—Au+cu=f inQ

u=gyg onlp
Owu=g only
e 1y is an unknown function defined on the domain 2

e c is a non-negative constant value. In this paper, we set ¢ =0

e f is a given function on 2

Jgo , g1 are given on two different parts of boundary

1.1.3 Weak form of FEM

We now use the weak form of FEM. To get start, we introduce the Green’s Theorem. The

theorem states that
/(Au)v+/VU-VU = /(Onu)v
Q Q r

Our boundary contains with Dirichlet and Neumann

/Q(Au)w/ﬂw-wz/FN(anu)H/FD(anu)v

Since ¢ = 0 so that —Au = f

/QVu-Vv:/va%—/FNglv%—/FD(anu)v

Since the value on I'p is given, we set v =0 on ['p
Therefore, we have a new formula of our problem

/Vu-Vv:/fv—ir/ g1v
Q Q I'n

In this project we assume that I'y = (), that is, the boundary of €2 is all Dirichlet boundary.

/QVUJ-Vv:/va



1.2 Triangulation

As we mentioned in domain and boundary, we have to divide our domain into subdomains.
We focus on linear and quadratic function of two variables P; and Ps.

Figure 1.2: Subdomains of €2

1.2.1 Linear and Quadratic triangular

Define P, : Linear Triangular and P, : Quadratic Triangular
A linear function of two variables is

p(x,y) = a; + bz + ¢y

p e Pl = {ai—l—bim—{—ciymi,bi,q € R}
A quadratic function of two variables is

p(z,y) = a; + biw + ¢y + divy + ex® + fiy?

p € Py={a; + bx + c;y + dizy + eix” + fiy? | ai, b, i, dis e, fi € R}

1.2.2 The Reference Triangle

Given a subdomain K in €2, define
e F} is a function mapping K- K
e K is a triangle on 2

e K is a reference triangle with 0;=(0,0), #3=(1,0), and 93=(0,1)



U3

Figure 1.3: The function map to reference triangle

For any point (x.y) in K, (z,y) = Fy(#,9)
T T
= F .
<y> * <y>
) =G wn) 6)+ ()
Yy Y2—Y1 Ys— U {0 n

Define B, = (JU2 BT x1>
Y2—U Ys—

()-()o-s-0- ()=

The area of the triangle K = |detBy|/2

1.2.3 Basis function

The polynomials are defined on each triangle in the mesh, which form a set of basis functions
for the triangular element. Each basis function has a value of 1 at its node and a value of
0 at the other nodes giving it a pyramid shape over the triangle. Define v, be a piecewise
linear and continuous function on €2 so we can also define a basis function

0 i#y
pi(w:) = 05 = {1 7_é ;
1=7



Figure 1.4: The hat function
(image credit: http://brickisland.net/cs177fal2/7p=302)

It is easy to see that

wy(z) = Z wy ()i ()

ieN

where A is the index set of interior nodes, since we consider wy,(z) = 0 for = € 99.

1.3 Mesh Grid

Our domain is a square 1-by-1 to be easier to compute. We refine our domain into mesh
grid that we choose L = 1,2,3,... Here is the mesh grid for L =1

7 8 9
4 g 6
1 o2 3

Figure 1.5: The global vertices for P, for L =1



21 22 23 24 25

16>~ 17 |18« 19 |20

[ ) o [ ]
15

6 7 |8 9 |10

Figure 1.6: The global vertices for P for L =1

1.3.1 Local vertices

To order the number of vertices, we have to choose the direction clockwise or counter-
clockwise. In this report, we use counter-clockwise for P;. In P, three vertices in the middle
of each edges are ordered in opposite of vertices.

3 2 1
1 2 3

Figure 1.7: The ordering of vertices for P,

3 2 6 i

. 4 .

5 A 5
4

1 6 2 3

Figure 1.8: The ordering of vertices for P,

For example, we map vertices of triangle in global to local by

13 14 15 3 6 1
10 5

_
5 2

Figure 1.9: Example of mapping vertices

10



1.3.2 Elements

To compute each element, we order our element at the figure below.

Figure 1.10: The ordering of element for L =1

By using the ordering of vertices above, we get the ordering of vertices in each element.

H Element

<
(V)

S
9%

1 1 2 4
2 5 4 2
3 2 3 5
4 6 5 3
5 4 5 7
6 8 7 5
7 5 6 8
8 9 8 6

Table 1.1: The order of vertices for P,

H Element v; vy wvs wvg v5 g H

1 1 3 11 7 6 2
13 11 3 7 8 12
3 5 13 9 8 4
5 13 5 9 10 14
11 13 21 17 16 12
23 21 13 17 18 22
13 15 23 19 18 14
25 23 15 19 20 24

OOl J| | U = W DN

Table 1.2: The order of vertices for P
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1.3.3 Dirichlet boundary

As we mentioned above, we are focusing only zero Dirichlet boundary condition, so all the
vertices are zero at the boundary. However, we can adapt to have Neumann boundary if we
want to. Here is the ordering of Dirichlet global boundary nodes and the Tables 1.3 and 1.4
of the ordering of vertices

Figure 1.11: The ordering of Dirichlet boundaries for L = 1

H Dirichlet v, vy H
1 1

QO | O T = W D
= | 00| OO WD
= = J] 00| OO W[ N

Table 1.3: The ordering of vertices for P,

H Dirichlet vy vy w3 H

1 1 2 3
2 3 4 5
3 5 10 15
4 15 20 25
) 25 24 23
6 23 22 21
7 21 16 11
8 11 6 1

Table 1.4: The ordering of vertices for P,

12



1.4 O

We introduce new element which is easy to compute for square domain. It is a square
element. As we define our mesh grid, coordinate, element, and Dirichlet boundary above.
We do the same thing in our (J5. Here is the global ordering of vertices for L =1

43 44 45 46 4T 48 49
36 137 138 |39 140 141 |42
® - - - ---@-------4---9

29 130 131 (32 133 134 [35
22 123 124 |25 126 127 |28
15 116 '17 |18 '19 '20 |21
- --@--—-9----0----¢6---0---9

.,51,;9,,,;,19,,.,,11,,412,;1}’1,‘,14
1 2 3 |4 5 6 |7

Figure 1.12: The ordering of vertices for ()3

1.4.1 Loval vertices

We also define the order of each element in the same way. Here is the example of first element
for L=1

5 10 11 |12
¢ -0 ---9o----9
05—)——#‘6:——;—7———08

1 12 i?) 4

Figure 1.13: The ordering of vertices for )3

1.4.2 Element

Now our element is a square with four points on boundary of each element.

13



Figure 1.14: The ordering of element for L = 1

H Element v; vy w3 w4 U5 vg Uy Vg Vg Vg V11 Uia Uiz V4 Vis  Ulg H

1 12 3 4 8 9 10 11 15 16 17 18 22 23 24 25
2 4 5 6 7 11 12 13 14 18 19 20 21 25 26 27 28
3 22 23 24 25 29 30 31 32 36 37 38 39 43 44 45 46
4 25 26 27 28 32 33 34 35 39 40 41 42 46 47 48 49

Table 1.5: The ordering of vertices for Q3

1.4.3 Dirichlet boundary

For the Dirichlet boundary, we also order in counter-clockwise.

6 )

Figure 1.15: The ordering of Dirichlet boundaries for L = 1 for Q3

14



H Element v, vy w3 w4 H

1 1 2 3 4
5 6 7
7 14 21 28
28 35 42 49
49 48 47 46
46 45 44 43
43 36 29 22
22 15 8 1

O || T = WD

Table 1.6: The ordering of vertices for (3

15



Chapter 2

Finite Element Method

In this section, we decide to set all the boundary to be zero Dirichlet. Therefore, we get:
Find u € V;(§2) such that

/QVU'VUZ/QfU Yo € Vi, (Q),

where V},(Q) is the space of piecewise linear and continuous functions which are vanish on
0f). We study this equation in two parts, left-hand side and right-hand side.

2.1 Left-hand side

We denote the i, j position of the stiffness matrix by

/ Vo, - Vo,
0

Recall our solution w is of the form

u = Zujapj

JEN

/Vu-Vgoi:Zuj/Vgoj-Vgoi
Q Q

JEN

then substitute Vu

We compute element K in €2

/ chZ.K . V(pf = |det B| / (V(pZK o F) - (VSDJK o Fi)
K K

Then, we use a change of variable to obtain

~

/ Vil - Vil = |det By / (BIVE) - (BiT¥ o)
K K

16



Therefore, the entries of the stiffness matrix is given by

/ V(pZK . VQOJK = ’detBK‘/: CK@QQ . @ﬁj
K K

where

. - KK
_ np-1p-T _ 11 C12
CK - BK BK T\ K K

21 Ca2

2.1.1 Hat functions of P;
The basis function on K is of the form:
@:(2,79) = ayr + biT + 1y

Each ¢; has three unknown coefficients a;, b;, ¢;. For instance, for ¢; we want ¢;(0,0) = 1,
1(1,0) =0, and ¢;(0,1) = 0. So, this implies that

a +biZy + ey =1

ap + blffg + clgjg =0

ay + bli’g + Clgg =0

so we can write it in matrix form as

1 i“i :&i aj 1
1 @5 95| [0 ] =10
1 ig g}g C1 0

For all the three basis function in triangle, we get the equation of the form

1 Zi’i :&i a; ag das 1 00
1 & 95| [ 01 b2 bs]=[0 10
1 23 ¥ c1 Cy C3 0 01

Solve for coefficient matrix, we get each ¢; in the form

pp=1-2—-y
Py =T
03 =19

17



2.1.2 Hat functions of P

The basis function on K is of the form:

~

&(2,9) = a1 + 012 + 1y + dizy + e1d? + f14?

Each ¢; has three unknown coefficients a;, b;, ¢;. For instance, for ¢; we want ¢;(0,0) = 1,
¢1(1,0) = 0, $1(0,1) = 0, p;3(1/2,1/2) = 0, $3(0,1/2) = 0, and ¢;(1/2,0) = 0. So, this
implies that

ar + bixy + ayy + diriyy + elj:% + fl@f =1

@+ bids + 1y + didsgs + @2 + f152 =

a1+ bidy + 1y + didghs + ed? + ik =

a1+ bidy + ey + didghy + ed? + [ =

a1+ bidy + s + didsfs + il + i =

ar + bty + 1Yy + diZgys + 6@% + fl?)é =0

So we can write it in matrix form as

L2y g a0 35 3\ [a 1
1 2y 92 20 if?g Q; b1 0
1 @3 g3 @393 @3 U5 | [ea | _ |0
L &y §a Zafn 35 U3 di| |0
L @5 g5 @595 32 92| | e 0
L 26 96 606 7 9;) \N 0

For all the six basis function in triangle, we get the equation of the form

1 ‘%i @i ‘%igi j’% Q% a; ag a3 a4 Qa5 Gag 1 000 00O
1 Zo 9 T2y @ 3 ?33 by by bs by b5 bg 01 00O0DO0
1 @3 3 @393 @5 3| |1 2 3 e 5 | _ |00 100 0
1 &4 G &4y 27 G| |di d2 ds dy ds dg| O 0 0 1 00
L @5 g5 595 fg Qg €1 €2 €3 €4 €5 € 000010
L %6 U T6Ys f% ?)g foofo fs fo s Je 0000O0T1

Solve for coefficient matrix, we get each ¢; in the form



2.1.3 Hat function of ()3

For )3, it is different from P; and P,. We now have an element that is a square which in
each direction x and y is a polynomial degree 3 in x and y respectively. We first focus in 1D.

@;(2) = a1 + i@ + 13 + dy 23

Each ¢; has four unknown coefficients a;, b;, ¢;, d; For instance, for ¢: we want ¢;(0) = 1,
¢1(1/3) =0, ¢3(2/3) =0, and $;1(1) = 0. So, this implies that

a1+ bidg + adf + di2d =1

a1 + bidy + 13 + i@l =0

ar + b1 + e1d3 + dyil = 0

a1 + b1z + 125 + di23 = 0

so we can write it in matrix form as

AW CIAN A
SRR o I I I I
bodg oy g lal |9
L@y @y @ dq 0

For all the four basis function in x-axis, we get the equation of the form

1 if ii’ ar Ay as ay 10 00
1 2 i:g 332 by by bg by O 1 0 O
1 4 :i“g :%g cp ¢ ¢35 el |00 10
1 x4 :%221 ftz di doy ds da 0 0 01

we get each ¢; in the form

pi=9/2(1 = 2)(1/3 - 2)(2/3 - 1)
Py =27/2(2)(1 - )(2/3 — &)
Py =27/2(2)(1 — ) (2 - 1/3)
p1=9/2(2)(& —1/3)(2 — 2/3)

Solve for coefficient matrix,

Also for y-axis,
¢i=9/2(1 = 9)(1/3 = 9)(2/3 - 9)

Pa = 27/2(9)(1 = 9)(2/3 = 9)
Py =27/2(9)(1 = 9)(§ - 1/3)
P11 =9/2(0)(H —1/3)(9 — 2/3)

For 2D problem, there are 16 nodes in each elements which are ¢3;(2,9) = $;(2);(9) for
=123,

19



2.2 Right-hand side

Our computation of the right-hand side is

/ fo

Q

We approximate this integration by
[1om5e [ o

ci = f(x)

where

Then,
[tk = ldetBal [ (ol 0 Fe) - (¢ o Fi)
K K

Therefore, our Finite Element is

Zuj/v%“v%zzci/ Pi Py
Z Q % K

or

Au=1>

A:/Vgpj-Vgpi and sz@/%"%’
Q K K

2.3 FEM of P,

where

Recall our stiffness matrix

/ Vol Vol = |det By| / CxVi -V,
K K

where
1-T s
_ p-1p-T _ 11 €12
Ck = BK BK T K oK
21 C22

[A(xx:/Aax@zam@] s Kyy:/Aabeiay@j ; [A(:ch:/:ax(ﬁlaygaj ; kym:/aygﬁzam@]
K K K K

Then, our stiffness matrix with respect to the reference triangle is

/ Vi . V(pf = \detBﬂ(cﬁK’m + cﬁgf{yy + c{éKry + cg(lkyx)
K

20



Recall our P, basis functions has the following ordering

3

A

@izl_iﬂ_g? @Q:xv 953:3)

We start with construct Stiffness matrix.

I —1 AL 1 P 0
s-() oan() sa-()

(1 10 o1 0 -1
Kp=5|-1 1 0 Ky=510 0 0
0 0 0 10 1
YA (1 10
Koy=5|-10 -1 Ke=5[0 0 0
0 0 0 -1 -1 0

The part |detBg| and /5 depend on element K For the right-hand side of FEM, we can
compute the Mass matrix

Mass® :/ i+ Pj
K
Then, for Py, it is

2 1 1

: 1
MassK:ﬂ 1 21
1 1 2

And we compute for each element and sum in our matrix b

2.4 FEM of P,

Recall our basis functions of P



¢3 =42y, Pz =42(1-12—7),

@y = 41— & —9)

We take the gradient of our basis functions and construct stiffness matrix as P;

47 + 49— 3
43 + 49— 3

3 1 0 0 0 -4
1 3 0 0 0 —4
. 11lo 0 0 0 0 O . 1
Km_é 0O 0 0 8 -8 0 Ky 6
0 0 0 -8 8 0
-4 -4 0 0 0 8
3 0 1 0 —4 0
0O 0 —-1 4 0 -4
. 111 -1 0 0 0 0 . 1
Kmy‘é 0 4 0 4 -4 —4 Kyw:é
-4 0 0 —-4 4 4
0 —4 0 -4 4 4

. 43 —1 o
VSOQ:( 0 ) V<P3=<

483 — 43
)
01 0 -4
00 0 0
0 3 0 -4
0 0 8 0
0 -4 0 8
0 0 -8 0
1 0 0 0
00 0 0
0 0 4 -4
0 4 4 —4
0 -4 —4 4
0 0 -4 4

For the Right-hand side of FEM, we can compute by integrate Mass matrix

Masskz/gbi-gbj
K

Then, for Py, it is
6 -1 —1 —4
-1 6 -1 0
1 -1 -1 6 0
-4 0 0 32
0 —4 0 16
0 0 —4 16

Mass®

360

And we compute for each element and sum in our matrix b

Recall our basis functions of Q)3

~ A

@33(2,9) = &;(2)9;(9)

22
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16
16
32

0
0
—4
4
4



where

(9/2(1 — 2)(1/3 — 2)(2/3 — &)
27/2(2)(1 —2)(2/3 — )
27/2(2)(1 —2)(& - 1/3)
(9/2(2) (2 — 1/3)(2 — 2/3)

(9/2(1=9)(1/3 = §)(2/3 - )
27/2(9)(1 = 9)(2/3 = 9)
27/2(9)(1 = 9)(§ = 1/3)
(9/2(9)(5 — 1/3)(5 — 2/3)

The gradient of Q3 is

To compute stiffness matrix
5,9) - Vdmald, § 3@@(@@(?))) (%@m(i’)@ﬁ(ﬂ
Vi (2,9) - Voma(Z, :/( N s R A A
[ vute - Tomie (2)9,2,(0) )00

_ / (0:9;(2)2;(9)) (05 Pm (&) P (

S
_l’_
AS)
=
QQJ
RSy
<
s
AS)
3
=
QQJ
S
3
—~
S

Therefore our stiffness matrix of 3 is 16-by16.
For the right-hand side, we can directly integrate our equation with the basis functions

/QfUN;%’/Kf@ij

cij = f(i,y5)

There will be 16-by-16 as well as our stiffness matrix for Qs.

where

23



Chapter 3

More accuracy by averaging

By the article of J.H. Bramble and A.H. Schatz [2], Higher Order Local Accuracy by Averag-
ing in the Finite Element Method, we can define a better approximation of any given point
x in Q by averaging uy(z) of the neighborhood of that point. We denote this approximation
by ﬂh.

3.1 Bramble and Schatz

In the article of Bramble and Schatz [2], they give an example of subspaces generated by the
B-splines of Schoenberg.
For t is real number, define

1t =12,
Y70 1> 172

and for [ an integer, set convolution [ — 1 times. Example, for [ = 2 see Figure 3.1. For [ =3
see Figure 3.2.

P () = xxxxex
Let w%l) be the one-dimensional smooth spline of order [ defined by above equation. For
l=r—2,r>2given, find ko,k{, ..., k._o by

r— : if =0,
Z’f 1/J1 2( )(yﬂ)mdy:{l S

0 if m=1,...,r—2.
The constants k:; are defined as

o k/_j:k';-,jzo,...,T—Q.

L] ]{,’6:]{0 andk}zk‘j/g,j:O,...,r—Z

where the k; , j =0,...,r — 2.
We can compute new solution by averaging as

(Kp * up)(hy) = Z a 5d]

~v,0eZN

24



where

YK, / W6 — B — s (n)dn

BeZ

In the article of Bramble and Schatz [2], they already gave us the Table of K’ and [

Hj\r 3 4 5 H
0 13/12 37/30 346517/241920
1 -1/24 -23/180 -81329/322560
2 1/90 6337/161280
3 -3229/967680

Table 3.1: ki, I =r—2,t=r—1

3.2 Averaging P, in 2D

By the Table £} of Bramble and Schatz, we can construct a coefficient area k;; where
ki, = Kkikl. For Py, we set r = 3, then our k, = 13/12 and k] = k', = —1/24 for

defining w%l).

0.8

0.6
0.4+ :
0.2 :

|
-15 -1 -05 0 05 1 1.5

Figure 3.1: The graph of coefficients in 2;271 k;wg)(x —7)
In 2D, we define the area of coefficients k; ; as

1 1

SN K@ —ow (@ - )

i=—1j=—-1

25



where k; ; = kK and 1/19) is 1 for —3 < 2 < % and zero otherwise.

2
/ / /
k—1,1 k0,1 1,1
/ / /
kq,o 0,0 1,0
/ / /
k71,71 ko,—l 1,-1

To compute the weights for averaging the solution, we have consider 4 cases,

cased
case3

casel case2

3.2.1 Casel

As we can see in Figure 3.3, we show that to average the point (0,0), we must find all the
weight d(m,n).

d(4,-4) d(4,4)

26



Figure 3.3: The first case of the weights d(m,n)
We define d(m,n) as
dmm) = [ [ KK = 000 - mals D),

where ¢, ,, is a basis function of pg.
Example: to find d(0,0), we use triangles that are connected to the point d(0,0)

Figure 3.4: The area to find d(0,0)

Each part of triangle can be computed by mapping ¢,, ,, to basis functions ¢;.

d(—Q,O) d(_170) d<0’0) 3 6 i

5

P d(0, —1}——— :
d(0,—2)

Figure 3.5: The mapping from ¢, , to basis functions ¢;

By Figure 3.4, we can see the support of ¢go. We note that the sum of d(m,n) = 1.

27



3.2.2 Case 2
As we can see in Figure 3.6, we can compute d(m,n) in the same method as case 1.

d(4,-4) d(4,4)

Y PY
[ 4 L ]
N N \ N
N N N N
N N N N
\ \ \ N
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
\\ N N N
N N \
N \ N
N N N
N N N
N N N
N N N
N
\ N N
N \\ \
N N
N N d N
N N \
N N o N
N
N N N
N N N
\ N N
\ N N
N N N
N
N
N N N
N N \
\ N N
N N N
N \ \
N N N
R N < N
N N N
N \ N N
\ N
\ N
\\ N N N
N N N
N N
N N N A
\ N
N N N N
N N N
N S, N N N -4,
N N h N
Py ®
[ 4 L ]

Figure 3.6: The second case of the weights d(m,n) and show the support of g

3.2.3 Case 3
As we can see in Figure 3.7, we can compute d(m,n) in the same method as case 1.

d(4,-4) d(4,4)

q N N N [ ]
N N \ N
N N N N
N N N N
N \ \ N
N N N N
N N N N
< < <
N N N N
N N N N
N N N N
N N N N
N N N N
\
N N \ \
N N N N
N N N N
N N N N
N N N N
N \ N N
\ N
N \
N N
. d (8, :
N \
\ N
N [ ]
N N
N N
\ N
\ N
N N
S
N N
\\ N \\ N
N \ N N
N N N
N N \\ N
N N N
N N
N \ N N
N N N
N N \\ N
N \ N N
N N N
\ N N
N AN N N
N N
N \\ N
d(+4,-4 AN . . d(-4,4
) N )
N N AN N
[ . [ ]

Figure 3.7: The third case of the weights d(m,n) and show the support of ¢g
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3.2.4 Case 4

As we can see in Figure 3.8, we can compute d(m,n) in the same method as case 1.

d(4,-4) d(4,4)

d('47'4\)\\ \\\ \\\ \\\ d<'474)

N N ®

Figure 3.8: The fourth case of the weights d(m,n) and show the support of ¢g

3.3 Averaging ()3

By the Table 3.1 £ of Bramble and Schatz [2], we can construct a coefficient graph of K. In
2D, we have r = 4, our kj = 37/30, k| = k', = —23/180 and k), = k', = 1/90 for defining

oy,

-3 -2 -1 0 1 2 3
Figure 3.9: The graph of coefficients in 25272 k;wf) (x —j)
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To compute the weight, we recall the basis function of @)3.

LA

0 02 04 06 038 1

Figure 3.10: The basis function of Q3
9/21 —z)(1/3 —x)(2/3—2) i=1
) 27/2(x)(1 —2)(2/3 — ) i=2
20 =Y 97 90001 — ) — 1/3) =3
9/2(x)(x — 1/3)(x — 2/3) i=4
We consider the computation for 1D. Because of the square element of )3, we can find the
weight in 2D by cross-product. We define the weight as

di= [ K - i
R

For example, in each element by the Figure 3.11, we show that d(m,n) can be computed by
cross-product. We map the node to the basis function of ()s.

d(1,4) d(44)

¢--—-—--- - - ----"-"-"-"@6--------9

d(1,1) d(4,1)

Figure 3.11: The weight of Q3
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Chapter 4

Numerical Experiments

In this section, we consider an example where the exact solution is given by
u = sin(mwx)sin(my)(x + my)

We note that we can average the solution u; to obtain u;, only at nodes which are not too
close to the boundary.

4.1 Numerical experiments of P;

The domain Q = (0,1)? and h = 5. The Figures 4.1-4.5 are the finite element solutions
with L =1,2,...,5 respectively and f = —Awu. By the Table 4.1, we denote N; to be a set
of all nodes of P, and define the maximum error as

MazxErr = max |up(v;) — u(v;)|
i€EN,

where u;, is the FEM solution and u is the exact solution.
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Figure 4.1: The solution of P, for L = 1. MaxFErr = 0.7934.

Figure 4.2: The solution of P, for L = 2. MaxFrr = 0.3026.

Figure 4.3: The solution of P, for L = 3. MaxErr = 0.09007

32



Figure 4.4: The solution of P, for L = 4. MaxErr = 0.02304

25 .
2
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Figure 4.5: The solution of P; for L = 5. MaxErr = 0.005834

For the rate of convergence, we define that

MaxErr;_4

Rate =
are MaxErry,

33



H L\Error MazErr Rate H

0.7934 -
0.3026 2.622
0.09007  3.3596
0.02304  3.9093
0.005834  3.9493

QY =~ W N~

Table 4.1: The error value of each L for P;

4.2 Numerical experiments of P,

For P,, the domain Q = (0,1)? and h = 5. The Figures 4.6-4.10 are the finite element
solutions with L = 1,2, ...,5 respectively and f = —Au. We denote N, to be a set of all
nodes of P,. The maximum error of P, is given by

MazxErr = max |up(v;) — u(v;)|
1€ No

Since the averaging can be computed only the nodes that are not too close to the boundary,
we denote Ny to be a set of the nodes of P, that can be averaged. By the Table 4.2, we
define

MazxAvgErr = max |up(v;) — u(v;)|
1€ N2

MaxErrNode = max |up(v;) — u(v;)|
1€ENo

where uy, is the solution by averaging

PR
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Figure 4.6: The solution of P, for L = 1. MaxFrr = 0.1225.

Figure 4.7: The solution of P, for L = 2. MaxErr = 0.001077.
MaxAvgErr = 0.02007. MaxErrNode = 0.002958.

Figure 4.8: The solution of P, for L = 3. MaxFrr = 8.1789e-4.
MaxAvgErr = 0.002054. MaxErrNode = 8.1789%-4.
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Figure 4.9: The solution of P, for L = 4. MaxFErr = 5.2655e-5.
MaxAvgErr = 1.3146e-4. MaxErrNode = 5.2655e-5.

Figure 4.10: The solution of P, for L = 5. MaxErr = 3.3291e-6.
MaxAvgErr = 8.2886e-6. MaxErrNode = 3.3291e-6.
For the rate of convergence, we define that

MaxAvgErry, 4
MazxAvgErry,

RateAvg =
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MaxErrNoder,_4

RateNode =
atefyode MaxErrNodey,
H L\Error MazxErr Rate MaxAvgErr RateAvg MazErrNode RateNode H
1 0.1225 - - - - -
2 0.01077  11.374 0.02007 - 0.002958 -
3 8.1789e-4 13.168 0.002054 9.771 8.1789%e-4 3.6166
4 5.2655e-5 15.533 1.3146e-4 15.624 5.2655e-H 15.533
5 3.3291e-6  15.816 8.2886e-6 15.860 3.3291e-6 15.816

Table 4.2: The error value of each L for P,

4.3 Numerical experiments of ()3

For Q3, the domain Q = (0,1)? and h = 2% The Figure 4.11-4.15 are the finite element
solutions with L = 1,2,...,5 respectively and f = —Au. We denote N3 to be a set of all
nodes of ()3. The maximum error of ()3 is given by

MazxErr = max |up(v;) — u(v;)|
i€N3

we denote N3 to be a set of the nodes of @3 that can be averaged. By the Table 4.3, we
define the maximum error of N3 nodes

MaxAvgErr = max |uy(v;) — u(v;)|
1EN3

MaxErrNode = max |up(v;) — u(v;)]
i€EN3

PR
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Figure 4.11: The solution of Q)5 for L = 1. MaxFErr = 0.007107.

Figure 4.13: The solution of Q)5 for L = 3. MaxErr = 3.3568e-5.
MaxAvgErr = 4.5854e-5. MaxErrNode = 2.7828e-5.
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Figure 4.14: The solution of Q3 for L = 4. MaxErr = 2.1258e-6.
MaxAvgErr = 8.7115e-7. MaxErrNode = 2.1246e-6.
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Figure 4.15: The solution of Q3 for L = 5. MaxErr = 1.3059e-7.
MaxAvgErr = 1.0924e-8. MaxErrNode = 1.30589%-7.

The rate of convergence is given by
MaxAvgErry, 4
MazxAvgErry,

RateAvg =
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RateNode =

MaxErrNoder,_4

MaxErrNodey,
H L\Error MaxErr Rate MaxAvgErr RateAvg MaxErrNode RateNode H
1 0.007107 - - - - -
2 5.000e-4  14.214 - - - -
3 3.3568e-5  14.895 4.5854e-5 - 2.7828e-5 -
4 2.1258e-6 15.791 8.7115e-7 52.636 2.1246e-6 13.098
5 1.3059e-7  16.278 1.0924e-8 79.746 1.30589e-7 16.269

Table 4.3: The error value of each L for ()3
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Chapter 5

Conclusion

In this Chapter, we conclude our result of the errors in each refinement. In P;, by the
Table 4.1, we have the rate of convergence approximate to 4. Next, we compare the rate of
convergence of P,. The rate of convergence is 16 by the Table 4.2. That is, in P,, the FEM
generates a better solution at some nodes due to super-convergence for structured mesh. In
the corollary of Bramble and Schatz states that let Qg CC ©Q; CC Q2 and Ny = N/2 + 1, at
points hy € Qp and y € Z2

sup

hyEQoyE 22 <C(h [l gyt np.0,)
vEQ0Y

u(h’Y) - Z ajwl—adé

In P,, we have r = 3 so that the rate is h* which is the same result from our FEM. And
it does not give us a better result. Therefore, we introduce the ()3 refinement of FEM. By
the Table 4.3, the rate of convergence is approximated to 16 and the rate of convergence by
averaging is approximated to 64. As Bramble and Schatz’s theorem, we have r = 4 which
give us h% as same as the rate of convergence that we have from the averaged Q3 so that the
averaging method shows that our test has more accuracy. Furthermore, we can expect that
for Q4 or Q5 can give us a better result by using FEM solution.
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