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Abstract

Kite energy systems are an emerging renewable energy technology. Unlike conventional tur-
bines, kite energy systems extract wind power using tethered kites which can move freely in the
wind or underwater in an ocean current. Due to the mobility, kite power systems can harvest power
from regions with higher and steadier power density by moving in high-speed cross flow motion.
An airborne kite energy system harnesses wind power at an altitude higher than the conventional

wind turbines, while an undersea kite energy system extracts power close to the ocean surface.

In this dissertation, the physical limitation, mathematical modeling, and control system design
of the kite energy systems are studied. First, three major physical effects that are acting on the kite
energy systems are investigated, including potential force, steady aero-/hydro-dynamic force and
added mass effects. Furthermore, the dissipativity of the steady aero-/hydro-dynamic forces with
respect to the apparent velocity is established. Based on this analysis, the power generation limit
of the kite energy systems is studied. A power limit formulation is given which generalize the

two-dimensional result to three-dimensional case.

The different physical phenomenon is modeled in different coordinate systems, the differ-
ence of the density, viscosity between air and water are significant, and the kite energy system can
operate in two distinct modes. To combine different physical effects into a single simulation frame-
work, the equivalences of the kite model in different coordinate systems are established through
kinematic analysis. Using these equivalent relations, a unified simulation model for airborne and

undersea kite energy systems are derived.

The control system design of kite energy systems is also investigated. The resulting equations

of motion of kite energy systems are highly nonlinear. Therefore, Lyapunov methods are used to



analyze the system behavior. Three different techniques are reviewed, including Lyapunov analysis
for autonomous and non-autonomous systems, the ultimate boundedness and input-to-state stabil-
ity and passivity methods. For the fixed tether length kite energy systems, the ultimate boundedness
of the kite translation is established through the dissipativity of the steady aero-/hydro-dynamic
force. For the variable tether length kite energy system, the input-to-state analysis is used to de-
sign the tether tension that guaranteed the boundedness of the kite translation. In both cases, the
Lyapunov based methods are used to design kite rotational control systems which result in PD type
control signals. Although this control scheme generates consecutive power cycles for kite energy
systems. It is shown that the kite aero-/hydro-dynamical performance is unstable in the simulation

which could result in unsteady power generation.

To provide a steadier performance in kite translation and power output, the relative dynamics
of the kite translation is first proposed. In this model, the kite apparent speed and attitudes, the
angle of attack and side-slip angle, are used to describe the kite translation. A nonlinear control
scheme is designed to regulate the angle of attack and side-slip angle using back-stepping methods
by using the kite angular velocity and control inputs. However, due to the magnitude limit of
the angular velocity, the residual error of the apparent attitude tracking remain large for the large

desired angle of attack and side-slip angle.

To achieve a better power harvesting and aero-/hydro-dynamics performance, the geometric
properties of kite angle of attack and side-slip angle are studied. A geometric attitudes trajectory
is constructed to track given apparent attitudes. A rotational control system is designed based on
the back-stepping and sliding mode methods for the desired geometric attitude, and the high gain
observer is applied to acquire the information needed for the rotational control signal. Through the
geometric apparent attitudes tracking control algorithm, the angle of attack and side-slip angle act
as direct control inputs to the kite translational motion. The kite translational dynamics under the
geometric apparent attitude tracking is studied. These dynamics give the possibility of controlling

the kite translational motion only through the rotational control scheme.
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Chapter 1

Introduction

Modern industrial society is driven by a large amount of energy. It has been estimated that
the total consumption of global energy is equivalent to 9301 million tonnes of oil in 2013, which
is equal to 12.3 Terawatts. The combustion of fossil fuel provides over 86% of the total energy
consumption. Despite its great economical advantage and high energy density, the carbon emis-
sion during the burning of fossil fuel has a significant social and environmental impact. To achieve
sustainable development of modern society, various alternative energy technologies have been de-
veloped including nuclear, hydrokinetic, biomass, solar, wind and geothermal energy. Among all
these alternative options, wind and hydrokinetic energies are considered in this thesis. It is also im-
portant to notice that the solar energy sources are distributed on earth with great disparities which
greatly limit the commercialization of such renewable power plants. Similar to the solar power
systems, the conventional wind power plants are also limited by the low power density and global
disparity of the energy sources. To access to the high wind power density, huge towers are required
in a conventional wind power systems. Currently, the largest wind turbine is the Enercon E-126,
with the hub height of 135 meters and the rotor diameter of 127 meters. The uncertainty of the wind
power system, such as the variation of the wind velocity in time, also cause difficulties in utilizing
the wind power. However, at higher altitudes than the conventional wind turbines, there is wind

with higher velocity and consistency. Figure 1.1 shows the wind energy density, P = %pm-TW‘g, at

! Certain Materials are included under the fair use exemption of the U.S. Copy law and have been prepared accord-
ing to the fair use guidelines and are restricted from the further use



Wind Energy Density Map

| I I I B R

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 1.1: Wind Energy Density Comparison: 120m Altitudes and 600m Altitudes, From [5], Copyright
Joby Energy'

120m altitude and 600m altitude, where p,;, is the air density and W is the wind speed. To harvest
the wind energy that exists at higher altitudes than the airborne wind energy systems have been

considered.

1.1 Kite Energy Technology

In this dissertation, an emerging renewable energy technology, kite energy, is studied. The kite
energy technologies are power generation technology using airborne or submersible kites, [6, 7].

There are three major advantages of using kite energy systems in power generation:

e The mobility of the kite energy systems allow for power generation at altitudes or depths

with higher wind and current velocities,

e The mobility of the kite allow for high-speed crosswind or current motion which increase

the energy density in power generation,

e Without the towering structures, the kite energy systems may achieve higher power to mass

ratio and need less material investment than conventional turbines

There are three common elements in every kite energy systems: the airborne or undersea

structures (also referred as kites), the tether and power generation device. Typical wind turbine,
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Figure 1.2: Wind Turbine System, Airborne Kite Energy System and Undersea Kite Energy System, From
[1,2], Copyright Makani, Minesto

airborne kite energy system and undersea kite energy system are shown in Figure 1.2. If the power
generation device is an electric generator, the airborne kite energy system can be placed into two
categories, the GroundGen and FlyGen system as shown in Figure 1.3. Among the airborne kite
energy systems, the GroundGen systems (also refer to lift mode) are kite energy systems with
the power generation unit on the ground, [3, 8, 9]. Either flexible kite or rigid kite can be used
to provide the lifting force that needs for power generation as shown in Figure 1.4. The tether
is used to connect the kite to a ground-based generator. The mechanical power of the flying kite
is then transformed to electrical power by the ground-based generator. On the other hand, the
similar system configuration is also applicable to the undersea kite energy system. In this work,
the undersea kite connected to a floating platform is considered which is anchored to the seabed.
A detailed illustration of the undersea kite configuration is shown in Figure 1.5.

Kite Kite
w w

Tension

T

Electricity

Ground Generator

Figure 1.3: GroundGen and FlyGen Airborne Kite Energy Systems

There are two motion phases during the kite motion in a GroundGen system, the generation

and retraction phase. In generation phase, the kite is controlled to produce high lift and power is



Figure 1.4: Rigid and Flexible GroundGen Airborne Kite Energy System, From [3,4], Copyright Ampyx,
Delft University of Technology
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Figure 1.5: System configuration of undersea kite energy system

generated as the kite reels out the tether. In retraction phase, the kite is controlled to produce low
lift force, and part of the generated power is used to reel in the tether to an initial position for next
power generation phase. The illustration of power and traction phase of a GroundGen system is
shown in Figure 1.6. The goal of a GroundGen airborne kite energy system is to maximize the net
power output which is the difference between the power output of the power generation phase and

power consumption in retraction phase.

On the other hand, the FlyGen airborne kite energy system is a kite system with onboard
turbine generator for power generation as shown in [1] where the turbine is also used as propeller
during the takeoff and landing operation. Since the airborne kite needs to provide the high lift
force as well as support the turbines, these systems use rigid kite(or glider). The constant length
tether in FlyGen airborne kite energy system is used to constrain the kite motion and conduct the
generated power to the ground. Other than the electricity generation, there is airborne kite energy

system that use the tether tension to drive the marine or ground vehicles. The towing kite system

10
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Figure 1.6: Airborne Kite Energy System: Power and Recover Phases,from Ref [1,3], Copyright Ampyx and
Makani

in such vehicle propulsion case is almost identical to the GroundGen airborne kite system. The
airborne propulsion system is especially promising in the naval transport application where the
cost crucially depends on the fuel price. Moreover, the lifting force generated by the airborne kite

can also be used in the pumping system.

The balloon-type system configuration is also developed for power generation. In such system,
the wind turbine is supported by the buoyancy force of the balloon, and the high power output
is achieved by flying at high altitudes. The tether is used to constrain the balloon motion and
conduct the generated power to the ground. Theoretically, such system can stay at the high altitude

indefinitely without power consumption.

However, these systems required a high volume to keep floating and significant tether in the
case of strong wind. The FlyGen type of kite energy systems can also be used in the undersea
circumstance, which is also referred as the Tethered Undersea Kite System (TUSK). Similar to
the FlyGen airborne systems, the undersea turbine generates power in cross current motion, [2].
Undersea kites can be connected either to the seabed or floating platforms. Due to greater density
and viscosity of the water compared to air, it is more efficient to produce power using turbine than

using tether tension in water.

In summary, there are three major concepts in the kite energy system: the flexible kite system,

the rigid glider system, and balloon systems. A low weight flexible kite system generates either

11



electrical or mechanical power in a moderate speed motion through tether tension. A high weight
rigid kite system can generate power in a high-speed cross wind motion in the air or a cross current
motion undersea. Either turbines or tether tension can be used to generate power in the airborne
case. However, the turbine is often used to produce power undersea. The major characteristics of

these three system configurations are summarized in Table 1.1

Flexible Kite Rigid Kite Balloon
Weight Low High Moderate
Speed Moderate High Static
Power Generation Tension Tension/Turbine Turbine
Power Output Mechanical/Electrical Electrical Electrical
Application Airborne Airborne/Undersea | Airborne

Table 1.1: Comparison of Different System Configurations

1.2 Literature Reviews

Depending on the power generation configurations, there is two major control mechanisms in
the kite and balloon energy systems: tether control mechanism and control surfaces mechanism.
For a flexible kite energy system, only the tether control mechanism is applicable where the in-
put of the system is typically the tether length difference. On the other hand, both tether control
mechanism and control surface mechanism can be used in the rigid kite system. In a control sur-
faces mechanism, the input to the system is the deflection of the control surfaces. The control
system configurations have a significant influence on the kite dynamics. If the kite systems are
controlled by the tether mechanism, the kite translation and rotation can not be treated as indepen-
dent motions. In this case, the simplified kite dynamics are usually studied. If the control surfaces
mechanisms are used, the translational and rotational motion can be treated as independent mo-
tions. The tether tension and control moment acting on the kite can be treated as independent

inputs.

In [10], two flexible kite energy system configurations, the yo-yo configuration and the carousel
configuration, are investigated by numerical simulation. The control systems are designed using
nonlinear model predictive method and set membership function approximation. In [11], the eval-

uation of control system performance, the optimization power generating cycles are studied using

12



simplified power equations. The proposed optimal operation cycles are simulated by nonlinear
model predictive control strategy. In [12], the authors investigated the controlled kite application
on the naval transportation. To maximize the boat speed, a constrained optimization problem was
formulated based on the simplified kite and boat translational dynamics. A predictive control strat-
egy was carried out to a realistic dynamic model of the system in the presence of wind turbulence.
The detailed kinematics of the towing kite system is discussed in [13]. The control system of the
kite is designed based on the simplification of nonlinear kinematics. The quaternion is then used
to modify the kinematic relation in [14]. The optimization control techniques are developed for

maximum power generation.

A study of sensor fusion techniques is presented in [15]. The estimation algorithms for kite po-
sition and velocity angle were proposed. The developing of the control-oriented velocity dynamics
was presented in [16]. The proposed model was identified from the experiments, and proportional
controls are applied to achieve the figure eight kite operations. The power optimization control
technique is studied in [17]. The sensitivity of the tether tension for generalized path parameteri-
zation was analyzed, and an algorithm is designed for maximizing the tension force. On the other
hand, the control design for the tether tension in the retraction phase was presented in [18]. The
time delay effects in velocity angle dynamics are studied in [19]; a cascade control architecture
is implemented for velocity direction tracking. The model-based adaptive control method is ap-
plied for time-varying wind conditions. The time delay input model for the kite energy system is
considered in [20]. A path-tracking receding horizon LQR controller and on-line estimation of the
system parameters are considered. In [21], a range-inertial estimation scheme is proposed base on

the sensor fusion estimation.

In [22, 23], the flexible kite system dynamics are modeled using Euler-Lagrange approach.
Both kite rigid body motion and aerodynamic forces acting on the tether are considered in the
system formulations. The numerical nonlinear optimal control schemes are applied to the control
system design. However, the multi-body model of the kite energy system yields large dimensional
dynamics which make the analytical and numerical control techniques difficult to apply. Therefore,
the kite motion is projected to two-dimensional motion of the plane on an imaginary sphere in [24].

Based on this simplification, the kite heading angle and track angle are defined. The correlation

13



relation of kite track angle and steering input are used to form the base of control system design.
The high level and low level of the kite tracking control is designed using proportion and derivative
control methods. Other than the conventional PD control design for the kite system tracking and
optimization, the learning method is also used for control design as presented in [25]. The core
idea of the flexible kite system controls rely on the simplification of the kite dynamics into a single
degree of freedom linear system. This process allows the mature control techniques to be applied
to the kite control design, however the linear approximation constraint the capability of the system

models.

The modeling and control problem of the balloon energy systems are addressed in [26-28].
Although the rigid body shroud dynamics are presented in [26], the operation of the balloon energy
system is typically stationary. Therefore, the linearization technique is typically applicable, and
the frequency domain analysis method can be applied. In [27], a Lyapunov based extreme seeking
control schemes are designed, and the energy generation performance is improved. The adaptive

control design based on the extreme seeking and wind speed estimation is considered in [28].

In previous research, the author has developed the Lyapunov based rotational control for the
six degrees of freedom rigid kite energy system dynamics [29,30]. The corresponding six-degree
freedom system for undersea kite energy system is proposed in [31,32]. The dynamic models
of the undersea kites have then been modified to include the added mass effect with passivity-
based control signal. The idea of geometric apparent attitude tracking is proposed in [33]. Using
this method, the kite angle of attack and side slip angle can be regulated to the desired value if
the kite apparent wind velocity can be obtained by the sensors. Moreover, the kite translational
dynamics under the geometric apparent attitude tracking is proposed in [34]. In this work, the
consequence of the geometric apparent attitude tracking is studied. It turns out that the geometric
apparent attitude tracking decomposed the steady aerodynamic forces and provided direct actuation
to the kite translation. Therefore, the translational control signals can be designed in the using
backstepping methods. This work extends the previously published results by considering three
more important aspects of kite energy systems. The power production limit of the kite energy
system is discussed in Chapter 4 using the passivity property of the steady aerodynamic forces.

The tension control signal is designed by investigating the open loop kite system dynamics in

14



Chapter 7. The apparent dynamic attitude tracking control design is proposed in Chapter 8.

In this dissertation, the focus is put on the rigid kite energy system with the control surface

mechanism for the following reasons:

e The rigid body dynamics yields a complete description of kite translational and rotational

motion;

e The complete aero-/hydro-dynamic description allows the detail studies of the kite geometric

properties on the overall performance;

o It allows the complete studies of the relation between the control action and kite system

motion.

1.3 Contributions

In this work, both modeling and control aspects of the kite energy systems are investigated.
The crucial physical effects acting on the kite motion are considered, including the steady fluid
dynamical forces, the added mass effects, and the potential forces. In the preliminary chapter,
these forces are analyzed separately. The key kinematic relations are also given which provide
a foundation in establishing the dynamical models of the kite energy systems. In the modeling
chapter, the transformation relations of the kite system dynamics are established using results of
the system kinematics. Using dynamics transformation relations, physical effects that modeled
in different reference frames can be combined into a single framework of system modeling. To
conclude the system modeling, the kite dynamics are expressed in matrix forms. These expres-
sions reduce the computational complexity in simulating of the kite motion. After establishing
the models of kite energy systems, the dissipativity of the steady aero-/hydro-dynamic forces is
provided. Based on this property of the aero-/hydro-dynamic forces, the power limit of the kite en-
ergy system is derived. There are three major methods that will be used to control the kite motion:
the passivity-based control methods, the geometric apparent attitude tracking, and the dynamical
apparent attitude tracking. In passivity-based approach, the fundamental aspects of the kite trans-

lational motion are discussed such as the input to state stability and ultimately boundedness. Using

15



Lyapunov methods, the passivity-based control methods can be used in both airborne and undersea
kite energy systems. The geometric apparent attitude tracking of kite energy systems provides a
method of using kite rotational motion to achieve the desired kite apparent attitudes. A geomet-
ric attitude trajectory is proposed, and the corresponding rotational controls are derived based on
sliding mode method. Based on the rotational trajectory proposed, the translational motion of the
kite is further studied. This study shows that the geometric apparent attitude tracking provides
additional actuation to kite translation. A simplified kite translational model is proposed based
on the apparent attitude tracking. In addition to the geometric method, the apparent kite attitudes
can also be controlled using kite angular velocity. By transforming the kite dynamics into relative
motion frame, the kite angular velocity appears as control inputs to kite translation. Based on the

back-stepping method, the apparent attitude regulator is proposed and verified by simulation.

The major contributions of this work are summarized in the following list:

e Establishing the added mass model of the kite energy systems;

e Providing the equivalent relations of the rigid body model of kite energy system in different

reference frames;
e Establishing a framework of modeling for combining different physical phenomenon;
e Establishing the passivity of the steady aero-/hydro-dynamic forces;
e Establishing the power generation limits of the kite energy systems;
e Develop the passivity-based tension control for airborne and undersea kite energy systems;
e Develop the passivity-based rotational control for undersea kite energy systems;
e Proposing the apparent dynamic attitude tracking control for airborne kite energy systems;
e Proposing the geometric apparent attitude tracking law for airborne energy systems;
e Designing the rotational attitudes tracking control using back-stepping methods;

e Establishing the kite translational dynamics under the geometric apparent attitude tracking.
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Chapter 2

Physical Fundamentals of the Kite Energy

Systems

In this chapter, the fundamental perspectives of the kite energy systems are discussed. In
Section 2.1, the kinematic transformation matrices between different coordinate systems are given.
Important properties of the transformation matrices are also provided. From Section 2.2 to 2.4,
the steady aero-/hydro-dynamic force, added mass effect, potential forces and tether tension are
discussed. One important aspect of special importance, the passivity of the steady aero-/hydro-
dynamic force, is given in Section 2.5. Using the passivity properties, the power limitation of the

kite energy systems in three dimensional motion is derived at the last section of this chapter.

2.1 System Kinematics

To describe the rigid body motion of the kite energy system, two translational coordinate

systems and two rotational coordinate systems need to be introduced as follows

Translational Coordinate Systems
— Cartesian Frame: C= (ic jo kc>3 Spherical Frame: S= (er e, eg),
Rotational Coordinate Systems

17



- Body Frame: B= (IB jB kB); Euler Frame: E= (e¢ €y ed,)-

The Cartesian frame centers at the anchor point of tether, which is also the origin of the kite energy
system. The x-axis is pointing to the upstream direction of the wind and the z-axis is vertical

downwards. The y-axis forms a right hand coordinate system with x-axis and z-axis.

Denote the position of kite center of gravity (CG) as ro = <$c Yo zC), then the spherical

coordinates of the kite q = (r 0 q2> can be defined as follows

q= (r ¢ q2> = (Mz% + Y2 + 22 arctan( ZCJF 2) arctan <§—g>) ) (2.1)

ToTzC

where r is the tether length, ¢; is referred as the crosswind angle and ¢ as the inclination angle.

The inverse coordinate transform is given by

re = (:EC Yo zc) =T <COS q1singy sing; cos g, cos qz> . (2.2)
Taking the derivative of equation (2.2) gives the translational velocity transformation:

Ccosqisingy, —rsing;sings 7 COSQ COS Qo
Ve =Pq P = sin q; rCcosq 0 . (2.3)

COS (1 COS(@as —TsSing; cosqs —7 COS @ Sin @o

The body frame B centers at the CG of the glider and follows the North-East-Down axes conven-

tion. The kinematic relations of the kite translation is shown in Figure 2.1.

The attitude of the body frame B with respect to Cartesian frame C can be represented by three
consecutive Euler angles ® = <¢ 0 ¢>. Denote the glider translational velocity measured in
the body frame B as V p and the directional cosine matrix as L, then the translational velocity

transformation from frame B to C is given by

CoCy CoSy —Sp
Ve =LcpVa, Lpc = Lip = | sy80cy — CoSy 68055 + CoCy SeCo | » (2.4)

CpSeCy + 84Sy CpSeSy — SpSy  CyCo
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Figure 2.2: Kite Rotational Kinematics

where c and s are short hand notations of the sine and cosine function respectively. Denote the

glider rotational velocity along axes in the body frame B as w = (wx wy wz>, then the rotational

velocity transformation from frame E to B is given by

1 0 —Sp
w = R@ R = 0 Co CpS¢

0 —s¢ cocy

. The consecutive rotation of the Euler angles is shown in the Figure 2.2.

The following properties of the kinematic transformation matrices Lo, R and P are very

important in developing a unified simulation model of kite energy systems. The directional cosine
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matrix LBC is orthogonal, that iS, its transpose 18 its inverse
L e L =L B 2 6)
BC BC CB- (2.

The derivative of the directional cosine matrix L satisfies the following equation:

0 —w., wy
Lpc=—-QLpo, Q=] w. 0 —wl- 2.7)
—Wy Wy 0

Additionally, the Jacobian matrix of translational and rotational velocity with respect to spherical

coordinates and kite attitudes satisfies the following equations:

aVc T Oow T T
7q =P, 8—8_(R+QXR) : (2.8)

These relation can be proven by substitution and they will be used in deriving the equivalence
among the translational and rotational dynamics of kite energy systems.
2.2 Steady Aero-/Hydro-dynamic Forces

The steady aero-/hydro-dynamic force can be modeled using the kite angle of attack « and

side slip angle 3. Suppose the kite apparent current velocity is given by
T
Vo= <ua VUq wa) = LBC(VC - W) (2.9)

Further assume that the apparent velocity in ig direction is positive, u, > 0, then the angle of

attack and side slip angle can be defined as:

« = arctan (%), (2.10)
[ = arcsin (%), (2.11)

a
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Figure 2.3: Kite lift and Drag
where V, = ||V,|| is the magnitude of the apparent current.

In general, the kite lift and drag coefficients are function of o while the side force coefficient

is function of f3:
CL:CL(OA), CD:CD<OC), Cy:Cy(ﬁ). (212)
Along the body frame axes, the hydrodynamic coefficients are

C, 1 0 sina — cos « Cr,
= ) (2.13)

C, 0 —1 cosa  sina Ch

Moreover, the turbine drag coefficient can be computed from its induction factor a as follows

St

Cr=da(l —a) 5, (2.14)

where S; is the turbine area and S is the kite area. Then the total hydrodynamic coefficient can be

computed as

T

Cr= (e ¢, CZ)T—<Ct 0 0) . (2.15)

The geometric relation of kite lift C'y,, drag C'p and turbine drag C; coefficients are shown in Figure

2.3, the side force coefficient is shown in Figure 2.4.
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Using Cp, the kite aero-/hydro-dynamic force is given by:
1 2
HB = §pra SCB, (216)

where p; is the density of the surrounding fluid. Applying generalized force transformation, the

steady aero-/hydro-dynamic force in frame C and S are

1
He = EpfijLCBCB (2.17)
Hg = ~p;V2SP Loy C 2.18

s = 5PVa cBCn (2.13)

2.3 Added Mass Effects

While the influence of the steady flow on the kite motion can be characterized by steady aero-
/hydro-dynamic force, the added mass effects characterized the influence of the unsteady flow.
When accelerating with respect to the surrounding fluid, additional inertial will be introduced to

the kite system as shown in Figure 2.5. By assuming the surrounding unsteady fluid field to be
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Figure 2.5: Rigid Kite and Surrounding Fluid

potential, the added mass effect can be characterized using energy approach:

1 M, I'7 V.,
Tr =7 (VaT wT>

2 r J,) \w

1

1 1
= §V£MGV3 + inJaw +w!'TVy -~ VEM,Wp — w'TWp + 5val\/lava, (2.19)

where T is the total kinetic energy of the unsteady surrounding fluid flow and matrices M, and

J, to be symmetric.

The force introduced by the added mass effect can be modeled using the impulse-force prin-

ciple. Denote the impulse from the unsteady fluid field as follows,

oT
n, = aVF — M,V +TTw - M,Wj, (2.20)
B
oT
n, za—j = J,w+TVy—TWj. 2.21)

Applying the Kirchoff’s law, the force due to impulse 7, and 7, are

Ar=—1,—wxmn, (2.22)
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A, =—1n,—wxn.— Vg xmn,. (2.23)

Substituting equations (2.20) and (2.21) into (2.22) and (2.23), the added mass force on kite rota-

tion and translation as A; and A, are given by

A= —(M,V,+T70%) —w x (M, V, +T7Tw), (2.24)
A =—Jw+TV,) —wx (Juw+TV,) - Vg x (M,V, +TI'"w). (2.25)

2.4 Potential Forces and Tether Tension

The potential energy of kite energy systems consist of two parts: the gravitational potential

energy and buoyancy potential energy,
U=-G"rc+B'rg, (2.26)

where r¢ is the position vector of kite center of gravity and r¢ is the position vector of kite center
of geometry. Assume that the magnitude of buoyancy force B is a fraction of the magnitude of the
gravity with ratio A € (0,1). The distance between center of gravity and center of geometry in

body frame is d g as shown in Figure 2.6 then

U=-— GTI'C + )\BGT(I'C + LCBdB>

=—(1—=X)G're + A\pG Lepdp. (2.27)

Since the gravitational potential energy is function of kite position < and attitudes ©, the corre-

sponding translational and rotational conservative force in frame C and E are

o ou

G, =— G, = ——.
! 8rc’ 00

(2.28)

In physics, the potential energy is defined as the energy terms that only depends on the end
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Figure 2.6: Kite Gravity and Buoyancy

point of the displacement. For constant current velocity, the last term of (2.19) depends only on

the attitude of the kites, therefore, it can be treated as the velocity dependent potential,
| —
U, = —§WBMGWB. (2.29)

Since the current velocity is constant in frame C, therefore, the current potential energy is only
function of kite attitudes. The conservative force introduced by the current potential energy in

frame E is

G, =

90 (2.30)

The tether tension acting on the kite energy systems depends on the configuration of the sys-
tems. In the kite energy system with variable tether length, underwater or airborne, the tether
tension can be treated as an control input to the kite translation. In such case, the tether tension T
can be designed using Lyapunov method and is independent to other physical effects. On the other
hand, for the kite energy system with fixed tether length, the tether tension is a reaction to the total
force acting on the tether direction. Since the tether length is fixed, the kite is moving on a sphere
that centers at the system origin. The virtual work done by the tension in the normal direction of
the sphere must be zero. In other words, the tether tension can be obtained by the force balance in

the tether direction. In airborne kite energy systems, the tether tension is given by
Ty — —PT(((LCBHB + Gt)ch)fc), 2.31)
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where T is the unit vector along the tether direction, ¥ = (cos qisingy sing; cosq cos q2>.
In addition to the steady hydrodynamic force and the gravity, the added mass effect also needs to
be taken into account in computing the tether tension. Therefore, in the undersea kite systems, the

tether tension is given by

Ts = —((LogHp + Gy + LopAy) t0) PTic. (2.32)

2.5 Passivity of Steady Aero-/Hydro-Dynamic Force

Section 2.2 to Section 2.4 introduced the elements that drives the kite translation, among them
the steady aero-/hydro-dynamic force is crucial in stability and power limit analysis. In this section,
the passivity of the kite aerodynamic force is provided. Recall that the aerodynamic force acting

on the kite is given by

1
Hp = §pra2SCB, (2.33)
where the aerodynamic coefficients are
C, 1 0 sina — cos « Cr,
= , (2.34)
C, 0 —1 cosa  sina Ch
T T
Cr=(c. ¢, ¢.) —(c 0 0) . (2.35)
By expansion of equation (2.35), the aerodynamic coefficient Cp is given by
Crsina — Cpcosa — C,
Cp = C, . (2.36)
—Crcosa— Cpsina
The kite apparent velocity can be expressed using kite angle of attack and side-slip angle
Vo=Lgc(Ve—W) =V, <COS acosB sinB sinacos 5) : (2.37)
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It can be proven in the following lemma that the steady aerodynamic force is passive with respect

to the kite apparent velocity, i.e.

Lemma 1 (Passivity of Steady Aero-/Hydro-Dynamic force). If the kite apparent attitude o, B €

(—%7? 7T) the work done by the airflow on the kite is non positive,
VIHp <0. (2.38)
Proof. Define the apparent aerodynamic coefficient as follows
Cq = Cpcos 8 — Cysin 8 + Cy cos o cos 3. (2.39)

Notice the kite and turbine drag coefficients are positive, therefore, the quantities C'p cos 3 +
Cycosaccos 3 > 0. Moreover, the side force coefficient C,, is in the negative direction of the v,

and the side-slip angle 3 is given by

Cyva < 0; B =sin™! (f/-“) (2.40)

Therefore, for 3 € (—%ﬂ', %ﬂ')
C, sin B < 0. (2.41)

The illustration of the passivity of the side force is shown in Figure 2.7. Hence, it can be conclude
that the apparent aerodynamic coefficient C,, is positive definite. Substituting equations (2.33) -

(2.37) into equation (2.38) gives that

VTH, — %pfuva\y?s(ua Co — C)) + vaCy + w,C)

= %pf||Va||3S( Cy — Cy) cosacos B+ Cysin B + C. sinacos )
= 1pf||V 1S( = Cpcos B+ Cysin B — Cy cos acos 3)
SC,

= ——pf||V I? (2.42)

Hence, the steady aerodynamic force is passive with respect to the kite apparent velocity. 0
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Figure 2.7: Side Force Coefficient

Though the steady aerodynamic force takes complicated form, it act as a resistance on the kite
translation. This result are used to derive the power limitation of the kite energy system in the next

section.

2.6 Power Generation Limit

In [35], the available power of the airborne kite energy system in a two dimensional case is

given by the following equation

Puina = ||W|| F, cos, (2.43)

where W is the wind velocity, F}, is the total aerodynamic force and + is the angle between the
direction of the force and the wind speed. The power limit of an airborne kite energy system is

given by the following equation

_ 2 3 Cr)? : — 2 2
Puss = zprIWIPSCa() with Cr= VO +(Cp+Cr2, (2.44)

where S is the kite area and C' is the resultant aerodynamic coefficient.

Using the similar procedure, the power limit of the kite energy system in three dimensional
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motion can be derived. Notice that the aerodynamic force acting on the kite can be decomposed

into two parts,

Hp = Hy + H, = %pf||va||25< (c. ¢, CZ>T ~ (e 0 o)T). (2.45)

Moreover, the wind velocity and aerodynamic force measured in reference frame B and C is

related as follows
We =LepWp, He = LepHp.
In the three dimensional case, the available power to a stationary ground station is given by
Pyina = WEHe = WHHE, (2.46)

where the kite velocity and aerodynamic force is measured in the inertial reference frame. Equation
(2.46) is a generalization of equation (2.43). Therefore, the power that available for the power

generation devices is given by
P, =WiHg + V H,.
Using the similar method in Lemma 1,
T 1 3 .
V.H, = §prVaH S(—Cpcosﬁ—i—cysmﬂ) < 0. (2.47)
Expending equation (2.46), the total power in the wind is
T 1 2 T 1 2
WgHs = SpsVa SWiCp < 5P1Va SIWsll[[Cs]- (2.48)
Consider the case when o = 8 = 0, equation (2.36) becomes

Co=(-Cr-C 0 —Cy). (2.49)
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since the side force on the kite is zero when 5 = 0. Moreover, the equations (2.47) and (2.48) can

be further simplified as follows

1
VIH, = —§pfva350D (2.50)

1
WEH < SV Wlly/CF + (Co + Ci)2 251)

Hence the maximum power of a kite energy system is given by

1
Pa < 5pVESIWll\/CF + (Cp + Co)? = SpsV2SCo. (2.52)

N —

Maximizing the power with respect to the kite apparent speed V, yields

oP,
W

1
_ 5pfS(Qva||WB||\/(Jg 4 (Cp + Cy)? — 3V2Cp) = 0. 2.53)

Therefore, the optimal value of kite apparent speed is

%

24/C} + (Cp + Cy)?
2GR Gt O gy (2.5

Cp

The maximum power of a kite energy system is then given by substituting equation (2.54) into

equation (2.52)

Prae = =05 W SOR(C—D) with Cp=1/C} +(Cp + Ci)2.

In three dimensional case, the available power to a kite energy system is

1
P, = 5,ofvfswch +VIH,
1
= §pra2S<Wx(CL sina — Cpcosa — Cy) + W,C,y — W,(Cp, cos e + Cp sin a)

+ Vo (=Cpcos 5+ C, sin 5))

The global maximum value of the available power is difficult to obtain using analytical method.
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However, an upper bound of the available power can be obtained as follows

W, (Cpsina — Cpcosa) — W,(Cpcosa+ Cpsina) < /W2 +W2,/C? + C%,. (2.55)

Therefore, the upper bound of the available energy of kite system is

1 .
Pa <5prVES (= WaCy+ W, Cy + /WEH W2/ CF + G} + Va(~Ci cos B + Cysin §)).
(2.56)

When 3 is small, the maximum available power takes the following form,

1
Py <opgV2S(= Wl + WOy + I+ W2\ /CE 4 C 4+ Vi(~Co+ Cf)). 5T

Under the small angle assumption, side force coefficient is a linear function of /3,
Cy = Cyppb. (2.58)

From the passivity of the kite acrodynamic force, the coefficient C;, 3 < 0, therefore, P, is concave

in $. The maximum value of P, is obtained when the first order derivative attains zero,

P,
55 = WiCua + 2VaCyaf. (2.59)

The optimal value 5* must satisfies the following condition,

W,

b A

(2.60)

Substituting equation (2.60) into equation (2.57) gives that

2

1 T W,
mﬁax Pa S iprfS( - ‘/aCD + vV Wg? + VVZ2 C% + C% - WmCt - Cy”34vi). (2.61)
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Taking the derivative with respect to V;,, the upper bound of available power is given by

orP,(V,) 1 1
ax(/ ) _ 5pfks*(—zﬂ/ch + 2V (VW2 + W24/ C2 + C3 — W,Cy) — ch,ﬁwj). (2.62)

That is the optimal value of V,, can be solved from the following equation,

1
—=3(V;)?Cp + 2V, (VW2 + W2,/ C} + Cf — W, Ch) — Z(Jy,ﬁwj = 0. (2.63)

Using the roots formula of quadratic equation,

e 200, — 24/C3 + C3 /W2 + W2 £ VA
o« 6C

D
A =4(\/W2+W2,/C}? + C} — W,C,)* = 3CpCy W,

(2.64)

By passivity of the aerodynamic force C,, g < 0, therefore the following inequality holds

VA > 20W, — 24/ C2 + C2\/W2 + W2|.

Thus the positive solution of the optimal value V* is given by

C20W, —2,/CL + CFYW2+ W2 - VA

V=
¢ 6C

D
A = 4(\/WZ+W2,/C2 + C% — W,C,)? — 3CpC, sW2.

To simplify the notation, denote scaled wind speed as follows

Wy = /W2 + W2,/C2 + C2 — W,C,, (2.65)
Wy = /—3CpC,sW2. (2.66)

The optimal kite apparent speed then become

2 o 4 2 2
pe o 2 o VAW W (2.67)

“ 6Cp
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Substituting equation (2.67) into equation (2.61) gives the maximum available power

1 QW0 + AWE + W3 (2WF + W5 + Wi /AW + ) (2.68)

P, ==
max Fo = 5075 108C%
1 = VW2 4+ W2,/C? + C} — C, W,
W2 == ‘/—3CDCy75WyQ.

Consider the case when W, = 0, the maximum power is given by

Pras = 32015 5 (2.69)

It is important to notice if a = 0, the quantity 1¥; becomes

= VWE T W2,/C3+ (Cp + O

Therefore, the power limit formulation becomes

C )
Poaw = 5o IWIPSCr((G ) with C= [+ (Co i

which agrees with the two dimensional case as in [6,35]. In this chapter, the physical fundamentals
of the kite energy systems is studied. In the next chapter, the dynamics and simulation models of

the kite energy systems will be established.
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Chapter 3

Dynamics of Kite Energy Systems

In this chapter, the nonlinear rigid body dynamics of kite energy systems are derived in differ-
ent reference frames using Euler-Lagrange approach. Using kinematic relations, the equivalence
between the system dynamics of kite energy system in different frames are established. These
equivalences are used to combined different physical phenomenon into a unified mathematical
model. Two simulation models of the kite energy systems for airborne and undersea cases are

developed to increase the computational efficiency.

3.1 Lagrange Dynamics and Transformation

Assume the generalized coordinates is denoted by h and the corresponding kinetic energy is
T}, then the Euler-Lagrange equation is given by

i<%>_%_

i\ oh on (3.1

where Q);, includes conservative and non-conservative generalized forces. Denote the kite mass as
m and tether line density as p;, then the translational kinetic energy of the airborne kite system in
frame C is given by

1 1
th — §(m + gptr)HVCHQ. (3.2)
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Applying the Euler-Lagrange equation (2.9) to (2.10) yields the Newtonian dynamics
1 )
(m+ gptT’)VC =Qc¢. (3.3)
Additionally, the translational kinetic energy of the kite energy system in frame B is given by
p_ 1 1 2
T2 = Sm+ 5oVl G4

Applying equation (3.1) to (3.4), the translational dynamics in frame B becomes
1 .
(m+§ptr)(VB+w X VB) = QB- (35)

The relation between Qp and Q¢ is given by

Jr
Qc = a_BQB
re
Using L”Hopital’s rule gives
Q= 2vEq (3.6)
“Toave *r '

Recall that the kite translational velocity transformation from frame B to frame C is given by

Ve =LcpVp.

According to equation (3.6), the generalized force in frame C is

Qc = LesQs. (3.7)

Therefore, the generalized force in frame C is a rotation of the generalized force in frame B.

Similarly, the following theorem holds for the left hand side of the Euler-Lagrange equation.

Theorem 1. If the kinetic energy of kite systems in frame C and B are given by equations (3.2) and
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(3.4), then the following relation holds:

d (0TFN OTf d (TP OTF
_< >_ —Lep _< >_ . (3.8)
dt 8Vc 8rc dt 8VB 8rB
Proof. Using the kinematic relation
Leg = LepQky,

the translational acceleration of the kite is given by

Ve = (LegVe +LopVip)
= (LC’BQXVB + LCBVB)-

The translational acceleration in frame C is the rotation of translational acceleration in frame B:
VC :LCB(VB+W X VB) (39)
Pre-multiplying equation (3.9) with m + % per yields:
1 . 1 .
(m+ gptr)VC = Lep(m + gptT)(VB +w X Vp). (3.10)

Equation (3.8) holds immediately. 0

Equations (3.10) imply that the kite translational dynamics in frame C is a rotation of kite

translational dynamics in frame B. Using the kinematic relation
VC = Pq7
the generalized force transformation in frame S is given by

. 8rc B aVc
Qs = 8_ch = 04 Qc.
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The generalized force transformation from frame C to S becomes:

Qs = P'Qq. (3.11)
In terms of spherical coordinates, the kinetic energy of the kite is given by

1 1 .
TS = 5(m + gptT)HPqHQ. (3.12)

Similar to the generalized force transformation, the left hand side of the Euler-Lagrange equation

satisfies the following relation as shown in Theorem 2.

Lemma 2. If the kinetic energy of the kite energy system in frame C and S are given by equation

(3.2) and (3.12), then:

75 75 T¢ T¢
i(a?)—aszT i(at>—at . (3.13)
dt \ 0q oq dt \OV ¢ orc

Proof. Using the kinematic relation of translational velocity

OV¢
dq

=P

The Euler-Lagrange equation in the spherical frame becomes,

doTsy s . 1 rd . VL
dt<aq> q _<m+3p”)<dt<P Pd) =24 Pa)

1 . . .
=(m + 3pir) (PTPq +PTPq+PTPG — PTPq)

1 S
=(m + §ptr)PT(Pq +Pg).

The acceleration transformation between frame C and S is

d 0TE ort - - .

— — =Vc=P Pq. 3.14

di (avc ) Brg ‘e rdatrd (314)
Therefore, the transformation relation (3.13) holds immediately. ]
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The translational system dynamics transformation (3.8) and (3.13) can be illustrated using the
Figure 3.1. The kite translational dynamics in frame C is a rotation of kite translational dynamics
in frame B. The kite translational dynamics in frame S is a projection of the kite translational

dynamics in frame C.

Figure 3.1: Translational Dynamics Transformations

Additionally, the generalized velocity transformation between frame B and E is given by,
w =RO.

Then the generalized force transformation between frame B and E can be obtained from the virtual

work principle

Oow

M - —
P06

Ms, (3.15)
where M and Mp are the moment acting on the rotational motion in Euler and Body frame
respectively.

Lemma 3. If the rotational kinetic energy of the kite energy system in frame B and E are given by

TP = Swllw, T = 5@TRTJR@). (3.16)
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Then the equivalence of rotational dynamics between frame B and E

i(@Tf) _orf _RTi<8T7{9>.

dt\ 90 00 T dt\ dw (3.17)

Proof. The Euler-Lagrange equation in body frame gives the Euler rotational dynamics

d <8TTB

7\ 50 ) =Jw+w x Jw. (3.18)

Using rotational kinematic relation

ow . T
36 = (R+Q.R)".

The Euler-Lagrange equation of the rotational dynamics in frame E can be obtained by

d (6‘T¢E

OTE  d
dt a@>_ -

= —(R"JRO®) - (R+Q,R)TIJRO
o = 7 R"JRO) — (R + Q.R)
= RTJRO + RTJRO + RTJRO — RTJRO - R'QLIJRO
= R7JRO + RTJRO + R'Q, JRO

=R"(J(RO +RO) + 2, JRO).
The angular acceleration of the kite is
w=RO + RO (3.19)

hence, the rotational dynamics in Euler frame can be further simplified as

i(E)Tr ) _orf _

dt = 00

5 RY(Jw + w x Jw). (3.20)

]

The rotational dynamics transformation is shown the Figure 3.2. The rotational dynamics of

kite in frame E is a projection of the kite rotational dynamics in frame B.
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RT

Figure 3.2: Rotational Dynamics Transformation

With the equivalent relations of the kite system dynamics as given in Lemmas 2 and 3, all
the major physical effects can be combined into a unified simulation model. In next section, the
model of airborne kite energy systems, which simpler than the undersea kite energy systems, will

be derived.

3.2 Simulation Model of Airborne Kite Systems

In modeling the airborne kite energy systems, the added mass and buoyancy force is negligible.

In general, the model of airborne kite translation is given by

1 .
(m + gptT)PTVC =P L¢gHe + PTG, + Ty (3.21)

There two major differences between the variable and fixed tether length airborne kite energy
systems. In variable tether length airborne kite energy systems, the tether tension take the form
Ts = (TS 0 0>. In a constant tether length airborne kite energy system, the kite spherical

coordinates and translational velocity transformation matrix are given by

—sing;singy  COS ¢ COS (o
T
q= <q1 q2> P=r Cos 1 0

—sing; cosqa — €Os @y Sin g

Although it can be shown in both case, the variable and constant tether length, the translational
velocity transformation satisfies the same kinematic relations. The constant tether length assump-

tion implies that the force is balanced in the tether direction, that is Tg = 0. Using the kinematic
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relation of the kite motion, the translational acceleration of the kite is given by
Ve =Pq, Ve=Pg+Pqg.
Therefore, the equation of translational motion can be put into a more fundamental form
(m + %ptr)PTPq + (m + %ptr)PTPq = P "LcpHp + PTG, + Ts.
Using the following notation,

M,(q)d + Ci(q,q4)q = P"LegHe + PTGy + T,
1 _ 1 .
My(q) = (m + 3pm)P'P, Cy(q,@) = (m + 5pr)PTP.
It is clear that the following matrix is skew symmetric,

. 1 . .
M; — 2C; = (m + gptr)(PTP ~PTP).

Equation (3.23) is very useful in developing the control system for kite energy systems.

(3.22)

(3.23)

Since the density of the air is negligible compare to the kite, the buoyancy and added mass

can be assumed to be zero. Using the dynamic transformation, the rotational dynamics in frame E

are given by
RTJRO + RT(JR 4+ Q,JR)O = up.
Denote the M, and C, matrix as follows

M,(©)6 + C,.(0,0)0 = ug
M, =RT'JR C,=RT(JR+Q,JR)

In summary, the complete dynamics of airborne kite energy systems are given by
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e For the variable tether length airborne kite energy system

CcoS @ singy, —rsing;sings 7 COS (@ COS Qo r
Ve=Pgq P= sin ¢ 7 COS (1 0 v A= | ¢
COS (1 COS(Qy —TSINQqCOSQy —7 COS @y Sin @ G2

(3.25)

e For the fixed tether length airborne kite energy system

—sing;singy  €OS @ €OS @
0

Ve=Pq P=r cos qi 0 , q= . (3.26)
q
—singq cosgy — COS @ Singo ’
e The rotational kinematic relation is given by
1 0 —sinf 10)
w=RO R=[0 cos¢ cosfsing|, ©=[0]. (3.27)
0 —sing cosfcoso Y
The dynamic model for kite motion simulation is given by
M,(q)d + Ci(q,q)q = P"LegHe + PTG, + Ty, (3.28)
1 ) 1 .
Mi(a) = (m+ zpr)P'P - Ci(q, ) = (m + Zpir)P'P, (3.29)
M, (©)0 + C,(0,0)0 = uy, (3.30)
M, =R7JR, C,=R7(JR+Q,JR). (3.31)

3.3 Simulation Model of Undersea Kite Systems

For the undersea kite energy systems, more complex physical effects need to be taken into

account. Due to the high density of the water, a typical undersea kite system is the one with fixed
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tether length, therefore, the translational velocity transformation relation is given by

—sing; sings  COS @1 COS o
Ve=Pq P=r Cos 0 q= )

—sing; cosga — COS @y Sin ¢

CoCy CoSy —Sp
VB = LBCVC LBC = | S¢SeCy — CpSyy  S¢SeSy + CyCy  SpCo

CpSeCy + 84Sy CpSeSy — SpSy  CyCo

The complete system dynamics including the added mass effect and buoyancy is given by the

following equations.

M;(q)d + Ci(q,q)q = P'LegHp + PTG, + Ts + P'LegA,, (3.32)

M, ()0 + C,(0,0)0 = up + RTA, + G, + G,. (3.33)
As shown in the previous chapter, the added mass effect is modelled by:

A= —(M,V,+T70%) —w x (M, V, +TTw),
A, =—Juw+TV,) —wx (Juw+TV,) = Vg x (M,V, +T'7w).

If the current velocity is constant, the time derivative of the current velocity that measured in frame

B can be
WB =—-Q. Wg (3.34)
Therefore, the added mass effect can be expressed as follows

A, = — (Ma(VB L0 W) + 1“%) —wx (M,V, + I'Tw) (3.35)

A, =— (Jaw FT(Vp+ QXWB)> —wx (Juw+TV,) = Vg x (M,V, +TTw)  (3.36)
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Regroup the expression as follows,

A= —(M, Vs +T7%) - Q (M, Vg +TTw) + (2, M, — M,Q, )W 5
A, =—J,w+TVg) -2 (J.w+TVg) - Vg x (M, Vs +TITw)
+ ([Vs]xM, + QT —TQ, )Wp

The translational and rotational velocity transformations are given by the following equations,
Vg =LgcPqg w=RO

Moreover, the time derivative of the direct cosine matrix satisfies that

0 —w, wy
Lpc = —Q.Lge Q= | w. 0 —w,
—Wy Wy 0

therefore the acceleration transformations are given by
Vi =-QLcPq+LgcPq+LscP§g @ =RO +RO (3.37)
By substitution, the equations of motion in spherical coordinates and Euler angles are given by

A= <Ma(—QXLBCPq + LpePq + LpePqg) + I (RO + Ré))
— Q, (M,LgcPq+TITRO) + (2, M, — M, Q,)Wj
= M LpcPG — T"RO + (M, — 2M,)LpcP — M,LpcP )
— TR+ Q,I'"R)O + (2, M, — M, Q,)Wj (3.38)
A =— (JG(RG + RO) + T(—Q, LpoPd + LpePq + LBCPq)) — 9, (J,RO + TLpcP4)
— [Va]«(MoLpcPq + T"RO) + ([Vp] M, + 2, T —TQ, )W
— TLypcP{— J.RO + ((mx — Q. T)LpeP — TLpoP — [VB]XMGLBCP>q

— (J.R+Q,J.R+ [V, TR)O + ([V5]:M, + Q, T —TQ, )Wp (3.39)
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Combining the complete expression of added mass effect with the undersea kite equations of mo-

tion yields a compact form of system dynamics,
M(p)p + C(p,p)p + G(p) =u+H+D, (3.40)

where p is the generalized position of the undersea kite system, p = (q @). The conservative

force G, control input u, steady hydrodynamic force H and drift force D are given as follows

PTG, Ty
G(p) = ., u= . (3.41)
—(Gr + Gv) Uug
o (P TesHs . (.M, — M, Q2,)Wp .
0 ’ ([Va]xM, + 9, — TQ, )W

The system matrices M (p) and C(p, p) are given by

M11 M12 . Cll Cl?
M(p)=| , C(p,p) = : (3.43)
M21 M22 CQI C22

where the block matrices in equation (3.43) are given by

My, =P" Lo (M, + (m + 5 pir)Ts ) Lsc P, (3.44)
M;s =PTL sI''R, (3.45)
M,, =RTJ, R, (3.46)
C1i =P Lop(Q.M, — MyQ,)LpeP + P Loy (Ma +(m+ %pﬁ)lg) LpcP,  (3.47)
Ci, =P L¢p(I'R + Q. TTR), (3.48)
Cs =RT ((QXI‘ — Ty + [V]xM,)LpcP + I‘LBCP>, (3.49)
Cy =RT ([VB]XI‘ LT+ Ja)>R +RT(T+ IR (3.50)

In simulation of the undersea kite motion, the inversion of generalized mass matrix M(p) is re-
quired. The first block matrix is positive definite since the M, represent the added mass effect

that introduced through translation motion. In other word, 1V M,V,, is the kinetic energy of the
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unsteady fluid field if the kite motion is purely translation which is positive definite. Hence M,
is also invertible and the inversion of the matrix M(p) can be obtained through matrix inversion

lemma.

(M(p))_l (I MMy (M 0 I 0
0 Ig 0 (MQQ - M21M;11M12)—1 —M21MI11 Ig
(3.51)

Therefore, the inversion of the larger matrix M(p) is reduced to the inversion of the block matrix

M ; which is smaller in size.

In summary, the complete dynamics of the undersea kite energy systems are given by

e Translational Kinematic Relation is given by

—sing;singy  €OS @ €OS G
0

Ve=Pq P=r coS q1 0 y q= . (3.52)
q2
—singy cosga — COS @y Sin g
e The rotational kinematic relation is given by
1 0 —sinf 10)
w=RO, R=|0 cos¢ cosfsine 0=109]|. (3.53)
0 —sing cosfcoso Y
e The equation of motion is given by
M(p)p +C(p,p)p + G(p) =u+ H+D. (3.54)

It is important to notice that the airborne kite energy system dynamics are special case of the

undersea kite energy system dynamics with
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In this chapter, the nonlinear dynamical model of the kite energy systems are derived. A unified
simulation model is established. In next chapter, some important nonlinear control techniques will

be reviewed and the outline of the rest of the dissertation will be given.
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Chapter 4

Control System Design Preliminaries

In this chapter, some crucial techniques in developing the control system of nonlinear dynam-
ical systems are reviewed. An outline of the rest of the dissertation is given in the second part of
the chapter.

4.1 Lyapunov Stability Analysis

It is clear that the kite system dynamics given in (3.52)-(3.54) is nonlinear. The Lyapunov and
passivity methods can be used to design the control signal for the kite energy system. Consider the

following autonomous nonlinear dynamical system,
% = f(x) (@.1)
with equilibrium at the origin, i.e. f(0) = 0. Then the equilibrium point x = 0 is
e Stable if Ve > 0, 35 > 0 such that

Ix(t)]| <€ VEt>0 if ||x(0)|| <9

e Unstable if is not stable.
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e Asymptotically Stable if 35 such that

limx(t) =0 if ||x(0)|| <o

t—0
It can be shown that a physical system with nonzero desired behavior can be transformed to prob-
lem (4.1) by considering the error dynamics. Lyapunov theorem gives the sufficient condition for

stability of the nonlinear dynamical system, [36],

Theorem 2 (Lyapunov Theorem). Let x = 0 be a equilibrium point of system (4.1) and D C R"

be a domain such that 0 € D. LetV : D — R be a continuous differentiable function such that

V(0)=0 (4.2)

V(x) >0 VxeD-—{0} (4.3)

V(x)<0 vxe€D (4.4)
Then x = 0 is stable. Moreover, if

V(x)<0 VYxeD-—{0} (4.5)

then x = 0 is asymptotically stable.

Corollary 1 (globally asymptotically stable). Let x = 0 be a equilibrium point of system (4.1) and

V . R™ — R be a continuous differentiable function such that

V(0)=0 (4.6)
V(x) >0 Vx#0 4.7)
| 1|i|m V(x) = o0 (4.8)
V(x)<0 Vx#0 (4.9)

then x = 0 is globally asymptotically stable.

Often, the time derivative of the Lyapunov function is only negative semi-definiteness. In such
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case, the invariant principle can be used to address the asymptotically stability of the nonlinear

systems.

Theorem 3 (LaSalle’s Invariance Principle). Let x = 0 be a equilibrium point of system (4.1).
Let V : D — R be continuous differentiable where D C R"™ be a domain such that 0 € D and

V(x) <0in D. Let S = {x € D|V(x) = 0} and suppose that no solution can stay identically in

S, other than the trivial solution x(t) = 0. Then, the origin is asymptotically stable.

Corollary 2. Let x = 0 be a equilibrium point of system (4.1). Let V : R" — R be continuous
differentiable such that V(x) < 0 in R®. Let S = {x € R"|V(x) = 0} and suppose that no
solution can stay identically in S, other than the trivial solution x(t) = 0. Then, the origin is

globally asymptotically stable.

For non-autonomous nonlinear systems,
x = f(t,x) (4.10)

with the equilibrium point f(¢,0) = 0, V¢ > 0. To address the stability of non-autonomous

systems, the comparison functions needs to be introduced.

e A continuous function « : [0,a) — [0, +00) is said to belong to class K if it is strictly

increasing and «(0) = 0.

e A continuous function « : [0,a) — [0, +00) is said to be K, if it is a class X function with

a =ocand lim a(r) = occ.
r—00

e A continuous function 3 : [0,a) X [0,00) — [0, 00) is said to belong to class L if; for each
fixed s, the mapping 3(r, s) belongs to class K with respect to r and, for each fixed r, the

mapping 5(r, s) is decreasing with respect to s and lim §(r,s) = 0.
S5—00

The notion of stability also need to extended for non-autonomous systems. The equilibrium point

x=0is
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e Stable if Ve > 0, 3d(e, y) > 0 such that

[x(@)]| <€Vt > toif [[x(to)|| <0

e Uniformly stable if Ve > 0,30(¢) > 0, independent of ¢y, such that

Ix(t)[] < €Vt > toif [[x(to)|| <0

e Unstable if it is not stable.

e Asymptotically stable if it is stable and there is a positive constant ¢ = ¢(ty) such that

Tim & (t) = 0 |x(to)] < c.

e Uniformly asymptotically stable if it is uniformly stable and there is a positive constant c

independent of ¢, such that

tlg& x(t) = 01if [|x(to)|| < c.

e Globally uniformly asymptotically stable if it is uniformly stable with d(€) can be chosen

such that lim §(e) = oc.

€E— 00

e Exponentially stable if 3¢ > 0,k > 0, A > 0 such that

()] < kllxo(®)lle ), V]|xo(t)]] < ¢

The Lyapunov theorem for non-autonomous systems is listed as follows,

Theorem 4. Let x = 0 be a equilibrium point of system (4.10) and D C R" be a domain such that

0€ D. Let V : D — R be a continuous differentiable function such that

Wi(x) < V(x) < Wah(x) (4.11)
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v v

o+ o f(tx) <0 (4.12)

YVt > 0,x € D, where W1(x) and Wy(x) are continuous positive definite functions in D. Then

x = 0 is uniformly stable.

Corollary 3. Let x = 0 be a equilibrium point of system (4.10) and D C R" be a domain such

that 0 € D. Let V : D — R be a continuous differentiable function such that

Wi(x) < V(x) < Wa(x) (4.13)
ov. oV
e + a—xf(t,x) < —Ws(x) 4.14)

Vt > 0,x € D, where Wy(x), Wa(x) and W3(x) are continuous positive definite functions in
D. Then x = 0 is uniformly asymptotically stable. Moreover, if D = R"™ and W,(x) is radially

unbounded then x = 0 is globally uniformly asymptotically stable.

Corollary 4. Let x = 0 be a equilibrium point of system (4.10) and D C R" be a domain such

that0 € D. Let V : D — R be a continuous differentiable function such that

Fallx[|* < Vi(x) < kof|x[|* (4.15)
ov. oV
—+ — < - @ .
5 T e H%) < —hillx| (4.16)

Vt > 0,x € D, where ki, ko, ks and a are positive constants. Then x = 0 is exponentially stable.

If the assumptions hold globally then x = 0 is globally exponentially stable.

Similarly to the autonomous system, the negative definiteness of the V(t, x) is not always
available. To address the asymptotically stability of the non-autonomous systems, the invariance-

like theorem can be used.

Lemmad4. Let ¢ : R — R be a uniformly continuous function on [0, 00). Suppose that 1tlim fooo o(T)dr
— 00
exists and is finite, then

lim ¢(t) = 0.

t—o00

Theorem 5. Let D C R" be a domain containing x = 0 and suppose f(t,x) is piecewise contin-

uous in t and locally Lipschitz in X, uniformly in t on [0,00) x D. Furthermore, suppose f(t,0) is
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uniformly bounded for all t > 0. Let V : [0,00) X D — R be a continuous differentiable function

such that

Wi(x) < V(x) < Wa(x) (4.17)
V(t,x) = 86_‘15/ + g—‘;f(t,x) < W(x) (4.18)

YVt > 0,x € D, where W(x) and Ws(x) continuous positive definite functions and W (x) is
a continuous positive semidefinite function on D. Choose r > 0 such that B, C R" and let
p < minyy|=, Wi(x). Then, all solutions of X = f(t,x) with x(to) € {x € B,|[W5(x) < p} are
bounded and satisfy

lim W (x(t)) = 0. (4.19)

t—o00

Moreover; if all the assumptions hold globally and W1 (x) is radially unbounded, the statement is

true for all x(ty) € R™

In this section, the Lyapunov analysis for autonomous and non-autonomous nonlinear systems
is reviewed. The emphasis is put on the stability of the nonlinear system. Different stability
properties are discussed. Especially, the invariance and invariance-like principles are given, which
serves as remedies for the negative semi-definiteness of the time derivative of Lyapunov function.

In next section, the boundedness of the system behaviors are discussed through Lyapunov analysis.

4.2 Boundedness and Input to State Stability

The following nonlinear non-autonomous dynamical system is considered in the boundedness

analysis,
x = f(t,x) (4.20)

The solution of (4.20) is said to be,
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uniformly bounded if there exists a positive constant ¢, independent of ¢, > 0, such that

Va € (0,¢),38 = p(a) > 0, independent of ¢, such that

[x(@)]| < B,Vt > toif [[x(to)[| < a

globally uniformly bounded if it is uniformly bounded with ¢ = oo.

uniformly ultimately bounded with ultimate bound b if there exist a positive constant b and

¢, independent of ¢y > 0 and Va € (0, ¢), 3T = T'(a,b) > 0, independent of ¢, such that,

Ix(t)|| < b,Vt >to+ T if ||x(to)]| < a

globally uniformly ultimately bounded if it is uniformly ultimately bounded with ¢ = oc.

The following theorem can be used to established the ultimately boundedness of system (4.20).

Theorem 6. Let D C R" be a domain that contains the origin and V : [0,00) x D — R be a

continuously differentiable function such that

ap(x) < V(t,x) < ag(x) (4.21)

ov oV
2 < —
T s H%) < W), Vx| > g (4.22)

Vt > 0,x € D, where oy and oz are class K functions and W3(X) is a continuous positive definite

function. Take v > 0 such that B, C D and suppose that

p < agt(ay(r)) (4.23)

Then, there exists a class KL function B and for every initial state x(1,), satisfying ||x(t)| <
oy (ay(r)), there exists a T > O(dependent on x(ty) and 1) such that the solution of (4.20)

satisfies
X < B([x(to)ll, t —to),Vto <t <to+ T (4.24)
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[x(®)]| < oy (e (p)),VEt > to+T (4.25)

Moreover, if D = R" and o belong to class K., then (4.24) and (4.25) hold for any initial state

x(to), with no restriction on how large 1 is.

Another important boundedness property is the boundedness of states with respect to the input

to the system, consider the following nonlinear system,
x =f(t,x,u) (4.26)
The system (4.26) is said to be

e Input to State Stability if there exist a class XL function /3 and a class X function v such that
for any initial state x(to) and any bounded input u(¢), the solution x(t) exists for all ¢ > ¢,

and satisfies

I < BlIx(to)l, ¢ = to) +7(_sup_[[u(r)]})

to<t<t

Then the following theorem gives a sufficient condition for input-to-state stability,

Theorem 7. Let V : [0, +00) X R™ — R be a continuously differentiable function such that

ap(x) < V(t,x) < ag(x) (4.27)
ov. oV

S S f(t%) < — W (), x| > p(ul]) > 0 (4.28)

V(t,x,u) € [0,+00) x R™ x R™, where o,y are class K, functions, p is a class K function,
and W3(x) is a continuous positive definite function on R™. Then system (4.26) is input-to-state

stable with v = a;' o ay o p.

In this section the boundedness property of the non-autonomous nonlinear dynamical system
is considered. In next section, the output structure is added into the system dynamics and the

passivity will be discussed.
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4.3 Passivity
The input-output relation y = h(¢, u) is said to be

Passive if u’y > 0

Lossless if u’y = 0

Input strictly passive if u’y > u¢p(u) and u? p(u) > 0,vu # 0

Output strictly passive if uly > yT¢(y) and yZ(y) > 0,Vy # 0

For a dynamical system represented by a state space model

x = f(x,u) (4.29)

y = h(x,u) (4.30)

where f : R" x R? — R" is locally Lipschitz, h : R" x R? — RP is continuous, £(0,0) = 0
and h(0,0) = 0. The system (4.29)-(4.30) is said to be passive if there exists a continuously

differentiable positive semidefinite function V'(x) (called the storage function) such that

uly >V = S feew), V(x,u) € R < R? (4.31)
X

Moreover, it is said to be

e losslessifuly =V
e input strictly passive if u”y > V 4+ u”p(u) and u”p(u) > 0,Yu # 0
e output strictly passive if u”y > V + yTp(y) and yT p(y) > 0,Vy # 0

o strictly passive if u”y > V + 1(x), where 1)(z) is positive definite.

in all cases, the inequalities hold for all (x,u) € R"™ x RP.
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To illustrate the relations of the passivity and stability, the zero-state observability is required.
The system (4.29) and (4.30) is zero state observable if no solution of x = f(x, 0) can stay iden-
tically in S = {x € R"|h(x,0) = 0}, other than the trivial solution x = 0. The following two

lemmas give the relation between the passivity and stability.

Lemma 5. If the system (4.29)-(4.30) is passive with positive definite storage function V (x), then

the origin of x = f(x, 0) is stable.

Lemma 6. Consider the system (4.29)-(4.30). The origin of x = f(x,0) is asymptotically stable

if the system is

e strictly passive or

e output strictly passive and zero-state observable.

Furthermore, if the storage function is radially unbounded, the origin will be globally asymptoti-

cally stable.

4.4 Outline of the System Analysis and Control Design

In previous sections, the complete system dynamics of the kite energy systems are given. To
design control schemes for a kite energy system, a high level description of the kite system is
needed. In an airborne kite energy system, the Kite attitudes, ¢, # and v/, can be treated as inputs to
the aerodynamic model. The aerodynamic model of the kite energy system can be treated as a sys-
tem with kite apparent velocity as input and the aerodynamic force as output. The translational kite
dynamics takes the aerodynamic force as input and kite velocity as output. The cascade relation of

the kite rotational, aerodynamic and translational dynamics is shown in the following Figure 4.1.

The coupling between the rotational and translational dynamics is unidirectional in airborne
kite energy systems. Due to the air density, the influence of kite translational motion to rotational
motion is neglected in the airborne system. On the other hand, the influence of the added mass ef-
fects on the undersea kite system is not negligible. Therefore, the coupling between kite translation

and rotation is more complicated as shown in Figure 4.2
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Figure 4.1: Airborne Kite Energy System Diagram (Open Loop)
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Figure 4.2: Undersea Kite Energy System Diagram (Open Loop)

Based on the analysis of open loop kite energy system dynamics, the input to state stability
of the kite energy system is addressed. In passivity based system analysis, we propose that the
kite mechanical energy with respect to the wind is a more suitable perspective to address the kite
system stability. It can be shown in the analysis that the aerodynamic force is dissipative with
respect to the kite apparent velocity. By considering the undersea kite and its surrounding fluid as

an entire system, a modified PD type control signal is proposed.

Furthermore, the detail system diagram of the steady aero-/hydro-dynamical force can be
shown in the following Figure 4.3. The key concept in calculating the aerodynamic force acting on
the kite is the apparent attitude, angle of attack « and side slip angle 3. Therefore, to analysis the
influence of the aerodynamic force on the kite motion, it is important to analyze the procedure for
generating angle of attack « and side slip 5. It is important to realize that the kite apparent angles

are spherical coordinates of the kite apparent velocity measure in the body frame, i.e.

(ua Vg wa>=HVaH (cosacosﬂ sin 3 sinacosﬁ)

Therefore, by transforming the glider system dynamics into spherical representation of the appar-
ent velocity, i.e. ||V,||,a, S, the kite angular velocity w becomes the control input to the kite

translation. The rotational and translational dynamics form a cascade system. The back stepping
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Figure 4.3: System Diagram of Aerodynamic Force

strategy can be applied on the system control design.

On the other hand, the kite apparent angles, o and /3, can be treated as output from a nonlinear
function that take kite apparent velocity measured in the earth Cartesian frame, V, as inputs. An
apparent attitude tracking trajectory can be obtained by solving the nonlinear process. The solution
of this desired kite attitude trajectory requires the Euler angles to track a time varying attitude
trajectory. To achieve the tracking behavior, two types of rotational control signals are designed

based on the sliding mode method and passivity based method.

The following table summarize the dynamic model that used to simulate the kite rotational

and translational motion as well as the control strategies that applied for different models.

FlyGen Airborne | GroundGen Airborne | FlyGen Undersea
Lyapunov/Passivity Based | Section 5.1 — 5.3 Section 5.1 — 5.3 Section 5.4
Dynamic Attitude Tracking | section 6.1 — 6.2

Geometric Attitude Tracking | Section 7.1 — 7.3 Section 7.1 — 7.3

In the following chapters, three control system design are proposed based on different kite
system dynamics. Based on the steady aerodynamic model proposed in the previous chapter, the
passivity nature of the aero-/hydro-dynamical force with respect to the kite apparent velocity is
addressed. A Lyapunov based control design is proposed in the airborne kite system, the asymp-
totic stability of system is established using invariance principle. On the other hand, the undersea
kite system dynamics are more complicated and the passivity based control design is proposed.
Combining the passivity of the steady aero-/hydro-dynamical force and the passivity/Lyapunov
based control design, the ultimately boundedness of the kite translation under steady aero-/hydro-

dynamic perturbation is established.

As shown in the system dynamics diagram, the aerodynamic force is complicated process

coupling the kite translational and rotational states as well as the wind condition. The aerodynamic
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coupling is the reason of the under-actuation of the kite translation. To decouple the aerodynamic
forces, a time varying rotational attitudes are proposed. To achieve the desired kite attitudes, a non
autonomous desired rotational dynamics are proposed. The sliding mode control method is used
to design the corresponding control scheme and the Lyapunov-like method is used to provide the
asymptotic stability of the rotational control. In the proposed apparent attitude tracking control
system, the first and second order derivatives of the kite attitudes is required. Therefore, a high
gain observer is designed to provide the real time differentiation of the signals. A comparison
study of the Lyapunov based control design and apparent attitude tracking control is conducted on a
baseline simulation. Moreover, the apparent attitude tracking control also modified the original kite
dynamics derived from the Euler-Lagrange approach. By applying the apparent attitude tracking
trajectory to the kite translational dynamics, the aerodynamic force is decoupled. The kite apparent
attitudes, v and /3, are introduced to the translational dynamics as control inputs. A cascade kite

dynamics are proposed based on the apparent attitude tracking.

In geometric apparent attitude tracking control, the rotational control signal is transformed to
translational control signal through apparent attitude tracking. However, the translation actuation
can also be achieved by coordinate transformation in modeling kite translational dynamics. As
shown in kinematic relation, the kite apparent velocity can be used as an coordinates that describe
the kite translation. By transforming the kite translational dynamics into a non-inertial body frame,
the kite angular velocity appears in the system dynamics as control inputs. The rotational and
translational kite dynamics form a cascade system. The back-stepping method can be used to

design the control system of kite dynamics.
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Chapter 5

Lyapunov Based Control Design

5.1 Passivity Analysis of Airborne Kite Energy Systems

In last chapter, the passivity property of the kite aerodynamic force is used to obtain the maxi-
mum available power of the airborne kite energy system. In this chapter, this property will be used
to analysis the stability of the kite motion. For simplicity, the airborne kite energy systems are first

to be analyzed. Moreover, it is assumed that the wind velocity is constant:

Assumption 1. The wind velocity W is constant and horizontal.

Consider the airborne kite translational dynamics in Cartesian frame C and rotational dynam-

ics in body frame B

1 .
(m+§ptr)Vc :Hc+Gt+TC (51)

Jw=—-wxJw+up (5.2)
Define the input and output of the open loop system (5.1)-(5.2) as follows

u= <TC uB>, y = (Vc W w) (5.3)

61



The supply rate to the system is defined as the inner product of the output and input function
s=u'y=TL(Ve — W) + ubw (5.4)
The storage function of the airborne kite energy system is defined as
1 1 9 | e

Taking the time derivative of the storage function along the kite system trajectory gives that

. 1 - . oU
Vi= (Ve — W)T(m + gptT)(VC - W) - Vg@T +wJw (5.6)
c

Using the constant wind velocity assumption, the time derivative of V; can be simplified as follows

. 1 .
Vi=Ve—-W)'(m+ =pr)Vg — Vga—U +wlJw
3 Bro
ou
= (VC — W)T(HC + Gy + Tc) + Vga + wT(—w X Jw + uB)
oU
= (Vo —W)THeg + (Ve = W)G, + VgaT + (Vo = W)T'T¢ +wlup
C

Based on the horizontal wind assumption, the wind velocity is perpendicular to the gravitational

force, therefore, the time derivative of the storage function can be simplified as follows

Vi = (Ve — W) THe + VEG, + V@STU + (Vo — W) 'To + wlup
C

= (VC — W)THC + (Vc — W)TTC + wTuB

The second equality holds due to the definition of gravitational force G; = —%. Additionally,
notice the following identity
(Ve — W) He = (Ve — W) LepLpcHe = Vi Hp (5.7)
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Figure 5.1: Airborne Kite Energy System Diagram (Open Loop)

Using the passivity of the steady aerodynamic force with respect to apparent velocity,
VIH; <0
the time derivative of the storage function yield
Vo< (Ve = W)T'Te + wlup (5.8)

Therefore, the airborne kite energy system is passive. However, the kite system dynamics (5.1)
and (5.2) is under actuated, the tether can only provide the tension force in the tether direction.
Therefore, no tension control signal can be design such that V, is negative definite. On the other
hand, the overall system is unidirectional coupled as shown in Figure 5.1 and the aerodynamic
force is passive if a, f € (—%71, %ﬂ') Hence, the kite rotational and translational control signal

can be designed separately. The rotational control design will not influence the kite translational

stability as long as the apparent angle «, 5 € (—%ﬂ', %7‘(‘)

5.2 Lyapunov Based Rotational Control Design

Since the kite rotational motion is independent with respect to the kite translational motion, the
rotational control design is first studied in this section. Assume that the rotational transformation

matrix R is not singular, i.e.

Assumption 2. The kite pitch angle is bounded away from the singularity, there exist a small

number 6, € (0,%) suchthat =5 4+ 6, <6 < T — 6.
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Under the assumption 2, the complete kite rotational dynamics are given the following state

space model

=R 'w (5.9)

Jw=—-—wxJw-+up (5.10)
Choose the rotational Lyapunov function as follows

1 1
V, = §wTJw + 5(@ —0,)"Ke(® - 0,) (5.11)

where Kg is a positive definite design matrix and ®, is constant desired kite geometric attitudes.

Take the time derivative of Lyapunov function along kite rotational dynamics gives that

V, =wlJw + 0TKe(0 — 0,)
= wTuB + @TK@(@ — @d)

—or <RTuB +Ko(© — @d)>
Let the control signal up satisfies the following equation,
RTup + Ko(® — 0,) = -Ko0© (5.12)
Then the derivative of rotational Lyapunov function V. is given by

V.= -0"Ks0 <0 (5.13)

Based on the assumption, the rotational velocity transformation matrix R is invertible and the

resulting control signal is

up = —(RT)~! <K@(@ N CHE KQ(;)) (5.14)
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The closed loop system dynamics are
Ji = —w x Jw — (RT) <K@(® —0,)+ KQG)) (5.15)
Using invariance principle, the invariance set of the closed loop system must satisfies that
©=0; w=0; w=0 (5.16)
Therefore, the only closed loop dynamic trajectory that satisfies the invariant set condition is
® -0, (5.17)

The closed loop kite rotational system dynamics is asymptotically stable.

5.3 Lyapunov Based Translational Control Design

Among the airborne kite energy systems, there are two different power generation modes. In
a lift mode airborne kite energy system, also known as the GroundGen system, the electricity is
generated in a ground based station. On the other hand, in a drag mode airborne kite energy system,
turbines are mounted on the kite or glider to generate power. In this study, we assumed that in a
GroundGen system, the tether length is variable and the mechanical power is converted to the
electrical power through tether tension. While in the FlyGen system, the tether length is assumed
to be constant and the energy in the apparent wind is converted to electrical power through on board
turbines. In both cases, the tether tension is a important factor in achieving kite power generation.

In this section, the influence of the tether tension on kite motion is addressed.

In the case of variable tether length airborne kite energy system, the translational states and
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velocity transformation matrix is given by

CcoSqsingy, —rsing;sings 7 COS (g COS Qo
T
q= (T 73} qg) P = sin ¢ T COS q1 0

COS (@1 COSQa —Tsing, cosqa —7r Cosqp sin qo

On the other hand, the translational velocity transformation matrix P and generalized coordinate

q of a constant tether length kite energy system are given by

—sing;sings  COS @1 COS @
T
q= <CI1 QQ) P=r cos qq 0

—sing; cosqa — COS @y Sin g

Additionally, denote the wind velocity as W, the kite apparent velocity V, and kite velocity V¢

are given by
Ve=Pq, V,=Pq—W (5.18)

Moreover, if the wind velocity W is constant, the kite apparent translational dynamics takes the

same form of kite absolute translational dynamics.
1 )
(m + gptr)Va =Gec+He+Te (5.19)

To facilitate the system analysis, the following two equivalent assumptions need to be made

Assumption 3. The gravitational force on the kite is bounded by a quadratic function of the kite

apparent velocity, i.e.
IGell < Ca||Val? (5.20)
Assumption 4. The kite apparent speed is not less that some nonzero minimum value, i.e.

vam >0> ||Va|| > Vinin (521)
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To analyze the influence of tether tension on kite motion, the following Lyapunov function

candidate is chosen,

1 1
Vi = 5(m+ 2pn)IVal* + U (5.22)

By definition, the kite gravitational potential energy is defined by the integration of gravity with

respect to kite displacement

U— / Gdre (5.23)

Using the Assumption 3, the gravitational potential energy is also bounded by a quadratic function

of the kite apparent velocity
U< [ Gl < Call Vs (5.24)
Therefore, the Lyapunov function candidate (5.22) is bounded by two class K functions

1 1 1 1
S+ o) IVall® Vi < 5(m+ 5on) [Vl + Cal ValPr (525)

Take the time derivative of the Lyapunov function V, along the system trajectory gives that

Vi=VIH, 4+ VIT,
1
= _§Pt“VaH30a + VgTC

1
< =525 Val’Ca+ [Vl | Te (5.26)

To derive the tension control signal that guarantee the boundedness of the kite apparent velocity, it

needs to assume that the coefficient C,, is lower bounded.

Assumption 5. There exist a positive minimum value of C,,, that is

EI(C1a)m7in > 0 > Oa Z (Ca)min (527)
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Hence, for a positive number 0 < €, < C, then the following inequality holds

2| Te|l

Vi < —||Vall? i ||[Va| = | =———
Sl Vel IV 2 [

(5.28)

Hence the kite system dynamics (5.19) is input-to-state stable, that is there exist a class KL func-

tion 3, and a class K function 7, such that the kite apparent velocity satisfies that

IVall < BalllValto)ll;t = t0) +7a(_sup | To]l)

to<7<

Therefore, if the magnitude of tether tension is constant, the kite apparent velocity is bounded.
[Vall < BalllValto)ll,0) + valpe) if || Tell < pe (5.29)
Moreover, if the tether tension is proportional to the apparent velocity ||V,]|, i.e.
ITell = Kol[Vall for Ko >0 (5.30)

the kite apparent velocity V, can be shown to be ultimately bounded. The derivative of the Lya-

punov function (5.26) under the control signal (5.30) becomes,

: 1
Vi < =5 Val'Ca+ |Vl I Te

1
= _§ptS||Va|ISCa+KaHVa”2 (531)

The ultimately boundedness of the kite apparent velocity is given by the following inequality,

2K,

V<0 if ||V > —-5— (5.32)
' || || ptS(Ca)min
The Lyapunov stability can be guarantee by choosing the following tension control signal
1 2
ITcll = 551 Val*(Ca)min (5.33)
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Table 5.1: GroundGen System Tension Control

Control Signal Formulation System Stability
Bounded Tether Tension ITc| < pe Bounded

Linear Tether Tension | Te|| = K| Vall Ultimately Boundedness
Quadratic Tether Tension | [ Tc| = 5p:|Val[*(Ca)min Lyapunov Stable

Under the control signal (5.33), the derivative of the Lyapunov function V; becomes
. 1
V; S _§pt5||va||3(ca - (Ca)mzn) S O (534)

Therefore, the tether tension control design for a GroundGen airborne kite energy systems can be

summarized in the following Table 5.1

For a FlyGen airborne kite energy system, the tether length is assumed to be constant. In this
case, the kite translation is constrained on a half sphere with no motion in the tether direction.
Therefore, the force is balance in the normal direction of the sphere. Using the virtual work

principle, the kite velocity satisfies that
ViTe=0 (5.35)
Choose the same Lyapunov function as (5.22), the time derivative becomes

Vi=VIHo+ V] T
=VIHe + (Vo — W) 'T¢

1
< =525 Val’Ca+ W[ Tc | (5.36)
It is important to notice that the tether tension can be calculated using the force balance

Ty = — ((GC +He) - fc) Fe (5.37)

where 1 is the unit vector in the tether direction. Additionally, the aerodynamic coefficients on
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kite is physically bounded
ICx < o0 (5.38)

Therefore, using Assumption 3, the tether tension of a FlyGen kite energy system is bounded by

the following inequality
1
IToll < 5aSIValP(ICsll + Co) (5.39)

Therefore, kite apparent velocity is ultimately bounded,

‘CBH + Cq

V, <0 if HVaHz’ Clm (5.40)

In summary, the apparent velocity of a FlyGen airborne kite energy system is ultimately bounded.

The key control and input parameters of a baseline simulation is given in the following table.
In the baseline simulation, the Lyapunov based rotational and translational control signal is applied
on a airborne kite energy system, the results shows that that the consecutive power generation and
retraction motion has been achieved. In the power generation phase, we propose a switching
control law which establishes cross wind kite motion by alternating desired roll, pitch, yaw trim
angles ©, as follows, where the variables ¢; and ¢, represent the right and left limit in cross wind

motion. T
ob 0w | i e
®d - T . f—
R B s
In the retraction phase, on the other hand, the control goal is to establish retraction near the mid-

plane (g, = 0), thus we propose the following desired roll, pitch, yaw trim angles
T
@d:[o 0 0] 07 <0

In the following figures, the robustness of the control system design is tested through simula-

tions. In all cases of different mass and wind speed situation, the Lyapunov based control design
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Table 5.2: Input and Control Parameters

parameter value parameter | value parameter value
Kite Mass 15kg | K, 1000 | (¢, 65,47 | [50°,70°,20°]
Kite Area 15m? | Kq 10001 | [¢;,0;,%;] | [50°,70°,20°]
Tether Density | 0.003 kg/m | K¢ 15001 | 0~ —25°
Tether Diameter 0.002 m | [q5, ¢ ] +11.5° | ¢ 300-600m
Wind Velocity 6 m/s

Table 5.3: Power Output

Wind Speed(m/s) | mass(kg) | Power(kW)
12 2.17
6 15 2.57
18 2.56
12 2.57
7 15 2.58
18 2.37

achieve successively power cycles. In table 5.3, the power of these cases are listed.

5.4 Tethered Undersea Kite Systems

Using the same concepts that have been developed in the airborne kite energy systems, the
kite energy generation can also be applied to the undersea circumstance. There are three major

differences between the airborne and undersea kite energy systems:

e The water provide significant buoyancy than the air, which is not negligible;

e The water is much more dense and viscous than the air, therefore, there is also significant

added mass effects;

e Due to the buoyancy and added mass effects, the typical configuration of the undersea kite

energy system is the FlyGen system.

Similar to the FlyGen airborne kite energy systems, the undersea kite energy system consists of a

fixed length tether, a rigid kite or glider and on-board turbines. To facilitate the system analysis,
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Figure 5.2: Wind Speed = 6m/s, Mass = 12kg

assume that the kite geometric attitudes satisfies the Assumption 2, i.e. R is invertible. The

complete system dynamics of the undersea kite energy systems in body frame B are given by

1 .
(m+§ptr)(VB+w XVB) =LpcG;+Hpg+ A, +Tpg (5.41)

JotwxJw=RHYug+A, + R H(G, +G,) (5.42)

It is important to notice that the added mass effects are formulated in the relative motion reference

frame, i.e.
A= —(M,V,+T70) —w x (M, V, +T'Tw)
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Figure 5.3: Wind Speed = 6m/s, Mass = 15kg

73



150

500
400
300
200
100
OA
-600
-400
-200
o 50 100
Xg(m) 0 150 100 -50
B Y& (m)
(a) Kite Spherical Coordinate Trajectory
de
5 & Q)‘
actual
0
-50 : :
0 100 200 300 400 500 600 700
O(de
50 T T T (deg) T T T
0 |I' R
50 ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 700
de
100 T T T v(deg) T T T
° TR
100 ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 700
time(s)

(c) Kite Aerodynamics Coefficient

Tether Length (m)

1000
500 W\//\//,
0 L . . . . .
0 100 200 300 400 500 600 700
2 Crosswind Angle(deg)
. . : : . .

0 100 200 300 400 500 600 700
0 Inclination Angle(deg)

-100 - -
0 100 200 300 400 500 600 700

time(s)
(b) Kite Spherical Coordinate Trajectory

air

Kite Air Speed (m/s) V

100 T .
" Towommsnente-Lwmomn, L pmnonpntn, L ool
0 h . | ) | |

0 100 200 300 400 500 600 700
2 Net Power Output(kW)

o I
-20 . . . .

0 100 200 300 400 500 600 700
4 Power Consumption(kW)

AL
. Ll A N

0 100 200 300 400 500 600 700

(d) Angle of attack and control tension

Figure 5.4: Wind Speed = 6m/s, Mass = 18kg
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Figure 5.5: Wind Speed = 7m/s, Mass = 12kg
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A, =—Jw+TV,) —wx Juw+TV,) — Vi x (M,V, +T'7w)

To simplify the analysis, assume that the current velocity is constant, then the following lemma

holds

Lemma 7. For constant current velocity,

1 . 1 .
(m + gptr)(VB +wxVg)=(m+ gptr)(Va +w X V,) (5.43)

Proof. By definition, the current velocity measured in body frame B is
W =LosgWp (5.44)
Taking the time derivative of the equation above
LosWp +LogWp =0 (5.45)
Using the matrix identity
LopQWp + LepWp =0 (5.46)
Since the velocity transformation matrix L¢ g is invertible,
Wi =-Q,Wpg (5.47)
Substituting equation (5.47) into equation (5.43) yields

1 .
(m + gptT’)(VB + w X VB)

1 .
:(m+§ptr)(VB+wXWB+w><VB—w><WB)

=(m + épﬁ)(\'/’a +w xV,) (5.48)

Thus the lemma statement holds. O]
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Substituting equation (5.48) into equation (5.41), the dynamics of kite apparent velocity is

given by

1 .
(m + gpﬂ")(Va +wxV,)=LgcG; +Hp+A; +Tp (5.49)

On the other hand, the right hand side of the kite rotational dynamic can be rewritten as follows
JotwxJw=ug+A, +RH(G, +G,) (5.50)

where ugp = (R71)Tug. Further define the augmented rotational control signal and augmented

rotational added mass effect as follows

u; = (R"H g — Wi x (M, V, +T'w) (5.51)
Al = —(Jw+TV,) —wx (Juw+TV,) =V, x (M, V, +TTw) (5.52)

Furthermore, using the cross product identities,

1
V, x (m+ gptr)Va =0

Equation (5.52) can be rewritten as follows

) 1
A =—-Jw+TV,) —wx Jw+TV,) -V, x (Ma + (m + gpﬂ“)lea + FTw) (5.53)

Then the rotational dynamics of the undersea kite is given by
Jo+wxJw=us+A +RH(G, +G,) (5.54)
Therefore, the undersea kite system dynamics are given by

1 . ) 1
(Ma + (m+ §pt7°)]:3)va + T+ wx ((Ma + (m+ gptr)Ig)Va + I‘Tw)
=LgcG;,+H+Tpg (5.55)

O=R'w (5.56)
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. 1
(T+3)0+TV, +w x (J+I)w+TV,) +V, x ((Ma + (m+ 5L Vi + I‘Tw>

—uy + (RHT(G, +G,) (5.57)
First consider the kite apparent kinetic energy defined in the following equation

M, + (m+ Lpm)I rr V,
wT> (m+5pm)Ls (5.58)

r J+J3)) \w

Taking the time derivative of 7}, along the system trajectory (5.55) and (5.57) yields

M, + (m + $per)Is rr V.,
wT)
r (J+Ja) w

Q; —w X <(Ma + (m+ 3pr)I3) Vo + I‘Tw>
= (Vi w)
Q. —V, x ((Ma + (m + %ptr)ly))Va + I‘Tw) —w X ((J +Jo)w + I‘Va)

where the generalized force Q; and Q, are given by

Q:=LpcG; +H+Tp (5.59)
Q, =uz+ R H(G, +G,) (5.60)

Using the properties of the vector triple product, the following equations hold
W (wx (T4 3)w+TV,)) =0 (5.61)

\%4 (w X <(Ma + (m+ %ptr)lg)va + I‘Tw>)

S— (Va X (Mo + (m+ %ptr)lg)Va + 1“%)) (5.62)

Therefore, the time derivative of 7}, can be further simplified as follows
T,=VIiQ, +u7Q, (5.63)

Moreover, consider the potential energies of the undersea kite energy system, which consists of
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two parts, the gravitational and buoyancy potential energies and velocity potential energies

U = —GTI‘C + BT(I'C + LCBd) (5.64)
1
U, = —éngawB (5.65)

For the constant current condition, both U and U, are bounded by constant value, i.e.

Ul < (G + IBI)7maz + [[BIlfld]] (5.66)

1
U,| < §Am||W||2 (5.67)

Under the assumption 4, there exist a minimum nonzero kite apparent speed, i.e. |Vl > Viin,

there must exist a constant C7; such that
Ul +|U,| < Cy||Val? (5.68)

Taking the time derivative of the potential energies gives that

so0U .roU . 10U,

U4+U,=VL—+© ——~ 10 5.69
* Core T° 90 77 B0 -69)
Recall the definition of G;, G, and G,
ou ou ou,
- — Q5 Gr = T3~ Gv = -
G ore’ 00 00
Hence the derivative of U can be simplified as follows
U+U,=-VIG, -0 (G, +G,) (5.70)
Further define the the kite artificial rotational potential energy as
1
Uy = 5(0 = 8,)"Ko(© — ©,) (5.71)
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The time derivative of U,, if the desired kite attitudes ®, is constant, is given by
U, = 0TKe(© — 0,) (5.72)

Rewrite the kinematic relation of the kite rotation using attitude error ®, = ® — ©,, the undersea

kite system dynamics become

1 . 1
(Ma + (m+ §pt’l“>:[3)va + T+ w x ((Ma + (m+ gptr)Ig)Va + I‘Tw>
=LpcG,+H+Tp (5.73)
O,=R'w (5.74)

T+ J)w+ITV,+wx (T+J)w+TV,) +V, x ((Ma + (m + %ptr)lg)va + rTw>

—uy + (RHY(G, +G,) (5.75)
Choose the Lyapunov function candidate as follows
E.=T,+U+U,+ U +|U|+|U,| (5.76)
Notice that both 7}, and U, take positive definite quadratic form,

(Ua)min(”va”2 + HWHQ) <7, < (Ua>max(HVaH2 + Hsz) (5.77)

(0@)min||®e||2 S U S (0—@)mmc||@)e||2 (578)
Therefore, the Lyapunov function (5.76) is bounded by two class K functions

(Ua)min(”VaHQ + Hw”Q) + (U@)min||®e||2 < E,

< (Oa)max(||va||2 + ”‘*’HQ) + (UG)max||®e||2 + OU||Va||2 (5.79)

Take the time derivative of the Lyapunov function E, along the system trajectories (5.73)-(5.75)

gives that
E,=T,+U+U,+U,
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oU -7 oU . 70U,
T_ e v
core 7@ 50 7® o

~VI'Q+w'Q, — VLG, -0 G, -0 G, + OTKe(© — 0,) (5.80)

=VIQ, +w'Q,. +V +0"Ko(® — ©,)

By substituting equations (5.56), (5.59) and (5.60) into equation (5.80), the time derivative of £,

along the system trajectories (5.73)-(5.75) becomes
E,=VIH+Tp) +wiuy+ 0TKe(© — 0,) (5.81)

Choose the rotational control signal such that the last two term in equation (5.81) is negative

definite
wiuly + OTKe(© — 0,) = —-07K,0 (5.82)
Solving equation (5.82) gives the augmented rotational control signal as
up =R (- KoO - Kg(O© - 0,)) (5.83)
Therefore, the kite rotational control signal ug is given by
up =R (- KO —Ke(© — 0,)) + Wg x (M, V, +I'"w) (5.84)
Under the control signal (5.84), the time derivative of £, is bounded by the following inequality
E, <VI(H+Tp) (5.85)

Furthermore, since the tether length is constant, the total force acting on the kite is balanced in the

tether direction, i.e.

ViTp =0 (5.86)
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Therefore, the bound of the time derivative of I, can be further simplified
E, <VIH+ (V- W) Tp=VIH-W[Tg (5.87)

If the tether tension satisfies the following assumption,

Assumption 6. Assume the tether tension is bounded by a quadratic function of the kite apparent

velocity

ITs| < Kr||Val (5.88)

Then the expansion of equation (5.87) becomes

E, <VI'H -wWZIT;,

1
= iptSHVaHSCa + KTHVaH2 (589)

Therefore, the undersea kite energy system dynamics (5.73)-(5.75) are ultimately bounded, i.e.

2K

550 (5.90)

E, <0 if |V4|>

where C),;,, is the positive minimum of the coefficient C,. It is clear that the lower bound of
the parameter C, has a significant influence of the performance of the kite apparent velocity. It
is also very important to notice that under the steady aerodynamics condition, the parameter C,,
is function kite apparent velocity « and  as shown in equation (??). Therefore, to satisfies the
minimum value assumption of C,, the control strategies that controlling the o and 3 needs to be

developed.

For a thin finite wing undersea kite, matrices M, and J,, take the diagonal form

00 O Ao 00
Ma =10 0 O ; Ja = 0 /\3 01]: I' = 03><3
00 N\ 0 0 0
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Table 5.4: Input and Control Parameters.

parameter value parameter value parameter value

m 10000kg | J, 2.3x10°kgm? | (g5 ,q5 ) (—20°, +20°)
Jy 9.4x10%°kgm? | J, 2.4x10%kgm? | (¢, 08) | (—70°,+70°)
S 35m? | AR 2| (07,60 o°
St Tm? | p, 0.64kg/m | (v, 9F) | (—40°,+40°)
\%\% [2,0,0]m/s | pu, 1025kg/m? | Kg 1.79x10°1
a K1 0.075 | Kq 1.79x10°1
Ko -0.005 | K3 0.01

N d -0.1m

where A\{, A\ and )3 are added mass parameters with kite chord length is ¢ and kite area .S, then

the added mass coefficients are defined as,

A Ay A3

N T AR P e

K1 = prS;

where p,, is the volume density of the surrounding fluid, and the coefficients depend on planform.
The key undersea kite system input parameters for the baseline simulation are given in Table 5.4.
o

The aspect ratio represent kite wing span compared to chord length, AR = % =

5 C% To form a

figure eight kite trajectory, we propose a switching law for rotational control. The desired Euler
angle ©, is switched when the cross current positions of the kite CG reaches (q;", ¢; ) which are

set cross current angles:

oy 07 V)) @ > a5
o, - (94 05 ¥a 2 2 (5.91)

(0q 05 ¥g) @ <aq
The control design parameters are also listed in Table 5.4. The simulation result of the Lyapunov
based control signal to the undersea kite energy systems are shown in the following figures. To test
the robustness of the control system, simulations are run under two different current speed with
three kite mass and area. In all cases, the Lyapunov based control generates figure-eight trajectory

of the kite motion. The corresponding power output is listed in Table 5.5.

85



Table 5.5: Power Output

Current Speed(m/s) | Area(m?) | mass(ton) | Power(kW)
30 34 31.98
2 35 4.0 29.79
40 4.6 28.27
30 34 58.06
2.5 35 4.0 55.10
40 4.6 43.42
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Figure 5.8: Current Speed = 2.5m/s, Mass = 3.4ton, Area = 30m?
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Figure 5.11: Current Speed = 2m/s, Mass = 3.4ton, Area = 30m?
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Chapter 6

Dynamic Apparent Attitude Tracking

In the previous chapter, the influence of the tether tension on kite translational motion is stud-
ied. Although the boundedness of the kite apparent velocity can be guaranteed from the Lyapunov
analysis, no conclusion can be drawn on the detailed information of the kite apparent velocity.
For a FlyGen airborne kite energy system, the power production by the on board turbine can be

formulated as follows
1 3
P = §pairC’pSt(HVaHCosacosﬂ) 6.1)

where C), is the power harvesting coefficient of the on board turbine. On the one hand, for a
constant apparent wind speed, the maximum power production is achieve by a = § = 0. On the
other hand, to maintain the power generation in flight, the angle of attack o needs to be kept large
enough to provide lift force. To achieve the balance between the sustainability and optimality of
the kite power generation, control schemes that regulate the kite apparent attitudes, o and 3 need

to be developed.
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6.1 System Dynamics Transformation

If the wind velocity is constant, the kite apparent velocity obey the same dynamics as the kite

absolute velocity as shown in Lemma 7,

1 . 1 .
(m+ gptr)(VB +wXxVpg)=(m+ gpﬂ")(va +w xV,)

The airborne kite system dynamics in frame B is given by

1 .
(m + gptr)(VB + w X VB) = HB + LBCGt + TB

Therefore, the kite apparent translational dynamics are given by

1 .
(m + gptr)(Va +wxV,)=Hpg+LgcG;+Tp (6.2)

Moreover, the kite apparent speed ||V,|| and apparent attitudes «, /3 are the spherical coordinates

of the kite apparent velocity.
T
V.=V, (COS acosf sinfl sinacos ﬂ) (6.3)
Taking the time derivative of equation (6.3) gives the kite apparent acceleration transformation

cosacos3 —V,sinacosfS —V,cosasinpf
V,=Apéy Ap= sin 3 0 V, cos 8 (6.4)

sinacosfS  V,cosacosf —V,sinasinf

where £ = (Va Q 5). Substituting the velocity and acceleration transformations (6.3) and

(6.4) into kite apparent dynamics (6.2) yields that

1 .
(m—i—gptr)(ABéB— [Vi]xw)=Hp+LpcG;+ Tp (6.5)
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where [V,] is the cross product matrix,

0 —w, v, 0 —sina cos 8 sin 3
Vax=|w, 0 —u,|=Valsinacosp 0 —cos acos f3
—Vy Ug 0 —sin g cos o cos 3 0

Taking the inversion of the acceleration transformation matrix is

cosacos S sinf3 sinacosf

A- 1 _ sin o cos
B Vo cos 8 0 Va cos 8
cos asin 3 cos f3 __sinasin g
Va Va Va

Therefore, the kite system dynamics in £ 5 is given by

éB :Agl[Va]Xw+ Agl(HB—f-LBcGt—i-TB)

m+ spr

The equation (6.8) can be further simplified by noticing that the gravitational force

1
G, =(m+ §ptr)g

where g = (() 0 g). Therefore, equation (6.8) can be further simplified as follows

: 1 m+ Lo 1
=Dyw+ ———DyCp + —2—A;'Lgeg + ————AL'T
53 1% m—i—%ptr HLUB m+%ptr B LBCS m+§ptr B 1B

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

If the kite mass is much greater than the tether mass, then equation (6.10) can be further simplified

£, =Dyw+ 3feirS V2D Cp + A7 Lpeg 4+ — AT
= —_— —_—
B 1% m %pﬂ" a P HYB B LiBCE m %pﬂ’ B +B
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where the matrices Dy and Dy are given by

0 0 0 0 —sinf —cosf
Dy = | —c,tanf8 1 —s,tanp Dy = —#CB 0 0 (6.12)
cos B sin 8
Sa 0 —Cqa 0 7 v,

Denote D = Ap'Lpog + mA;T B, the complete airborne kite energy system dynamics
3

are given by

- %pairS 2

§p=Dyw+ -V 'DyCp+Dr (6.13)
m+ gpr

w=J"up - wx Jw) (6.14)

It is important to notice that the resulting system dynamics (6.13)-(6.14) is cascade. Therefore, the

back stepping methods can be used for control design.

6.2 Back-stepping Control Design

To design the back-stepping controller, the control signal for translational dynamics (6.13)
needs to be designed first. It is important to notice that there is no control signal acting on V,,
as shown in definition (6.12), where the first row of Dy is zero. Hence, choose the following

Lyapunov function candidate
Ly o L o
Ve =50 cos B+ 566 (6.15)

where the error apparent attitudes are defined as a. = o — ay, Bqg = 8 — B4 for some constant

desired apparent attitudes oy and ;. The gradient of the Lyapunov function is

VVe = (O aecos? B —a?sinBcos B+ Be) (6.16)
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The time derivative of the Lyapunov function (6.15) then becomes

1
. 5 airS
Ve = VU7 (Dyw + 22 _y2D,Cpy + Dy) 6.17)
m + 3pr

By substitution, the time derivative of the V, can be rewritten as follows

1

%pairs t
Va

Ve = o7 (Ew o V24 Cp + ~Er(Lpog + TB)> (6.18)
g t

m + %ptr

T
where d, = (56 a.cos? B a,cos fBsin B) and matrices in equation (6.18) are defined as fol-

lows

sin «v 0 —Ccos
E= 0 1 0 (6.19)
—cosa — aesina 0 . cosa — sin«
0 cos 8 sin 3

Eg=|—-cosf —a.sinf 0 (6.20)

—sin 0 —, sin 3
—cosasin cos [ —sinasin 8

Er = — sin . cos 8 —a, sin 3 cos acos 3 (6.21)

(e cosa — sin o) sin 0 (cosa + a, sin «v) sin

The desired angular velocity can then be calculated by the following equality,

1
—Ce = Bwy + @VfEHCB + iET(LBcg + —1TB) (622)
m + gpt’l“ sz m + §ptr

T
where ¢, = (kl Be koo, 0> . The desired angular velocity w, then becomes

1
Va

1
p— _pairs — p—
wy = = (ce + 2P yem0p 4+ By (Lpeg + TB)> (6.23)
M+ 507

m + %ptr
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The resulting time derivative is

Ve = — k182 — koa? cos® B < —2min(ky, ko) Vs (6.24)

Using Barbalat’s lemma the apparent attitudes converge to the desired value asymptotically. The

rotational dynamics (6.14) can also be transformed into the error dynamics form.
Jw, +w. x Jw =1u,

where the angular velocity tracking error and error dynamics control signal are given by w, =

w—wgandu, = up + Jwy + wyg X Jw.

Substituting the desired angular velocity w, into translational dynamics (6.13) and combining

the error rotational dynamics gives that

1
. B airS
€5 = Dyw, + Dywy + —229"_v2D,Cpy + Dy (6.25)
m+ spr
Jw, =u, —w, X Jw (6.26)

Choose the Lyapunov function of the error dynamics (6.25) and (6.26) as follows
 / 1 2 2 1 2 1 T
Ve = 5 % COS B+ §ﬁe + SWe Jw, (6.27)

Taking the time derivative of equation (6.27) along system trajectories (6.25)-(6.26) gives that

Ve = 615w, — k182 — kya? cos® B+ wlu,

= w!(u, +E"68,.) — k187 — ko2 cos® B (6.28)
Choose the error rotational control signal as follows,

u, =-5276, - K.w, (6.29)
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The resulting time derivative of the Lyapunov function (6.28) then becomes
Vi = —wTK.w, — k1 5% — ksa?cos? 8 < 0 (6.30)
Then the rotational control signal in body frame is then given by
up = Jwg + wy x Jw — B8, — Kew, (6.31)

Although the control signal (6.31) guarantee the stability of the tracking error o, and S, the achiev-
able angular velocity of a kite is limited. In order to handle the saturation issue in the desired

angular velocity, the following scaling is applied in the control system implementation,
~ Wy
Wq =Wsat7 1 (632)
lwal
Moreover, the first order time derivative of the desired angular velocity is required in control signal

(6.31), the high gain observer is applied to provide the real time signal differentiation.

I N g1, ~ N
X1 = Xg + f(wd —X1)
X 02

X9 = ?(wd - 721)

the o, o, are coefficients of the Huwitzs polynomial s*>+ 05+ 05 and € is a small positive number.
The states X1, X; are estimation of the desired angular velocity w, and its first order derivative fud,
the estimation error converge to zero as € goes to zero. Hence, the actual control signal that applied

on the kite rotation is given by
up =Jw, + @y x Jw - 275, - K@, (6.33)

where w, = w — wy. In the baseline simulation, it is clear that the limitation on the kite desired
angular velocity will results in nonzero residue errors in kite apparent attitudes. Hence, to achieve

the desired apparent attitudes, a different control approach is required.

The kite system parameters simulated for the baseline condition is list in table 6.1, and the key
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Table 6.1: Input Parameters

parameter value paramter value paramter | value
Kite Mass 70kg | Turbine Mass 35kg | Ks 201
Kite Area 15m? | Turbine Area 3m? | e 0.05
Aspect Ratio 3.27 | J, 1715kg - m? | K, 101
Jy 160kg - m? | J, 1875kg - m? | [0, 03] 8,16]
W, et [0,0,—6] | 2per 10m | wgq 0.05°/s
Q4 10° | Bq 5°

W =W,
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J,.The wind field is modeled using the exponential formular

)%

Zref

control parameters are also listed in table 6.1. The kite moment of inertial are label as J,, J, and




Yi(m) -10 <100 Xp(m)

(a) Kite Translational Trajectory

Angle of Attack « (deg)

(c) Kite apparent Attitude

. . . . . . .
50 100 150 200 250 300 350 400
Sideslip Angle 3 (deg)
50 100 150 200 250 300 350 400
Kite Air Speed (m/s) Ve
. . . . . . .
50 100 150 200 250 300 350 400

100

¢(deg)

-4 T T T T T
6 [ —
8 . . . . . . .
0 50 100 150 200 250 300 350 400
6(de
5 ( ‘ 9)
0 S
5 . . . . . . .
0 50 100 150 200 250 300 350 400
(de,
5 ! ! ! il : 9) : .
0 7\\\\4/ 7777777777
5 . . . . . . .
0 50 100 150 200 250 300 350 400
time(s)
(b) Kite Euler Angles Trajectory
wy (deg/s)
0.05 ! ! ! ! : . .
0 W
.0.05 . . . . . . .
0 50 100 150 200 250 300 350 400
wy (deg/s)
0.05 f ~ ! | .
0 . . . .
0 50 100 150 200
w, (deg/s)
0.05 . ! : .

150

200

250

(d) Kite Angular Velocity

350

400



Chapter 7

Geometric Apparent Attitude Tracking

In the previous chapter, an apparent attitude tracking control scheme is designed based on
the kite system dynamics transformation. However, since the achievable kite angular velocity is
limited, the saturation of the desired angular velocity will cause nonzero residue error. In other
words, the control input, which is angular velocity in this case, is small compare to other physical
effects in the system, such as the tether tension and aerodynamic force. Therefore, a different
apparent attitude tracking control method needs to be developed. By definition, the kite apparent

velocity and apparent attitudes are given in the following equations

V,=Lgc(Ve — W) (7.1)
«a = arctan E; [ = arcsin Ya (7.2)
Wy Va

Therefore, the generation of the kite apparent attitudes can be summarized as the following non-
linear process The new apparent attitude tracking control design is motivated by treating the kite
geometric attitudes as inputs and kite apparent velocity in the inertial reference frame as measure-
ments. It is clear that if the apparent velocity measurement in the inertial reference frames can be
obtained, then it is possible to adjust the kite geometric attitudes ® such that the desired apparent

attitudes can be achieved.
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V,
Vo = > Lpc —\ |
Sensor Measurement p= arcsm(v—a) :> B

Figure 7.1: Generation of Apparent Attitudes

g

« = arctan( =)
a

Outputs

7.1 Apparent Attitude Tracking Theorem

In this section, the attitude trajectory for apparent attitude tracking is proposed. The given
the desired apparent attitude o, 34 can be achieved by a desired kite attitude ®,. Denote the kite

apparent velocity in a inertial reference frame as follows
V= (u y w) = (Ve — W)T. (7.3)

The velocity angles can be further defined as

Y1 = arctan (%) (7.4)
w
Yo = arctan <\/ﬁ) (7.5

where the inverse tangent function takes value from interval (_%, %) The velocity angles v,
and 7, are the spherical representation of the kite apparent velocity V as shown in Figure 7.2.
For desired apparent attitude oy and [3,4, the desired kite attitude &, can be derived using velocity

angles v; and .

Theorem 8 (Apparent Attitude Tracking). To achieve the desired apparent attitude o4, 55 €

<—%7 %) , g 7 0, the desired kite geometric attitude is given by:

Ya=m (7.6)
0, = Q. arccos(cos ag cos By) — M'YQ (7.7)
|l u
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Figure 7.2: Velocity Angles

|ul

tan 5d)

¢q = — arctan ( : (7.8)
U sin g
Especially, if ag, 4 = 0 the desired kite attitude becomes
Yi=m (7.9)
u
O0q = —u’h (7.10)
u

and kite roll can be assigned to any value in the interval ¢ € <—§7 g)

Proof. Consider the generation of kite apparent attitudes « and 3 as shown in Figure 7.1. Using

equation (7.3) and the definition of matrix L ¢, the kite apparent velocity V,, is given by

Uq cos 6 cos cos 6 sin ¢ —sin6 u
v, | = | singsinfcosy — cos¢siny sin¢sinfsiny + cos ¢ cosp  sin ¢ cos b v
Wq cos ¢sinf cosy +singsiny  cospsinfsiny — sin¢gsiny  cos ¢ cos w
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By rearrangement, the transformation from V to V, becomes:

U =(vsiny + ucos ) cos — wsin b, (7.11)
Va :((v siny 4+ wcos ) sin 6 + w cos 0) sin g — (usiny — v cosv) cos ¢, (7.12)
W, :((U sin ) 4+ wcos ) sin § + w cos 9) cos ¢ + (usiny — v sin ) sin @. (7.13)

The linear combination of the sine and cosine function can be simplified as follows

vsinw—i—ucoswzﬂcos (Y — ) Vu? + v (7.14)
u
usinz/z—vcosw:—Msin(lp—%)\/UQ—l—vQ. (7.15)
u

Substitute equations (7.14) and (7.15) into equations (7.11)-(7.13),

Uq :(% cos (¥ — v1)Vu? 4 v?) cosf — wsin,
Vg :<(|%| cos (¢ — y1)Vu? + v2) sin f + w cos 0) sin ¢ + (% sin (¢ — y1)Vu? + v2) cos @,
Wy :<(% cos (¢ — y1)Vu? + v2) sin 6 + w cos 9) cos ¢ + (% sin (¢ — v1)Vu? + v2) sin o.

Let ©» = v;; then, the transformation from V to V, becomes

Ug :%\/u2 +v2cosf —wsinb, (7.16)

Vg :(%\/UP + v? sin@+wc089> sin @, (7.17)

Wy :<M\/u2+v2 Sin¢9+w0089> cos Q. (7.18)
u

Using the linear combination of the trigonometric functions,

M\/u2—l—vzcose—wsinﬁz M||V||cos (0+M72) (7.19)
u u u
M\/u2 +v2sinf + wcosf = MHVH sin (0 + Mfm) (7.20)
u u u

104



a = arctan(®=)

2

B = arcsin(s~)

Uq Vg W, ¢ =M

]
Lpc
]
— U
0 = |u|72
u v w

Figure 7.3: Tracking Local Wind

Substitute equations (7.19) and (7.20) into equations (7.16)-(7.18), and notice that | V|| = || V||

[u] V.| cos (9+ '“’72) ,

a:— —
u u

Vg = _|u] |Vl sin (9 + _]u|72) sin @,
U U

W, = M|]Va|| sin (9 + M’YQ) CoS ¢.
U U

By definition, the kite angle of attack and side slip angle are given by

tan o = tan (6 + M’yg) cos ¢ (7.21)
u
sin B = % sin (6 + %'72) sin ¢. (7.22)

lul
u

Thereby, if oy = 0; B3 = 0, the corresponding desired kite attitude is vy = 1,05 = ——7,. This

result is shown in Figure 7.3.

If desired apparent attitude oy, B4 € <_ 3 %) , g # 0 the desired kite attitude can be solved
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from equalities (7.21) and (7.22). Rewrite equations (7.21) and (7.22) as follows,

cos (0 + M%) tan a = sin (9 + M’}Q) cos ¢
U u
|l |ul

sin f = — sin (9 + —72) sin ¢
u u

Take the square sum of equations (7.23) and (7.24):

sin? 8 + cos? (9 + u
u

By rearrangement, the equation above becomes

cos” (0 + |u|72)(1 +tan?a) = 1 —sin® 8

M
Hence, the desired pitch angle must satisfy the following equation

|ul

cos? (9d + —72) = cos? o cos? 3.
u

Take the square ratio of equations (7.22) to (7.21):

.2
511126 = cos’ (9 + M%) tan® ¢
tan® « U

Use equation (7.25), the desired roll angle must satisfies that

tan? 3
D)

tan2 de = — .
S1” «

¢ ’}/2) tan?a = 1 — cos? (0 + |Z—|72).

(7.23)

(7.24)

(7.25)

(7.26)

Assume all angles in equations (7.21) and (7.22) are inside the interval (—g, g) then the sign

relation of equations (7.21) and (7.22) becomes:

sgn (o) = sgn(fy + ‘%’72)
4l )sen(da)

sen(8s) = sen(u)sen(0 +
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Combining equations (7.25)-(7.28), the desired kite attitude can be obtained as:

a |ul

04 = 4 arccos(cos ag cos ) — —o (7.29)
|y u
t
ba = M arctan (%). (7.30)
u sin g

The inverse cosine function takes value from interval (07 g) and inverse tangent takes value from
T s
(5 5) .

The kite attitude trajectory (7.29) and (7.30) are sum of (7.9), (7.10) and a constant offset.
Discontinuity will be introduced if sudden change occurred in the desired apparent attitude oy and
Ba. A smoother kite attitude trajectory can be achieved by using the roll angle, ¢, information in

the desired pitch angle , 6.

Theorem 9 (Smoothing Apparent Attitude Tracking). For oy, Bq € <—g, %) a smoothing kite

geometric attitude is given by:

Ya=m (7.31)
f; = arctan (tan Qg Sec gzﬁ) — M% (7.32)
u
t
o0 = Y arctan (12052 (7.33)
U sin ayg

Proof. The desired pitch angle ; is obtained by directly solving the equation (7.21) by treating 6

as unknown,

tan a = tan(0 + Mvg) cos ¢
u
f = arctan (tan asec ng) — Mvg (7.34)
u

Comparing equation (7.34) with equation (7.29), the desired pitch angle 6, is equivalent if and

only if

arctan(tan a sec ¢) = lo] arccos(cos a cos f3). (7.35)
«
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The equivalent relation can be obtained by substituting the desired roll angle (7.33) into the left

hand side of the equation (7.35). Rearrange equation (7.35) to the following form,

al

tan o sec ¢ = % tan ( arccos(cos a cos 6)) (7.36)

where the inverse cosine takes value from interval (0, g) Substitute equation (7.33) into equation

(7.36),

tan B)) = lo] tan (arccos(cos acos 3)) (7.37)

lu
tan « sec (— arctan ( -
o

u Sin &

The secant of the inverse tangent function is given by sec(arctan &) = /1 + &2, therefore, the left

hand side of equation (7.37) can be simplified as follows,

tan tan
tanadsec(arctan( - ﬁd)) =tanay 1+( - ﬁd)2
S11 Cq S111 G g
a
:M Vtan? ag + sec? ag tan? By (7.38)
Qq
. . D V1-¢2 .
Moreover, the tangent of the inverse cosine function is given by tan(arccos &) = > the right

hand side of equation (7.37) can be simplified as follows

|| 1 — cos? ag cos? By

= tan (arccos(cos ag cos By)) = 2 \/
Qg

0%

cos? ag cos? By

:M\/sec2 agsec? By — 1

Qq
_lad] \/8602 aqg(sec? By — 1) + tan? ay
Qg
a
:M V/sec? ag tan? By + tan? oy (7.39)
Qq

Comparing equations (7.38) and (7.39), it is clear that the equation (7.37) holds if the roll angle

achieves the desired value. O]
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7.2 Back-Stepping Rotational Control Design

In the previous section, two equivalent time varying trajectories for Euler angles ® are given
in equations (7.6)-(7.8) and (7.31)-(7.33). To achieve the desired geometric attitudes, a rotational
control signal needs to be designed. To facilitate the derivation, Assumption 2 needs to be adopted,

i.e. the rotational transformation matrix R is invertible

aeﬁa—gwﬁgegg—ee (7.40)

where the constant 6. € (0, 7). Then, the inverse of the rotational transformation matrix is

1 singtanf cos¢tanf
R'=10 coso —sing |- (7.41)

0 secfsing seccos¢p

Combining the rotational kinematics and the Euler rotational dynamics,

©=R'w (7.42)

Jw=up —wxJw (7.43)

The structure of attitude dynamics is cascade. The angular velocity w is the input to kinematic
equation (7.42) and the output of the Euler equation (7.43). The rotational tracking control signal
can be designed using a back-stepping method. Denote the kite attitudes and angular velocity

tracking error as follows
O, =0 -0y We = W — Wy. (7.44)
where w, is defined by the following equation
wi=R(0,-Ke(®—-0,) Kg >0 (7.45)
Then the rotational control signal can be designed as in the following theorem,
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Theorem 10. Assume the kite pitch angle is bounded away from the singularity as in (7.40). Given
the kite attitude dynamics (7.42) and (7.43), the rotational control signal can be chosen in the

following form
up = Jwg +wg x Jw - K,w. — (R")™'O, (7.46)

where K, is a positive definite design matrix. Then the attitude tracking error ©. is locally asymp-

totically stable.

Proof. Rewrite the rotational kinematic relation as follows

@ = Rilwd + Rilwe
= Gd - K@(@ - @d) + R_lwe

Therefore, the attitude tracking error satisfies the following error dynamics

0. =-KeO, +R 1w, (7.47)
Furthermore, rewrite the angular velocity dynamics into the form of equation (6.26) as follows
Jw, +w. x Jw =u, (7.48)

where u, = up —Jwy —wy X Jw. Therefore, instead of designing control signal using the original
rotational dynamics, the attitude tracking control signal can be designed using error dynamics

(7.47) and (7.48). Choose the following Lyapunov function,

1 1
V., = 5weTJwe + 59;”@6 (7.49)

Take the time derivative of Lyapunov function (7.49) along system trajectories (7.47) and (7.48),

V., =wlJw, + 07Te,

=w!(~w, x Jw +u,) + O (-KeB®,. + R 'w,)
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=wl, - 0'KgO, + ©'R'w, (7.50)
The rotational control signal can be solved from the following equation
wZue + G)GTR’lw6 = —wZwae (7.51)

where the matrix K, is a positive definite design matrix. Therefore, the error control signal u,

becomes
u, = -K,w, — (RO, (7.52)
The original control signal ug then can be obtained as
up = Jwg +wy x Jw - K,w. — (R)'0,
Using Barbarlet lemma, the attitudes tracking error ®. is then locally asymptotically stable. [

Moreover, the form of control signal can be further simplified by choosing the design matrix

Ko and K, properly. This result is given in the following corollary,

Corollary 5. Assume the kite pitch angle is bounded away from the singularity as in (7.40). Given
the kite attitude dynamics (7.42) and (7.43), the rotational control signal can be chosen in the

following form
ug =Jwg +wg x Jw — K w, (7.53)

where K, is a positive definite design matrix. Then the attitude tracking error ®. is locally asymp-

totically stable.

Proof. Choose the same Lyapunov function as in equation (7.49), take the time derivative along

the system trajectories (7.47) and (7.48) yields,

v, =wlu, — @eTK@@e + @eTR_lwe
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Notice the following equivalent relation,
1©, - R'w,||? =070, - 20'R'w, + W/ (RR")'w. >0
Therefore, the following inequality holds,
O'R lw, < %(@Z@e ol (RRT)‘lwe> (7.54)

By definition (7.41), the largest eigenvalue of the matrix (RR”)~! can be obtained as follows

_ 1 1 1
OR max( (Cos(g)_sin(%))z (cos(g)+sin(g))2) < 00 (7.55)

The second inequality holds due to Assumption (7.40), therefore, the time derivative of the Lya-

punov function can be simplified as follows

V. :wgue - @)ZK@@6 + @eTR_lwe
1 1
SweTue — @ZK@G)Q + 5@);{@6 + §URwae (7.56)

Therefore, by choosing the design matrices K¢ and K, satisfies that
1 1
K@ — 513 >0 K, — 50’313 >0 (7.57)
the time derivative of the Lyapunov function along the trajectories of closed loop system becomes

) 1 1
V, < — weTwae - @ZK@G)E + 5@)3@6 + §JRweTwe

1 1
=-wl(K, - §URIg)we -0 (Ko — 513)(96 (7.58)

Using Barbarlet lemma, the angular velocity and attitude tracking errors are also asymptotically

converge. [

To implement the control signal (7.53) into the simulation, the equivalent form in Euler angles
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need to be obtained. Taking the derivative of desired angular velocity gives
wy =R(©; — Ke®,) + R(0, — KeO,) (7.59)
Further denote the cross product matrix as follows
[Jwlywyg = Jw X wy (7.60)
Expending the proposed control signal (7.53) gives that

up =J(R(©, - Ke®,) + R(O, — KeO.)) — [Jw|,R(0, — Ke®,) - K,R(O, + Ke®,)
=(JR - [Jw]xR)O,; — (K.R +JRK)O, + (-K.R — JR + [Jw|,R)Ke®, + JRO,

By rearrangement, the proposed control signal can be simplified as follows:

up = K0, +K,0,+ K30, +K,0, (7.61)
K, =JR — [Jw].R (7.62)
K, =JR (7.63)
K; = (-K,R — JR + [Jw],R)Kg (7.64)
K, = —K,R — JRK¢ (7.65)

Remark 1. If the kite desired attitude ®, is bounded, first order differentiable and ©, is also
bounded then the kite angular velocity w is bounded under the control signal (7.53). By definition,

the kite angular velocity is the sum of w, and wy, i.e.
W=W, +twyg=w,+ R(@d — K@@e)
Using trigonometric inequality, the bound of kite angular velocity is given by

lwll < llwell + [IRI(1©all + Ko [©]) < oo

113



In practice, the kite rotational control moment is generated by the control surfaces such as
ailerons, elevators and rudders whose deflection is limited. Thereby, the available control moment
is also limited. The first two terms of the resulting control structure (7.61) is linear with respect
to ©®, and O, and the control gains K3 and K, is proportional to the design matrices K. and
Ko. Hence, by proper choice of the desired kite attitude ®, and design matrices K. and Kg, the
control signal can be made accessible to the limited kite control moment. In other words, for slow
varying desired attitude ©, and design matrix Kg, the desired angular velocity w, can be made

feasible to the kite rotation in practice.

The first and second order time derivative of the desired attitudes, @d and @d, are required
in the control signal (7.61), therefore the real time differentiation are required. Assume that the
desired tracking angles ®, is third order differentiable, then the first and second order derivatives

of the desired tracking angle can be obtained using the high gain observer, [36]:

. o
Y1 = Y2 + ?l(@d — )

) o
Yo = Y3 + ?Z(Gd )
. O:

Uz = f(gd—?h)

where € is a small number and o;,7 = 1,2 are the coefficient of a design Hurwitz polynomial
s2 4 015 + 09. The estimate of the first and second order of the desired tracking angle are denoted

as @d and @d, which can be obtained as:

(6 61) = (i )

The estimation errors vanish as e vanishes. Substituting the estimation of first and second order

derivative of the tracking attitude into the control signal (7.61) results in

up =K 0, + Ky,0, + K3(0 — ©,) + K,(0 — 0,) (7.66)

The desired kite angle of attack is chosen to be a constant value o while the desired side slip
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Table 7.1: Input and Control Parameters

parameter value paramter value parameter | value | paramter | value
Kite Mass 40kg | Tether Density | 0.003kg/m | K, 0.5J | K¢ Y I
Kite Area 30m? | Tether Length 300m | € 0.1 0y 12
Turbine Mass Ratio | 50% | Tether Diameter 0.002m | oy 48 | o3 64
Turbine Area Ratio | 20% | W 6m/s | o* 10° | g+ 3.8°
Aspect Ratio 33| Cy 0.072 | B~ —-3.8° | AT 4s
Induction Factor 0.1 C, 0.324

angle is chosen according to the following switching law

proif ¢ > CJT
ﬁd: ;

BT if ¢ <qp

where ¢, and ¢; are specified cross wind limit angles. To meet the continuity requirement of the
kite desired attitude in the control signal , cosine smoothing is applied at the switch as follows.
Suppose the switching time for the ith cycle is ¢;” and ¢; and ¢} > ¢;, in the transient period AT
of the switching that occurs at ¢; , the desired side slip angle is

:6+;6_ —6+;B_ COSAWT(t—ti—),

Ba(t)

where t € [t;,t; + AT] and AT <t} —t;. The smoothing desired angle at ¢, can be obtained
similarly. The parameters for rotational control signal are shown in Table 7.1. The following
figures show that the apparent attitude tracking control system forms consecutive figure-eight tra-
jectory of the kite translation. The power output greatly increase compared to the Lyapunov based

control.

7.3 Inertial Apparent Dynamics

In previous section, an attitude trajectory that track the desired kite apparent attitudes, oy and

Baq, 1s proposed. In this section, the proposed attitude trajectory (7.6) - (7.8) is applied on the kite
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Table 7.2: Power Output

Wind Speed(m/s) | ¢(degree) | Power(kW)
25 9.99
6 30 19.5
35 24.3
25 14.4
7 30 30.2
35 36.4

Figure 7.4: Wind Speed = 6m/s, ¢ = 25°
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Figure 7.5: Wind Speed = 6m/s, ¢ = 30°
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(c¢) Kite Euler Angle Tracking Error
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Figure 7.6: Wind Speed = 6m/s, ¢ = 35°
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Figure 7.7: Wind Speed = 7m/s, ¢ = 25°
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Figure 7.8: Wind Speed = 7m/s, ¢ = 30°
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Figure 7.9: Wind Speed = 7m/s, ¢ = 35°
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translational dynamics. It can be shown that under the desired kite attitudes, the aerodynamic force

can be decoupled and explicit control signal can be introduced to the kite translational dynamics.

Recall that the glider apparent velocity in frame C as V = V- — W, then the apparent velocity

angles can be defined as follows

v1 = arctan (E) (7.67)
U
LW

Yo = arcsin (V) (7.68)

where u, v and w are the components of the apparent velocity, i.e. V = <u v w), and V is the

glider apparent speed, i.e. V = ||V||. The apparent attitude tracking trajectory can be developed

[l aretan (M)
u SIin @

- (7.69)

la| |u]
o, arccos (COS (r COS 5) — 22

using velocity angles as follows

< > ©

Y1

Notice that the apparent velocity angles can be treated as the spherical coordinates of the apparent

velocity, i.e.

Ve=V+W V=V (IZ_\ COS7| COS7Yy T sinvy cosvyy sin ")/2> (7.70)

Jul

Using the notation £, = (V " 72) , the apparent acceleration can be found by taking the time

derivative of equation (7.70):

ﬁ COS71 COSYy — ﬁV siny; cosvys — ﬁV COS Y Sin s
V= Aé@ A= ﬁ sin 7y; oS 7y ﬁj—‘V COS Y1 COS Y2 —ﬁV sin ~y; sin s (7.71)
sin 7y, 0 V cos vz
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Therefore, the inverse acceleration transformation becomes

ﬁ V' cos ;1 cos s ﬁV siny; cosys  V sin
1

o =A"'V  ATl= v | —rsiniseers  ppcosyisecy, 0 (71.72)

— ‘—Z| cosysiny, — |Z—‘ siny; sinys  €OS Yo

If the wind velocity is constant, V = Vg, then the dynamical equation for apparent velocity V is

given by

1 .
(TTL + gpﬁ')v = Ac + Gc + TC (773)

Combining equations (7.72) and (7.73), the dynamical equation for variable £ becomes

1 .
(m + gpﬂ”)éc = A" (He + Ge + Te)

Using the generalized force transformation Ho = LogH g, we have

1 .
(m + gpﬂ’)ﬁc = A_l(LCBHB + GC + Tc) (7.74)

Additionally, the rotational matrix L g can be decomposed into three elementary rotational matri-

CcEs

Lpc = Li(¢)La(0)Ls(v) (7.75)
1 0 O cp 0 —s¢ Cy Sy O
L1(¢) =10 Coy Sy LZ(Q) = 0 1 0 L3(¢) = | =Sy Cy 0
0 —S¢ C¢) So 0 Co 0 0 1

Since the rotational matrix is orthogonal, the rotational matrix from frame B to frame C is

Lep = Ly ()13 (0)L (¢) (7.76)
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For angle x; and Y, each elementary rotational matrix L; satisfies the following properties

L (x1) = Li(—x1) (7.77)

Li(x1 + x2) = Li(x1)Li(x2) = Li(x2)Li(x1) (7.78)

where ¢ = 1,2, 3. Under the apparent attitude tracking, the rotational matrix L5 becomes

t
Log =Ls < — 71) L, <M72> L, ( — M arccos (cos o cOS ﬁ)) L ( — M arctan( E.mﬁ)>
u Q U sin av

(7.79)

Moreover, the steady aerodynamic force on kite is given by

1
Hp = §pairv25CB

By substitution of equation (7.79) into equation (7.74), the glider translational dynamics under the

apparent attitude tracking is given by

1

m + %ptr

1
D(&c) = §pairSV2A_1L3 ( — 71> L, ('%w) (7.80)

= (Do) + A (G +To))

=L, ( - M arccos (cos o COS ﬂ)) L, ( - M arctan(tan fcsc oz)) Cp
u

«

Through coordinate transformation, the glider apparent attitudes are introduced into apparent dy-
namics (7.80) as control inputs. Yet (7.80) is too complicated that simplification is needed for

further analysis.

Substituting equation (7.72) to equation (7.80), the control gain matrix D can be simplified as

124



follows

D= §pairsv 0 ﬁ secys 0 (7.81)

Recall the aerodynamic coefficient in frame B is given by

1 0 0 sinae 0 —cosa Cr, Cy
Csg=|[01 0 0 1 0 C,1-160
0 0 —1 cosae 0 sina Ch 0

which can be put into matrix form
Cp = —Lg(w)LQ(g —a)C, - C, (7.82)

where C,, = (CL C, CD> and C, = <(jt 0 0). Then the vector 7 in equation (7.80) can be

expressed in the following way

T =T,C, — T\,C, (7.83)

I, =L, ( — M arccos (cos Qv COS 5)) L, < — M arctan(tan fcsc a)>
a u

r, :I‘tLLg(g —a)
By substitution, it can be shown that

cos o cos (3
FtCt - Ct 0 (784)

—|Z—‘\/1 — cos? avcos? 3
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Denote the trigonometric functions 17; = 1/1 — cos? arcos? 3 and 17, = /1 + csc2 artan? 3, then

sinacosacosf — S cosa &L escatan 8 —cos?acos f— & Lsinw
lo| 2 lul |e| m2 o] m2
r = 1
n ‘u‘ P L cot atan B . M P L tan g
‘nlslna——cos 2acos B m—cotasmﬁ ﬁnlcosa—%sinacosacosﬁ
(7.85)
Additionally, using trigonometric identities, the following equation can be proven
1 +csc®atan® B =1+ csc afsec? B — 1)
=14 csc? asec® f — esc? a
= csc? avsec? B(sin® avcos® f + 1 — cos® B)
= csc? asec? B((sin2 a—1)cos® B+ 1)
= csc? acsec? B(1 — cos? a cos® )
Therefore, for o, 3 € (=5, %),
« .
m :ﬁng sin a cos 3 (7.86)
!
Using equation (7.86), the matrix I',, can be simplified as follows
0 i sin 3 —cos 3
r,= ‘Z—‘ﬁ% cos asin 3 . smacosﬁ f‘mm—smasmﬁ (7.87)
—2Llgna el oo5asin 3 cos 3 cos asin?

o m lul [e] m \Oélm

Under the apparent attitude tracking (7.69), the airborne kite system translational apparent

dynamics are given by

- 1
€ = ———(D(T,C, ~ T\C)) + A (Ge + To) ) (7.88)
m —+ 507

126



1
D= EpairSV 0 gsecy 0
0 0 1
0 ﬁ sin 3 —cos 3
' =] »al in 3 a 1 g B u a1 o in 3
n T Ta] oy COS @ sin o] 7y Sinarcos ol TaT oy S avsin
—2Llgna w ol osasinfcosf &L cosasin’® B
o] m |ul | m oo m
cos acos 3
G, =G 0

—‘%'\/1 — cos? avcos? 3
The glider apparent velocity dynamics can be further simplified using the following lemma:

Lemma 8. If the glider geometric attitude follows the desired attitude given in (7.69), then the

following sign equation holds

Ya _ Y (7.89)

[ual — Jul

Proof. According to the apparent velocity transformation V, = LpcV, the apparent velocity

component u, can be rewritten as follows
U, = (vsiny + ucosh) cos @ — wsin @ (7.90)
Using the following trigonometric identity,

vsiny + ucosy = ’%‘\/uz + v2cos(v — 1) (7.91)

Therefore, under the desired glider geometric attitude i) = -y, the u, can be simplified as
u :
Uy = —Vu? +v?cost —wsind (7.92)

Jul

Using the trigonometric identity of sum of the sine and cosine function, the u, can be further
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simplified as

u u
o= LVl cos (60— - 7.93
u il |Va|| cos ( |u|%) (7.93)

Substituting the desired pitch angle 6 = ﬁ’}@ + @—‘ arccos(cos a cos [3), equation (7.93) becomes

u

Uy = | |||V;1|| cos a cos 3 (7.94)
u
Since o, f € (—7F, 5), cosacos 8 > 0, hence
Ug U
|ual  Jul
O

In modeling of the glider aerodynamics, it is assumed that the glider apparent velocity along
ip axis is positive, i.e. u, > 0. Using lemma 8, this implies that v > 0, hence the glider apparent

velocity dynamics becomes

. 1
Eo=—7— (D(rncn —T,C) + A YGe + Tc))
m + 3pr
C.=(c, ¢, )  C=(00 )
vV o0 0
1
D= 5,0(“'7«5‘/ 0 secyy O
0 0 1
0 sin 3 —cos f3
L, = ﬁnil cos asin 3 @—Mil sin ac cos 3 ﬁn—ll sin asin B (7.95)
_ﬁ%sma |g—‘ilcosozsinﬁcosﬁ @—M%COSO&SmQB
cos « cos 3
I‘tCt - Ct O

—|Z—‘\/1 — cos? avcos? 3
Combining the apparent velocity dynamics (7.95) and the kinematic relation (4.5), a cascade dy-
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Figure 7.10: Inertial Apparent Velocity System Diagram

namical system can be proposed under the apparent attitude tracking as shown in the following

theorem:

Theorem 11. Denote the glider position vector in Cartesian earth frame C asr¢ = (:[;C Yo Zc)
and velocity vector as Vo = <UC Ve wc)- If the glider apparent velocity component u, > 0,

then the glider attitudes follow the apparent attitude tracking trajectories

[l aretan (M)
u Sin o«

]
arccos ( Cos & CoSs 6 ” Y2

I
[e%

e o ©

71

where the (a 5) are the desired apparent attitudes and (71 72) = (arctan(ﬁ) %) are ap-
parent velocity angles. Denote the state variables & = (V " 72), the glider translational

dynamics becomes a cascade dynamical system

P =V4+W (7.96)
V=V <cos A1 COSYy Siny; cos7y, sin 72> (7.97)
. 1
=— (D A NG T 7.98
€= o (D7 + A7 (Ge +To)) (7.98)

Under the apparent attitude tracking, the aerodynamic forces on glider motion are decoupled.
The angle of attack « and sideslip angle 3 are introduced into the apparent velocity dynamics as
control inputs. The resulting dynamical system possess a cascade structure as shown in Figure

7.10.

129



Chapter 8

Conclusion and Future Works

In this dissertation, the modeling and control of the kite energy system are studied. The fun-
damental aspects of the kite energy system are first considered. Four different coordinate systems
are established to describe the kite motion. The kinematic relations of the kite motion in different
coordinate systems are derived. Four important aspect of the physics acting on the kite energy sys-
tems are investigated, including the steady aerodynamics, added mass effects, conservative force
and tether tension. Based on the kinematic relations of the aerodynamics, the passivity property of
the steady aerodynamic force with respect to the kite apparent velocity is established. This prop-
erty reflects the dissipativity of the steady aerodynamic force. The power generation limits of the

kite energy system is then derived in the three dimensional case.

Based on Euler-Lagrange dynamics and system kinematic relations, the dynamical equation
of the kite energy systems are established. It can be shown that the kite system dynamics are equiv-
alent in different reference frames, therefore, a unified simulation model for airborne and undersea
kite energy system can be established. The structures of kite rotational and translational dynamics
are studied based on the established dynamical model. In the airborne case, the overall system
dynamics is cascade and the rotational motion can be treated as inputs to the kite translational mo-
tion. On the other hand, the rotational and translational dynamics are fully coupled in the undersea

kite energy systems.

The Lyapunov and passivity methods are used to studied the stability of the kite translational
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motion. In airborne kite energy system, by choosing the apparent energy function as storage func-
tion for kite translational motion, the ultimately boundedness and boundedness of the kite apparent
velocity are established and three different tether control algorithms are designed. Using the rota-
tional energy function as Lyapunov function candidate, the stability of the kite rotational motion
about a constant desirable attitude can be established. By switching the desired kite attitudes,
a figure eight kite translational trajectory can be formed which results in net power output. In
undersea kite energy systems, the total energy of the kite and surrounding fluid is chosen as the
Lyapunov function of the system. The ultimately boundedness of the undersea kite energy system

is established using Lyapunov method.

Although the boundedness property of the kite translation can be established through Lya-
punov and passivity analysis, there is no direct control input in kite translational dynamics. To
achieve better performance in translational motion, the transformation of the kite translational dy-
namics into relative motion frame is investigated. The system dynamics transformation allows the
kite angular velocity appears in the equations of motion as direct control inputs. The back-stepping
method is used to design the rotational control input to achieve desirable translational states. How-
ever, the simulation shows that the control signal cause a large error in tracking performance since

the magnitude of the control input is very limited.

To achieve the tracking performance in translational motion, the apparent attitude tracking
theorem is proposed. Using geometric relations of the kite apparent attitudes, a desired trajectory
of the Euler angles is derived. The back-stepping method is used to designed the rotational control
signal for achieving desired angle of attack and side-slip angle. Based on the geometric apparent
attitude tracking control, the apparent dynamics of the kite energy system is proposed where the

angle of attack and side-slip angle are introduced into the translational dynamics as control inputs.

In summary, the following contributions are made in this research of kite energy systems,

e The physics and fundamental power generation limit of the kite energy systems are studied.
e A unified simulation model of both airborne and undersea kite motion is proposed.

e Three different control systems are designed for the kite energy systems.
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e A modified kite system dynamic is proposed and the direct control input is introduced into

the kite translational motion.

Although the geometric apparent attitude tracking control system achieves the desired kite
apparent attitudes, there are several drawbacks in the proposed algorithm. From the modeling
perspective, the following aspects needs to be addressed, the unsteady aerodynamics caused by
the switching of the kite attitudes needs to be modeled. The stability issue of the kite motion
needs to be considered if the unsteady aerodynamics are included in the model. From the control
perspective, the following issues need to be addressed in the future. First the apparent attitude
tracking is given in terms of the Euler angles, which have the singularity issues that may cause
the failure of the control system. Second, the geometric apparent attitude tracking depends on
the global measurement of the kite apparent velocity, which is difficult to obtained from the local
sensing device mounted on the kite. Therefore, the apparent attitude tracking algorithm needs to
be modified so that only the local measurement is required for tracking. Based on the modified
kite translational dynamics, the optimal power harvesting strategy of the kite energy system can be

design.
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