


Abstract

Kite energy systems are an emerging renewable energy technology. Unlike conventional tur-

bines, kite energy systems extract wind power using tethered kites which can move freely in the

wind or underwater in an ocean current. Due to the mobility, kite power systems can harvest power

from regions with higher and steadier power density by moving in high-speed cross flow motion.

An airborne kite energy system harnesses wind power at an altitude higher than the conventional

wind turbines, while an undersea kite energy system extracts power close to the ocean surface.

In this dissertation, the physical limitation, mathematical modeling, and control system design

of the kite energy systems are studied. First, three major physical effects that are acting on the kite

energy systems are investigated, including potential force, steady aero-/hydro-dynamic force and

added mass effects. Furthermore, the dissipativity of the steady aero-/hydro-dynamic forces with

respect to the apparent velocity is established. Based on this analysis, the power generation limit

of the kite energy systems is studied. A power limit formulation is given which generalize the

two-dimensional result to three-dimensional case.

The different physical phenomenon is modeled in different coordinate systems, the differ-

ence of the density, viscosity between air and water are significant, and the kite energy system can

operate in two distinct modes. To combine different physical effects into a single simulation frame-

work, the equivalences of the kite model in different coordinate systems are established through

kinematic analysis. Using these equivalent relations, a unified simulation model for airborne and

undersea kite energy systems are derived.

The control system design of kite energy systems is also investigated. The resulting equations

of motion of kite energy systems are highly nonlinear. Therefore, Lyapunov methods are used to
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analyze the system behavior. Three different techniques are reviewed, including Lyapunov analysis

for autonomous and non-autonomous systems, the ultimate boundedness and input-to-state stabil-

ity and passivity methods. For the fixed tether length kite energy systems, the ultimate boundedness

of the kite translation is established through the dissipativity of the steady aero-/hydro-dynamic

force. For the variable tether length kite energy system, the input-to-state analysis is used to de-

sign the tether tension that guaranteed the boundedness of the kite translation. In both cases, the

Lyapunov based methods are used to design kite rotational control systems which result in PD type

control signals. Although this control scheme generates consecutive power cycles for kite energy

systems. It is shown that the kite aero-/hydro-dynamical performance is unstable in the simulation

which could result in unsteady power generation.

To provide a steadier performance in kite translation and power output, the relative dynamics

of the kite translation is first proposed. In this model, the kite apparent speed and attitudes, the

angle of attack and side-slip angle, are used to describe the kite translation. A nonlinear control

scheme is designed to regulate the angle of attack and side-slip angle using back-stepping methods

by using the kite angular velocity and control inputs. However, due to the magnitude limit of

the angular velocity, the residual error of the apparent attitude tracking remain large for the large

desired angle of attack and side-slip angle.

To achieve a better power harvesting and aero-/hydro-dynamics performance, the geometric

properties of kite angle of attack and side-slip angle are studied. A geometric attitudes trajectory

is constructed to track given apparent attitudes. A rotational control system is designed based on

the back-stepping and sliding mode methods for the desired geometric attitude, and the high gain

observer is applied to acquire the information needed for the rotational control signal. Through the

geometric apparent attitudes tracking control algorithm, the angle of attack and side-slip angle act

as direct control inputs to the kite translational motion. The kite translational dynamics under the

geometric apparent attitude tracking is studied. These dynamics give the possibility of controlling

the kite translational motion only through the rotational control scheme.
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Chapter 1

Introduction

Modern industrial society is driven by a large amount of energy. It has been estimated that

the total consumption of global energy is equivalent to 9301 million tonnes of oil in 2013, which

is equal to 12.3 Terawatts. The combustion of fossil fuel provides over 86% of the total energy

consumption. Despite its great economical advantage and high energy density, the carbon emis-

sion during the burning of fossil fuel has a significant social and environmental impact. To achieve

sustainable development of modern society, various alternative energy technologies have been de-

veloped including nuclear, hydrokinetic, biomass, solar, wind and geothermal energy. Among all

these alternative options, wind and hydrokinetic energies are considered in this thesis. It is also im-

portant to notice that the solar energy sources are distributed on earth with great disparities which

greatly limit the commercialization of such renewable power plants. Similar to the solar power

systems, the conventional wind power plants are also limited by the low power density and global

disparity of the energy sources. To access to the high wind power density, huge towers are required

in a conventional wind power systems. Currently, the largest wind turbine is the Enercon E-126,

with the hub height of 135 meters and the rotor diameter of 127 meters. The uncertainty of the wind

power system, such as the variation of the wind velocity in time, also cause difficulties in utilizing

the wind power. However, at higher altitudes than the conventional wind turbines, there is wind

with higher velocity and consistency. Figure 1.1 shows the wind energy density, P = 1
2
ρairW

3, at

1Certain Materials are included under the fair use exemption of the U.S. Copy law and have been prepared accord-
ing to the fair use guidelines and are restricted from the further use
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Figure 1.1: Wind Energy Density Comparison: 120m Altitudes and 600m Altitudes, From [5], Copyright
Joby Energy1

120m altitude and 600m altitude, where ρair is the air density and W is the wind speed. To harvest

the wind energy that exists at higher altitudes than the airborne wind energy systems have been

considered.

1.1 Kite Energy Technology

In this dissertation, an emerging renewable energy technology, kite energy, is studied. The kite

energy technologies are power generation technology using airborne or submersible kites, [6, 7].

There are three major advantages of using kite energy systems in power generation:

• The mobility of the kite energy systems allow for power generation at altitudes or depths

with higher wind and current velocities,

• The mobility of the kite allow for high-speed crosswind or current motion which increase

the energy density in power generation,

• Without the towering structures, the kite energy systems may achieve higher power to mass

ratio and need less material investment than conventional turbines

There are three common elements in every kite energy systems: the airborne or undersea

structures (also referred as kites), the tether and power generation device. Typical wind turbine,
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Figure 1.2: Wind Turbine System, Airborne Kite Energy System and Undersea Kite Energy System, From
[1, 2], Copyright Makani, Minesto

airborne kite energy system and undersea kite energy system are shown in Figure 1.2. If the power

generation device is an electric generator, the airborne kite energy system can be placed into two

categories, the GroundGen and FlyGen system as shown in Figure 1.3. Among the airborne kite

energy systems, the GroundGen systems (also refer to lift mode) are kite energy systems with

the power generation unit on the ground, [3, 8, 9]. Either flexible kite or rigid kite can be used

to provide the lifting force that needs for power generation as shown in Figure 1.4. The tether

is used to connect the kite to a ground-based generator. The mechanical power of the flying kite

is then transformed to electrical power by the ground-based generator. On the other hand, the

similar system configuration is also applicable to the undersea kite energy system. In this work,

the undersea kite connected to a floating platform is considered which is anchored to the seabed.

A detailed illustration of the undersea kite configuration is shown in Figure 1.5.

Tension

Ground Generator

Turbine

KiteKite
W W

Electricity

Figure 1.3: GroundGen and FlyGen Airborne Kite Energy Systems

There are two motion phases during the kite motion in a GroundGen system, the generation

and retraction phase. In generation phase, the kite is controlled to produce high lift and power is
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Figure 1.4: Rigid and Flexible GroundGen Airborne Kite Energy System, From [3, 4], Copyright Ampyx,
Delft University of Technology

Figure 1.5: System configuration of undersea kite energy system

generated as the kite reels out the tether. In retraction phase, the kite is controlled to produce low

lift force, and part of the generated power is used to reel in the tether to an initial position for next

power generation phase. The illustration of power and traction phase of a GroundGen system is

shown in Figure 1.6. The goal of a GroundGen airborne kite energy system is to maximize the net

power output which is the difference between the power output of the power generation phase and

power consumption in retraction phase.

On the other hand, the FlyGen airborne kite energy system is a kite system with onboard

turbine generator for power generation as shown in [1] where the turbine is also used as propeller

during the takeoff and landing operation. Since the airborne kite needs to provide the high lift

force as well as support the turbines, these systems use rigid kite(or glider). The constant length

tether in FlyGen airborne kite energy system is used to constrain the kite motion and conduct the

generated power to the ground. Other than the electricity generation, there is airborne kite energy

system that use the tether tension to drive the marine or ground vehicles. The towing kite system
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Figure 1.6: Airborne Kite Energy System: Power and Recover Phases,from Ref [1,3], Copyright Ampyx and
Makani

in such vehicle propulsion case is almost identical to the GroundGen airborne kite system. The

airborne propulsion system is especially promising in the naval transport application where the

cost crucially depends on the fuel price. Moreover, the lifting force generated by the airborne kite

can also be used in the pumping system.

The balloon-type system configuration is also developed for power generation. In such system,

the wind turbine is supported by the buoyancy force of the balloon, and the high power output

is achieved by flying at high altitudes. The tether is used to constrain the balloon motion and

conduct the generated power to the ground. Theoretically, such system can stay at the high altitude

indefinitely without power consumption.

However, these systems required a high volume to keep floating and significant tether in the

case of strong wind. The FlyGen type of kite energy systems can also be used in the undersea

circumstance, which is also referred as the Tethered Undersea Kite System (TUSK). Similar to

the FlyGen airborne systems, the undersea turbine generates power in cross current motion, [2].

Undersea kites can be connected either to the seabed or floating platforms. Due to greater density

and viscosity of the water compared to air, it is more efficient to produce power using turbine than

using tether tension in water.

In summary, there are three major concepts in the kite energy system: the flexible kite system,

the rigid glider system, and balloon systems. A low weight flexible kite system generates either
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electrical or mechanical power in a moderate speed motion through tether tension. A high weight

rigid kite system can generate power in a high-speed cross wind motion in the air or a cross current

motion undersea. Either turbines or tether tension can be used to generate power in the airborne

case. However, the turbine is often used to produce power undersea. The major characteristics of

these three system configurations are summarized in Table 1.1

Flexible Kite Rigid Kite Balloon
Weight Low High Moderate
Speed Moderate High Static
Power Generation Tension Tension/Turbine Turbine
Power Output Mechanical/Electrical Electrical Electrical
Application Airborne Airborne/Undersea Airborne

Table 1.1: Comparison of Different System Configurations

1.2 Literature Reviews

Depending on the power generation configurations, there is two major control mechanisms in

the kite and balloon energy systems: tether control mechanism and control surfaces mechanism.

For a flexible kite energy system, only the tether control mechanism is applicable where the in-

put of the system is typically the tether length difference. On the other hand, both tether control

mechanism and control surface mechanism can be used in the rigid kite system. In a control sur-

faces mechanism, the input to the system is the deflection of the control surfaces. The control

system configurations have a significant influence on the kite dynamics. If the kite systems are

controlled by the tether mechanism, the kite translation and rotation can not be treated as indepen-

dent motions. In this case, the simplified kite dynamics are usually studied. If the control surfaces

mechanisms are used, the translational and rotational motion can be treated as independent mo-

tions. The tether tension and control moment acting on the kite can be treated as independent

inputs.

In [10], two flexible kite energy system configurations, the yo-yo configuration and the carousel

configuration, are investigated by numerical simulation. The control systems are designed using

nonlinear model predictive method and set membership function approximation. In [11], the eval-

uation of control system performance, the optimization power generating cycles are studied using
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simplified power equations. The proposed optimal operation cycles are simulated by nonlinear

model predictive control strategy. In [12], the authors investigated the controlled kite application

on the naval transportation. To maximize the boat speed, a constrained optimization problem was

formulated based on the simplified kite and boat translational dynamics. A predictive control strat-

egy was carried out to a realistic dynamic model of the system in the presence of wind turbulence.

The detailed kinematics of the towing kite system is discussed in [13]. The control system of the

kite is designed based on the simplification of nonlinear kinematics. The quaternion is then used

to modify the kinematic relation in [14]. The optimization control techniques are developed for

maximum power generation.

A study of sensor fusion techniques is presented in [15]. The estimation algorithms for kite po-

sition and velocity angle were proposed. The developing of the control-oriented velocity dynamics

was presented in [16]. The proposed model was identified from the experiments, and proportional

controls are applied to achieve the figure eight kite operations. The power optimization control

technique is studied in [17]. The sensitivity of the tether tension for generalized path parameteri-

zation was analyzed, and an algorithm is designed for maximizing the tension force. On the other

hand, the control design for the tether tension in the retraction phase was presented in [18]. The

time delay effects in velocity angle dynamics are studied in [19]; a cascade control architecture

is implemented for velocity direction tracking. The model-based adaptive control method is ap-

plied for time-varying wind conditions. The time delay input model for the kite energy system is

considered in [20]. A path-tracking receding horizon LQR controller and on-line estimation of the

system parameters are considered. In [21], a range-inertial estimation scheme is proposed base on

the sensor fusion estimation.

In [22, 23], the flexible kite system dynamics are modeled using Euler-Lagrange approach.

Both kite rigid body motion and aerodynamic forces acting on the tether are considered in the

system formulations. The numerical nonlinear optimal control schemes are applied to the control

system design. However, the multi-body model of the kite energy system yields large dimensional

dynamics which make the analytical and numerical control techniques difficult to apply. Therefore,

the kite motion is projected to two-dimensional motion of the plane on an imaginary sphere in [24].

Based on this simplification, the kite heading angle and track angle are defined. The correlation

13



relation of kite track angle and steering input are used to form the base of control system design.

The high level and low level of the kite tracking control is designed using proportion and derivative

control methods. Other than the conventional PD control design for the kite system tracking and

optimization, the learning method is also used for control design as presented in [25]. The core

idea of the flexible kite system controls rely on the simplification of the kite dynamics into a single

degree of freedom linear system. This process allows the mature control techniques to be applied

to the kite control design, however the linear approximation constraint the capability of the system

models.

The modeling and control problem of the balloon energy systems are addressed in [26–28].

Although the rigid body shroud dynamics are presented in [26], the operation of the balloon energy

system is typically stationary. Therefore, the linearization technique is typically applicable, and

the frequency domain analysis method can be applied. In [27], a Lyapunov based extreme seeking

control schemes are designed, and the energy generation performance is improved. The adaptive

control design based on the extreme seeking and wind speed estimation is considered in [28].

In previous research, the author has developed the Lyapunov based rotational control for the

six degrees of freedom rigid kite energy system dynamics [29, 30]. The corresponding six-degree

freedom system for undersea kite energy system is proposed in [31, 32]. The dynamic models

of the undersea kites have then been modified to include the added mass effect with passivity-

based control signal. The idea of geometric apparent attitude tracking is proposed in [33]. Using

this method, the kite angle of attack and side slip angle can be regulated to the desired value if

the kite apparent wind velocity can be obtained by the sensors. Moreover, the kite translational

dynamics under the geometric apparent attitude tracking is proposed in [34]. In this work, the

consequence of the geometric apparent attitude tracking is studied. It turns out that the geometric

apparent attitude tracking decomposed the steady aerodynamic forces and provided direct actuation

to the kite translation. Therefore, the translational control signals can be designed in the using

backstepping methods. This work extends the previously published results by considering three

more important aspects of kite energy systems. The power production limit of the kite energy

system is discussed in Chapter 4 using the passivity property of the steady aerodynamic forces.

The tension control signal is designed by investigating the open loop kite system dynamics in
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Chapter 7. The apparent dynamic attitude tracking control design is proposed in Chapter 8.

In this dissertation, the focus is put on the rigid kite energy system with the control surface

mechanism for the following reasons:

• The rigid body dynamics yields a complete description of kite translational and rotational

motion;

• The complete aero-/hydro-dynamic description allows the detail studies of the kite geometric

properties on the overall performance;

• It allows the complete studies of the relation between the control action and kite system

motion.

1.3 Contributions

In this work, both modeling and control aspects of the kite energy systems are investigated.

The crucial physical effects acting on the kite motion are considered, including the steady fluid

dynamical forces, the added mass effects, and the potential forces. In the preliminary chapter,

these forces are analyzed separately. The key kinematic relations are also given which provide

a foundation in establishing the dynamical models of the kite energy systems. In the modeling

chapter, the transformation relations of the kite system dynamics are established using results of

the system kinematics. Using dynamics transformation relations, physical effects that modeled

in different reference frames can be combined into a single framework of system modeling. To

conclude the system modeling, the kite dynamics are expressed in matrix forms. These expres-

sions reduce the computational complexity in simulating of the kite motion. After establishing

the models of kite energy systems, the dissipativity of the steady aero-/hydro-dynamic forces is

provided. Based on this property of the aero-/hydro-dynamic forces, the power limit of the kite en-

ergy system is derived. There are three major methods that will be used to control the kite motion:

the passivity-based control methods, the geometric apparent attitude tracking, and the dynamical

apparent attitude tracking. In passivity-based approach, the fundamental aspects of the kite trans-

lational motion are discussed such as the input to state stability and ultimately boundedness. Using

15



Lyapunov methods, the passivity-based control methods can be used in both airborne and undersea

kite energy systems. The geometric apparent attitude tracking of kite energy systems provides a

method of using kite rotational motion to achieve the desired kite apparent attitudes. A geomet-

ric attitude trajectory is proposed, and the corresponding rotational controls are derived based on

sliding mode method. Based on the rotational trajectory proposed, the translational motion of the

kite is further studied. This study shows that the geometric apparent attitude tracking provides

additional actuation to kite translation. A simplified kite translational model is proposed based

on the apparent attitude tracking. In addition to the geometric method, the apparent kite attitudes

can also be controlled using kite angular velocity. By transforming the kite dynamics into relative

motion frame, the kite angular velocity appears as control inputs to kite translation. Based on the

back-stepping method, the apparent attitude regulator is proposed and verified by simulation.

The major contributions of this work are summarized in the following list:

• Establishing the added mass model of the kite energy systems;

• Providing the equivalent relations of the rigid body model of kite energy system in different

reference frames;

• Establishing a framework of modeling for combining different physical phenomenon;

• Establishing the passivity of the steady aero-/hydro-dynamic forces;

• Establishing the power generation limits of the kite energy systems;

• Develop the passivity-based tension control for airborne and undersea kite energy systems;

• Develop the passivity-based rotational control for undersea kite energy systems;

• Proposing the apparent dynamic attitude tracking control for airborne kite energy systems;

• Proposing the geometric apparent attitude tracking law for airborne energy systems;

• Designing the rotational attitudes tracking control using back-stepping methods;

• Establishing the kite translational dynamics under the geometric apparent attitude tracking.
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Chapter 2

Physical Fundamentals of the Kite Energy

Systems

In this chapter, the fundamental perspectives of the kite energy systems are discussed. In

Section 2.1, the kinematic transformation matrices between different coordinate systems are given.

Important properties of the transformation matrices are also provided. From Section 2.2 to 2.4,

the steady aero-/hydro-dynamic force, added mass effect, potential forces and tether tension are

discussed. One important aspect of special importance, the passivity of the steady aero-/hydro-

dynamic force, is given in Section 2.5. Using the passivity properties, the power limitation of the

kite energy systems in three dimensional motion is derived at the last section of this chapter.

2.1 System Kinematics

To describe the rigid body motion of the kite energy system, two translational coordinate

systems and two rotational coordinate systems need to be introduced as follows

Translational Coordinate Systems

– Cartesian Frame: C=̇
(
iC jC kC

)
; Spherical Frame: S=̇

(
er e1 e2

)
,

Rotational Coordinate Systems
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– Body Frame: B=̇
(
iB jB kB

)
; Euler Frame: E=̇

(
eφ eθ eψ

)
.

The Cartesian frame centers at the anchor point of tether, which is also the origin of the kite energy

system. The x-axis is pointing to the upstream direction of the wind and the z-axis is vertical

downwards. The y-axis forms a right hand coordinate system with x-axis and z-axis.

Denote the position of kite center of gravity (CG) as rC =
(
xC yC zC

)
, then the spherical

coordinates of the kite q =
(
r q1 q2

)
can be defined as follows

q =
(
r q1 q2

)
=

(√
x2
C + y2

C + z2
C arctan

(
yC√
x2C+z2C

)
arctan

(
xC
zC

))
, (2.1)

where r is the tether length, q1 is referred as the crosswind angle and q2 as the inclination angle.

The inverse coordinate transform is given by

rC =
(
xC yC zC

)
= r

(
cos q1 sin q2 sin q1 cos q1 cos q2

)
. (2.2)

Taking the derivative of equation (2.2) gives the translational velocity transformation:

VC = Pq̇ P =




cos q1 sin q2 −r sin q1 sin q2 r cos q1 cos q2

sin q1 r cos q1 0

cos q1 cos q2 −r sin q1 cos q2 −r cos q1 sin q2


 . (2.3)

The body frame B centers at the CG of the glider and follows the North-East-Down axes conven-

tion. The kinematic relations of the kite translation is shown in Figure 2.1.

The attitude of the body frame B with respect to Cartesian frame C can be represented by three

consecutive Euler angles Θ =
(
φ θ ψ

)
. Denote the glider translational velocity measured in

the body frame B as VB and the directional cosine matrix as LBC , then the translational velocity

transformation from frame B to C is given by

VC = LCBVB, LBC = LT
CB =




cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφsψ cφcθ


 , (2.4)
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Figure 2.2: Kite Rotational Kinematics

where c and s are short hand notations of the sine and cosine function respectively. Denote the

glider rotational velocity along axes in the body frame B asω =
(
ωx ωy ωz

)
, then the rotational

velocity transformation from frame E to B is given by

ω = RΘ̇ R =




1 0 −sθ
0 cφ cθsφ

0 −sφ cθcφ


 (2.5)

. The consecutive rotation of the Euler angles is shown in the Figure 2.2.

The following properties of the kinematic transformation matrices LBC ,R and P are very

important in developing a unified simulation model of kite energy systems. The directional cosine
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matrix LBC is orthogonal, that is, its transpose is its inverse

L−1
BC = LT

BC = LCB. (2.6)

The derivative of the directional cosine matrix LBC satisfies the following equation:

L̇BC = −Ω×LBC , Ω× =




0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0


 . (2.7)

Additionally, the Jacobian matrix of translational and rotational velocity with respect to spherical

coordinates and kite attitudes satisfies the following equations:

∂VC

∂q
= Ṗ,

∂ω

∂Θ
=
(
Ṙ + Ω×R

)T
. (2.8)

These relation can be proven by substitution and they will be used in deriving the equivalence

among the translational and rotational dynamics of kite energy systems.

2.2 Steady Aero-/Hydro-dynamic Forces

The steady aero-/hydro-dynamic force can be modeled using the kite angle of attack α and

side slip angle β. Suppose the kite apparent current velocity is given by

Va =
(
ua va wa

)T
= LBC(VC −W). (2.9)

Further assume that the apparent velocity in iB direction is positive, ua > 0, then the angle of

attack and side slip angle can be defined as:

α = arctan
(wa
ua

)
, (2.10)

β = arcsin
( va
Va

)
, (2.11)
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Figure 2.3: Kite lift and Drag

where Va = ‖Va‖ is the magnitude of the apparent current.

In general, the kite lift and drag coefficients are function of α while the side force coefficient

is function of β:

CL = CL(α), CD = CD(α), Cy = Cy(β). (2.12)

Along the body frame axes, the hydrodynamic coefficients are


Cx
Cz


 =


1 0

0 −1




sinα − cosα

cosα sinα




CL
CD


 . (2.13)

Moreover, the turbine drag coefficient can be computed from its induction factor a as follows

Ct = 4a(1− a)
St
S
, (2.14)

where St is the turbine area and S is the kite area. Then the total hydrodynamic coefficient can be

computed as

CB =
(
Cx Cy Cz

)T
−
(
Ct 0 0

)T
. (2.15)

The geometric relation of kite lift CL, drag CD and turbine drag Ct coefficients are shown in Figure

2.3, the side force coefficient is shown in Figure 2.4.
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Figure 2.4: Side Force Coefficient

Using CB, the kite aero-/hydro-dynamic force is given by:

HB =
1

2
ρfV

2
a SCB, (2.16)

where ρf is the density of the surrounding fluid. Applying generalized force transformation, the

steady aero-/hydro-dynamic force in frame C and S are

HC =
1

2
ρfV

2
a SLCBCB (2.17)

HS =
1

2
ρfV

2
a SPTLCBCB (2.18)

2.3 Added Mass Effects

While the influence of the steady flow on the kite motion can be characterized by steady aero-

/hydro-dynamic force, the added mass effects characterized the influence of the unsteady flow.

When accelerating with respect to the surrounding fluid, additional inertial will be introduced to

the kite system as shown in Figure 2.5. By assuming the surrounding unsteady fluid field to be
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Figure 2.5: Rigid Kite and Surrounding Fluid

potential, the added mass effect can be characterized using energy approach:

TF =
1

2

(
VT
a ωT

)

Ma ΓT

Γ Ja




Va

ω




=
1

2
VT
BMaVB +

1

2
ωTJaω + ωTΓVB −VT

BMaWB − ωTΓWB +
1

2
WT

BMaWB, (2.19)

where TF is the total kinetic energy of the unsteady surrounding fluid flow and matrices Ma and

Ja to be symmetric.

The force introduced by the added mass effect can be modeled using the impulse-force prin-

ciple. Denote the impulse from the unsteady fluid field as follows,

ηt =
∂TF
∂VB

= MaVB + ΓTω −MaWB, (2.20)

ηr =
∂TF
∂ω

= Jaω + ΓVB − ΓWB. (2.21)

Applying the Kirchoff’s law, the force due to impulse ηt and ηr are

At =− η̇t − ω × ηt, (2.22)
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Ar =− η̇r − ω × ηr −VB × ηt. (2.23)

Substituting equations (2.20) and (2.21) into (2.22) and (2.23), the added mass force on kite rota-

tion and translation as At and Ar are given by

At = −(MaV̇a + ΓT ω̇)− ω × (MaVa + ΓTω), (2.24)

Ar = −(Jaω̇ + ΓV̇a)− ω × (Jaω + ΓVa)−VB × (MaVa + ΓTω). (2.25)

2.4 Potential Forces and Tether Tension

The potential energy of kite energy systems consist of two parts: the gravitational potential

energy and buoyancy potential energy,

U = −GT rC + BT rG, (2.26)

where rC is the position vector of kite center of gravity and rG is the position vector of kite center

of geometry. Assume that the magnitude of buoyancy force B is a fraction of the magnitude of the

gravity with ratio λB ∈ (0, 1). The distance between center of gravity and center of geometry in

body frame is dB as shown in Figure 2.6 then

U =−GT rC + λBGT (rC + LCBdB)

=− (1− λB)GT rC + λBGTLCBdB. (2.27)

Since the gravitational potential energy is function of kite position rC and attitudes Θ, the corre-

sponding translational and rotational conservative force in frame C and E are

Gt = − ∂U
∂rC

, Gr = −∂U
∂Θ

. (2.28)

In physics, the potential energy is defined as the energy terms that only depends on the end
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point of the displacement. For constant current velocity, the last term of (2.19) depends only on

the attitude of the kites, therefore, it can be treated as the velocity dependent potential,

Uv = −1

2
WT

BMaWB. (2.29)

Since the current velocity is constant in frame C, therefore, the current potential energy is only

function of kite attitudes. The conservative force introduced by the current potential energy in

frame E is

Gv = −∂Uv
∂Θ

. (2.30)

The tether tension acting on the kite energy systems depends on the configuration of the sys-

tems. In the kite energy system with variable tether length, underwater or airborne, the tether

tension can be treated as an control input to the kite translation. In such case, the tether tension T

can be designed using Lyapunov method and is independent to other physical effects. On the other

hand, for the kite energy system with fixed tether length, the tether tension is a reaction to the total

force acting on the tether direction. Since the tether length is fixed, the kite is moving on a sphere

that centers at the system origin. The virtual work done by the tension in the normal direction of

the sphere must be zero. In other words, the tether tension can be obtained by the force balance in

the tether direction. In airborne kite energy systems, the tether tension is given by

TS = −PT
((

(LCBHB + Gt)
T r̂C

)
r̂C

)
, (2.31)
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where r̂C is the unit vector along the tether direction, r̂C =
(

cos q1 sin q2 sin q1 cos q1 cos q2

)
.

In addition to the steady hydrodynamic force and the gravity, the added mass effect also needs to

be taken into account in computing the tether tension. Therefore, in the undersea kite systems, the

tether tension is given by

TS = −
(
(LCBHB + Gt + LCBAt)

T r̂C
)
PT r̂C . (2.32)

2.5 Passivity of Steady Aero-/Hydro-Dynamic Force

Section 2.2 to Section 2.4 introduced the elements that drives the kite translation, among them

the steady aero-/hydro-dynamic force is crucial in stability and power limit analysis. In this section,

the passivity of the kite aerodynamic force is provided. Recall that the aerodynamic force acting

on the kite is given by

HB =
1

2
ρfV

2
a SCB, (2.33)

where the aerodynamic coefficients are


Cx
Cz


 =


1 0

0 −1




sinα − cosα

cosα sinα




CL
CD


 , (2.34)

CB =
(
Cx Cy Cz

)T
−
(
Ct 0 0

)T
. (2.35)

By expansion of equation (2.35), the aerodynamic coefficient CB is given by

CB =




CL sinα− CD cosα− Ct
Cy

−CL cosα− CD sinα


 . (2.36)

The kite apparent velocity can be expressed using kite angle of attack and side-slip angle

Va = LBC(VC −W) = Va

(
cosα cos β sin β sinα cos β

)
. (2.37)
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It can be proven in the following lemma that the steady aerodynamic force is passive with respect

to the kite apparent velocity, i.e.

Lemma 1 (Passivity of Steady Aero-/Hydro-Dynamic force). If the kite apparent attitude α, β ∈
(−1

2
π, 1

2
π), the work done by the airflow on the kite is non positive,

VT
aHB ≤ 0. (2.38)

Proof. Define the apparent aerodynamic coefficient as follows

Ca = CD cos β − Cy sin β + Ct cosα cos β. (2.39)

Notice the kite and turbine drag coefficients are positive, therefore, the quantities CD cos β +

Ct cosα cos β > 0. Moreover, the side force coefficient Cy is in the negative direction of the va

and the side-slip angle β is given by

Cyva < 0; β = sin−1
( va
Va

)
. (2.40)

Therefore, for β ∈ (−1
2
π, 1

2
π),

Cy sin β < 0. (2.41)

The illustration of the passivity of the side force is shown in Figure 2.7. Hence, it can be conclude

that the apparent aerodynamic coefficient Ca is positive definite. Substituting equations (2.33) -

(2.37) into equation (2.38) gives that

VT
aHB =

1

2
ρf‖Va‖2S

(
ua(Cx − Ct) + vaCy + waCz

)

=
1

2
ρf‖Va‖3S

(
(Cx − Ct) cosα cos β + Cy sin β + Cz sinα cos β

)

=
1

2
ρf‖Va‖3S

(
− CD cos β + Cy sin β − Ct cosα cos β

)

= −1

2
ρf‖Va‖3SCa. (2.42)

Hence, the steady aerodynamic force is passive with respect to the kite apparent velocity.
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Though the steady aerodynamic force takes complicated form, it act as a resistance on the kite

translation. This result are used to derive the power limitation of the kite energy system in the next

section.

2.6 Power Generation Limit

In [35], the available power of the airborne kite energy system in a two dimensional case is

given by the following equation

Pwind = ‖W‖Fa cos γ, (2.43)

where W is the wind velocity, Fa is the total aerodynamic force and γ is the angle between the

direction of the force and the wind speed. The power limit of an airborne kite energy system is

given by the following equation

Pmax =
2

27
ρf‖W‖3SCR

(CR
CD

)2

with CR =
√
C2
L + (CD + Ct)2, (2.44)

where S is the kite area and CR is the resultant aerodynamic coefficient.

Using the similar procedure, the power limit of the kite energy system in three dimensional
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motion can be derived. Notice that the aerodynamic force acting on the kite can be decomposed

into two parts,

HB = Hk + Ht =
1

2
ρf‖Va‖2S

((
Cx Cy Cz

)T
−
(
Ct 0 0

)T
)
. (2.45)

Moreover, the wind velocity and aerodynamic force measured in reference frame B and C is

related as follows

WC = LCBWB, HC = LCBHB.

In the three dimensional case, the available power to a stationary ground station is given by

Pwind = WT
CHC = WT

BHB, (2.46)

where the kite velocity and aerodynamic force is measured in the inertial reference frame. Equation

(2.46) is a generalization of equation (2.43). Therefore, the power that available for the power

generation devices is given by

Pa = WT
BHB + VT

aHk.

Using the similar method in Lemma 1,

VT
aHk =

1

2
ρf‖Va‖3S

(
− CD cos β + Cy sin β

)
≤ 0. (2.47)

Expending equation (2.46), the total power in the wind is

WT
BHB =

1

2
ρfV

2
a SWT

BCB ≤
1

2
ρfV

2
a S‖WB‖‖CB‖. (2.48)

Consider the case when α = β = 0, equation (2.36) becomes

CB =
(
−CD − Ct 0 −CL

)
, (2.49)
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since the side force on the kite is zero when β = 0. Moreover, the equations (2.47) and (2.48) can

be further simplified as follows

VT
aHk = −1

2
ρfV

3
a SCD (2.50)

WT
BHB ≤

1

2
ρfV

2
a S‖WB‖

√
C2
L + (CD + Ct)2. (2.51)

Hence the maximum power of a kite energy system is given by

Pa ≤
1

2
ρfV

2
a S‖WB‖

√
C2
L + (CD + Ct)2 − 1

2
ρfV

3
a SCD. (2.52)

Maximizing the power with respect to the kite apparent speed Va yields

∂Pa
∂Va

=
1

2
ρfS(2Va‖WB‖

√
C2
L + (CD + Ct)2 − 3V 2

a CD) = 0. (2.53)

Therefore, the optimal value of kite apparent speed is

V ∗a =
2

3

√
C2
L + (CD + Ct)2

CD
‖W‖. (2.54)

The maximum power of a kite energy system is then given by substituting equation (2.54) into

equation (2.52)

Pmax =
2

27
ρf‖W‖3SCR

(CR
CD

)2

with CR =
√
C2
L + (CD + Ct)2.

In three dimensional case, the available power to a kite energy system is

Pa =
1

2
ρfV

2
a SWT

BCB + VT
aHk

=
1

2
ρfV

2
a S
(
Wx(CL sinα− CD cosα− Ct) +WyCy −Wz(CL cosα + CD sinα)

+ Va(−CD cos β + Cy sin β)
)
.

The global maximum value of the available power is difficult to obtain using analytical method.
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However, an upper bound of the available power can be obtained as follows

Wx(CL sinα− CD cosα)−Wz(CL cosα + CD sinα) ≤
√
W 2
x +W 2

z

√
C2
L + C2

D. (2.55)

Therefore, the upper bound of the available energy of kite system is

Pa ≤
1

2
ρfV

2
a S
(
−WxCt +WyCy +

√
W 2
x +W 2

z

√
C2
L + C2

D + Va(−CD cos β + Cy sin β)
)
.

(2.56)

When β is small, the maximum available power takes the following form,

Pa ≤
1

2
ρfV

2
a S
(
−WxCt +WyCy +

√
W 2
x +W 2

z

√
C2
L + C2

D + Va(−CD + Cyβ)
)
. (2.57)

Under the small angle assumption, side force coefficient is a linear function of β,

Cy = Cy,ββ. (2.58)

From the passivity of the kite aerodynamic force, the coefficient Cy,β < 0, therefore, Pa is concave

in β. The maximum value of Pa is obtained when the first order derivative attains zero,

∂Pa
∂β

= WyCy,β + 2VaCy,ββ. (2.59)

The optimal value β∗ must satisfies the following condition,

β∗ = −Wy

2Va
. (2.60)

Substituting equation (2.60) into equation (2.57) gives that

max
β

Pa ≤
1

2
ρfV

2
a S
(
− VaCD +

√
W 2
x +W 2

z

√
C2
L + C2

D −WxCt − Cy,β
W 2
y

4Va
). (2.61)
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Taking the derivative with respect to Va, the upper bound of available power is given by

∂Pa(Va)

∂Va
=

1

2
ρfS(−3V 2

a CD + 2Va(
√
W 2
x +W 2

z

√
C2
L + C2

D −WxCt)−
1

4
Cy,βW

2
y ). (2.62)

That is the optimal value of Va can be solved from the following equation,

−3(V ∗a )2CD + 2V ∗a (
√
W 2
x +W 2

z

√
C2
L + C2

D −WxCt)−
1

4
Cy,βW

2
y = 0. (2.63)

Using the roots formula of quadratic equation,

V ∗a = −2CtWx − 2
√
C2
D + C2

L

√
W 2
x +W 2

z ±
√

∆

6CD
(2.64)

∆ = 4(
√
W 2
x +W 2

z

√
C2
L + C2

D −WxCt)
2 − 3CDCy,βW

2
y .

By passivity of the aerodynamic force Cy,β < 0, therefore the following inequality holds

√
∆ > |2CtWx − 2

√
C2
D + C2

L

√
W 2
x +W 2

z |.

Thus the positive solution of the optimal value V ∗a is given by

V ∗a = −2CtWx − 2
√
C2
D + C2

L

√
W 2
x +W 2

z −
√

∆

6CD

∆ = 4(
√
W 2
x +W 2

z

√
C2
L + C2

D −WxCt)
2 − 3CDCy,βW

2
y .

To simplify the notation, denote scaled wind speed as follows

W1 =
√
W 2
x +W 2

z

√
C2
L + C2

D −WxCt, (2.65)

W2 =
√
−3CDCy,βW 2

y . (2.66)

The optimal kite apparent speed then become

V ∗a = −2W1 −
√

4W 2
1 +W 2

2

6CD
. (2.67)
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Substituting equation (2.67) into equation (2.61) gives the maximum available power

maxPa =
1

2
ρfS

(2W1 +
√

4W 2
1 +W 2

2 )(2W 2
1 +W 2

2 +W1

√
4W 2

1 +W 2
2 )

108C2
D

(2.68)

W1 =
√
W 2
x +W 2

z

√
C2
L + C2

D − CtWx

W2 =
√
−3CDCy,βW 2

y .

Consider the case when Wy = 0, the maximum power is given by

Pmax =
2

27
ρfS

W 3
1

C2
D

. (2.69)

It is important to notice if α = 0, the quantity W1 becomes

W1 =
√
W 2
x +W 2

z

√
C2
L + (CD + Ct)2.

Therefore, the power limit formulation becomes

Pmax =
2

27
ρf‖W‖3SCR

(CR
CD

)2

with CR =
√
C2
L + (CD + Ct)2,

which agrees with the two dimensional case as in [6,35]. In this chapter, the physical fundamentals

of the kite energy systems is studied. In the next chapter, the dynamics and simulation models of

the kite energy systems will be established.
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Chapter 3

Dynamics of Kite Energy Systems

In this chapter, the nonlinear rigid body dynamics of kite energy systems are derived in differ-

ent reference frames using Euler-Lagrange approach. Using kinematic relations, the equivalence

between the system dynamics of kite energy system in different frames are established. These

equivalences are used to combined different physical phenomenon into a unified mathematical

model. Two simulation models of the kite energy systems for airborne and undersea cases are

developed to increase the computational efficiency.

3.1 Lagrange Dynamics and Transformation

Assume the generalized coordinates is denoted by h and the corresponding kinetic energy is

Th, then the Euler-Lagrange equation is given by

d

dt

(∂Th
∂ḣ

)
− ∂Th

∂h
= Qh, (3.1)

where Qh includes conservative and non-conservative generalized forces. Denote the kite mass as

m and tether line density as ρt, then the translational kinetic energy of the airborne kite system in

frame C is given by

TCt =
1

2
(m+

1

3
ρtr)‖VC‖2. (3.2)
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Applying the Euler-Lagrange equation (2.9) to (2.10) yields the Newtonian dynamics

(m+
1

3
ρtr)V̇C = QC . (3.3)

Additionally, the translational kinetic energy of the kite energy system in frame B is given by

TBt =
1

2
(m+

1

3
ρtr)‖VB‖2. (3.4)

Applying equation (3.1) to (3.4), the translational dynamics in frame B becomes

(m+
1

3
ρtr)

(
V̇B + ω ×VB

)
= QB. (3.5)

The relation between QB and QC is given by

QC =
∂rB
∂rC

QB.

Using L’Hôpital’s rule gives

QC =
∂VB

∂VC

QB. (3.6)

Recall that the kite translational velocity transformation from frame B to frame C is given by

VC = LCBVB.

According to equation (3.6), the generalized force in frame C is

QC = LCBQB. (3.7)

Therefore, the generalized force in frame C is a rotation of the generalized force in frame B.

Similarly, the following theorem holds for the left hand side of the Euler-Lagrange equation.

Theorem 1. If the kinetic energy of kite systems in frame C and B are given by equations (3.2) and
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(3.4), then the following relation holds:

d

dt

( ∂TCt
∂VC

)
− ∂TCt
∂rC

= LCB

(
d

dt

( ∂TBt
∂VB

)
− ∂TBt
∂rB

)
. (3.8)

Proof. Using the kinematic relation

L̇CB = LCBΩ×,

the translational acceleration of the kite is given by

V̇C =
(
L̇CBVB + LCBV̇B

)

=
(
LCBΩ×VB + LCBV̇B

)
.

The translational acceleration in frame C is the rotation of translational acceleration in frame B:

V̇C = LCB(V̇B + ω ×VB). (3.9)

Pre-multiplying equation (3.9) with m+ 1
3
ρtr yields:

(m+
1

3
ρtr)V̇C = LCB(m+

1

3
ρtr)(V̇B + ω ×VB). (3.10)

Equation (3.8) holds immediately.

Equations (3.10) imply that the kite translational dynamics in frame C is a rotation of kite

translational dynamics in frame B. Using the kinematic relation

VC = Pq̇,

the generalized force transformation in frame S is given by

QS =
∂rC
∂q

QC =
∂VC

∂q̇
QC .
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The generalized force transformation from frame C to S becomes:

QS = PTQC . (3.11)

In terms of spherical coordinates, the kinetic energy of the kite is given by

T St =
1

2
(m+

1

3
ρtr)‖Pq̇‖2. (3.12)

Similar to the generalized force transformation, the left hand side of the Euler-Lagrange equation

satisfies the following relation as shown in Theorem 2.

Lemma 2. If the kinetic energy of the kite energy system in frame C and S are given by equation

(3.2) and (3.12), then:

d

dt

(∂T St
∂q̇

)
− ∂T St

∂q
= PT

(
d

dt

( ∂TCt
∂VC

)
− ∂TCt
∂rC

)
. (3.13)

Proof. Using the kinematic relation of translational velocity

∂VC

∂q
= Ṗ.

The Euler-Lagrange equation in the spherical frame becomes,

d

dt

(∂TS
∂q̇

)
− ∂TS

∂q
=(m+

1

3
ρtr)

( d
dt

(PTPq̇)− ∂VT
C

∂q
Pq̇
)

=(m+
1

3
ρtr)

(
ṖTPq̇ + PT Ṗq̇ + PTPq̈− ṖTPq̇

)

=(m+
1

3
ρtr)P

T (Ṗq̇ + Pq̈).

The acceleration transformation between frame C and S is

d

dt

( ∂TCt
∂VC

)
− ∂TCt
∂rC

= V̇C = Ṗq̇ + Pq̈. (3.14)

Therefore, the transformation relation (3.13) holds immediately.
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The translational system dynamics transformation (3.8) and (3.13) can be illustrated using the

Figure 3.1. The kite translational dynamics in frame C is a rotation of kite translational dynamics

in frame B. The kite translational dynamics in frame S is a projection of the kite translational

dynamics in frame C.

d
dt

(
∂TSt
∂q̇

)
− ∂TSt

∂q = QS

d
dt

(
∂TCt
∂VC

)
− ∂TCt

∂rC
= QC

PT

d
dt

(
∂TBt
∂VB

)
− ∂TBt

∂rB
= QB

LCB

LCB

LBCP
T

Figure 3.1: Translational Dynamics Transformations

Additionally, the generalized velocity transformation between frame B and E is given by,

ω = RΘ̇.

Then the generalized force transformation between frame B and E can be obtained from the virtual

work principle

ME =
∂ω

∂Θ̇
MB, (3.15)

where ME and MB are the moment acting on the rotational motion in Euler and Body frame

respectively.

Lemma 3. If the rotational kinetic energy of the kite energy system in frame B and E are given by

TBr =
1

2
ωTJω, TEr =

1

2
Θ̇
T
RTJRΘ̇. (3.16)
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Then the equivalence of rotational dynamics between frame B and E

d

dt

(∂TEr
∂Θ̇

)
− ∂TEr

∂Θ
= RT d

dt

(∂TBr
∂ω

)
. (3.17)

Proof. The Euler-Lagrange equation in body frame gives the Euler rotational dynamics

d

dt

(∂TBr
∂ω

)
= Jω̇ + ω × Jω. (3.18)

Using rotational kinematic relation

∂ω

∂Θ
=
(
Ṙ + Ω×R

)T
.

The Euler-Lagrange equation of the rotational dynamics in frame E can be obtained by

d

dt

(∂TEr
∂Θ̇

)
− ∂TEr

∂Θ
=

d

dt
(RTJRΘ̇)− (Ṙ + Ω×R)TJRΘ̇

= ṘTJRΘ̇ + RTJṘΘ̇ + RTJRΘ̈− ṘTJRΘ̇−RTΩT
×JRΘ̇

= RTJṘΘ̇ + RTJRΘ̈ + RTΩ×JRΘ̇

= RT
(
J(ṘΘ̇ + RΘ̈) + Ω×JRΘ̇

)
.

The angular acceleration of the kite is

ω̇ = ṘΘ̇ + RΘ̈ (3.19)

hence, the rotational dynamics in Euler frame can be further simplified as

d

dt

(∂TEr
∂Θ̇

)
− ∂TEr

∂Θ
= RT (Jω̇ + ω × Jω). (3.20)

The rotational dynamics transformation is shown the Figure 3.2. The rotational dynamics of

kite in frame E is a projection of the kite rotational dynamics in frame B.
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d
dt

(
∂TEr
∂Θ̇

)
− ∂TEr

∂Θ = uE
d
dt

(
∂TBr
∂ω

)
= uB

RT

Figure 3.2: Rotational Dynamics Transformation

With the equivalent relations of the kite system dynamics as given in Lemmas 2 and 3, all

the major physical effects can be combined into a unified simulation model. In next section, the

model of airborne kite energy systems, which simpler than the undersea kite energy systems, will

be derived.

3.2 Simulation Model of Airborne Kite Systems

In modeling the airborne kite energy systems, the added mass and buoyancy force is negligible.

In general, the model of airborne kite translation is given by

(m+
1

3
ρtr)P

T V̇C = PTLCBHC + PTGt + TS. (3.21)

There two major differences between the variable and fixed tether length airborne kite energy

systems. In variable tether length airborne kite energy systems, the tether tension take the form

TS =
(
TS 0 0

)
. In a constant tether length airborne kite energy system, the kite spherical

coordinates and translational velocity transformation matrix are given by

q =
(
q1 q2

)T
P = r




− sin q1 sin q2 cos q1 cos q2

cos q1 0

− sin q1 cos q2 − cos q1 sin q2


 .

Although it can be shown in both case, the variable and constant tether length, the translational

velocity transformation satisfies the same kinematic relations. The constant tether length assump-

tion implies that the force is balanced in the tether direction, that is TS = 0. Using the kinematic
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relation of the kite motion, the translational acceleration of the kite is given by

VC = Pq̇, V̇C = Pq̈ + Ṗq̇.

Therefore, the equation of translational motion can be put into a more fundamental form

(m+
1

3
ρtr)P

TPq̈ + (m+
1

3
ρtr)P

T Ṗq̇ = PTLCBHB + PTGt + TS. (3.22)

Using the following notation,

Mt(q)q̈ + Ct(q, q̇)q̇ = PTLCBHC + PTGt + TS,

Mt(q) = (m+
1

3
ρtr)P

TP, Ct(q, q̇) = (m+
1

3
ρtr)P

T Ṗ.

It is clear that the following matrix is skew symmetric,

Ṁt − 2Ct = (m+
1

3
ρtr)(Ṗ

TP−PT Ṗ). (3.23)

Equation (3.23) is very useful in developing the control system for kite energy systems.

Since the density of the air is negligible compare to the kite, the buoyancy and added mass

can be assumed to be zero. Using the dynamic transformation, the rotational dynamics in frame E

are given by

RTJRΘ̈ + RT (JṘ + Ω×JR)Θ̇ = uE. (3.24)

Denote the Mr and Cr matrix as follows

Mr(Θ)Θ̈ + Cr(Θ, Θ̇)Θ̇ = uE

Mr = RTJR Cr = RT (JṘ + Ω×JR)

In summary, the complete dynamics of airborne kite energy systems are given by
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• For the variable tether length airborne kite energy system

VC = Pq̇ P =




cos q1 sin q2 −r sin q1 sin q2 r cos q1 cos q2

sin q1 r cos q1 0

cos q1 cos q2 −r sin q1 cos q2 −r cos q1 sin q2


 , q =




r

q1

q2


 .

(3.25)

• For the fixed tether length airborne kite energy system

VC = Pq̇ P = r




− sin q1 sin q2 cos q1 cos q2

cos q1 0

− sin q1 cos q2 − cos q1 sin q2


 , q =


q1

q2


 . (3.26)

• The rotational kinematic relation is given by

ω = RΘ̇ R =




1 0 − sin θ

0 cosφ cos θ sinφ

0 − sinφ cos θ cosφ


 , Θ =




φ

θ

ψ


 . (3.27)

The dynamic model for kite motion simulation is given by

Mt(q)q̈ + Ct(q, q̇)q̇ = PTLCBHC + PTGt + TS, (3.28)

Mt(q) = (m+
1

3
ρtr)P

TP Ct(q, q̇) = (m+
1

3
ρtr)P

T Ṗ, (3.29)

Mr(Θ)Θ̈ + Cr(Θ, Θ̇)Θ̇ = uE, (3.30)

Mr = RTJR, Cr = RT (JṘ + Ω×JR). (3.31)

3.3 Simulation Model of Undersea Kite Systems

For the undersea kite energy systems, more complex physical effects need to be taken into

account. Due to the high density of the water, a typical undersea kite system is the one with fixed
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tether length, therefore, the translational velocity transformation relation is given by

VC = Pq̇ P = r




− sin q1 sin q2 cos q1 cos q2

cos q1 0

− sin q1 cos q2 − cos q1 sin q2


 q =


q1

q2


 ,

VB = LBCVC LBC =




cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφsψ cφcθ


 .

The complete system dynamics including the added mass effect and buoyancy is given by the

following equations.

Mt(q)q̈ + Ct(q, q̇)q̇ = PTLCBHB + PTGt + TS + PTLCBAt, (3.32)

Mr(Θ)Θ̈ + Cr(Θ, Θ̇)Θ̇ = uE + RTAr + Gr + Gv. (3.33)

As shown in the previous chapter, the added mass effect is modelled by:

At = −(MaV̇a + ΓT ω̇)− ω × (MaVa + ΓTω),

Ar = −(Jaω̇ + ΓV̇a)− ω × (Jaω + ΓVa)−VB × (MaVa + ΓTω).

If the current velocity is constant, the time derivative of the current velocity that measured in frame

B can be

ẆB = −Ω×WB (3.34)

Therefore, the added mass effect can be expressed as follows

At = −
(
Ma(V̇B + Ω×WB) + ΓT ω̇

)
− ω × (MaVa + ΓTω) (3.35)

Ar = −
(
Jaω̇ + Γ(V̇B + Ω×WB)

)
− ω × (Jaω + ΓVa)−VB × (MaVa + ΓTω) (3.36)
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Regroup the expression as follows,

At = −(MaV̇B + ΓT ω̇)−Ω×(MaVB + ΓTω) + (Ω×Ma −MaΩ×)WB

Ar = −(Jaω̇ + ΓV̇B)−Ω×(Jaω + ΓVB)−VB × (MaVB + ΓTω)

+ ([VB]×Ma + Ω×Γ− ΓΩ×)WB

The translational and rotational velocity transformations are given by the following equations,

VB = LBCPq̇ ω = RΘ̇

Moreover, the time derivative of the direct cosine matrix satisfies that

L̇BC = −Ω×LBC Ω× =




0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0




therefore the acceleration transformations are given by

V̇B = −Ω×LBCPq̇ + LBCṖq̇ + LBCPq̈ ω̇ = ṘΘ̇ + RΘ̈ (3.37)

By substitution, the equations of motion in spherical coordinates and Euler angles are given by

At = −
(
Ma(−Ω×LBCPq̇ + LBCṖq̇ + LBCPq̈) + ΓT (ṘΘ̇ + RΘ̈)

)

−Ω×(MaLBCPq̇ + ΓTRΘ̇) + (Ω×Ma −MaΩ×)WB

= −MaLBCPq̈− ΓTRΘ̈ +
(

(MaΩ× −Ω×Ma)LBCP−MaLBCṖ
)
q̇

− (ΓT Ṙ + Ω×ΓTR)Θ̇ + (Ω×Ma −MaΩ×)WB (3.38)

Ar = −
(
Ja(ṘΘ̇ + RΘ̈) + Γ(−Ω×LBCPq̇ + LBCṖq̇ + LBCPq̈)

)
−Ω×(JaRΘ̇ + ΓLBCPq̇)

− [VB]×(MaLBCPq̇ + ΓTRΘ̇) + ([VB]×Ma + Ω×Γ− ΓΩ×)WB

= −ΓLBCPq̈− JaRΘ̈ +
(

(ΓΩ× −Ω×Γ)LBCP− ΓLBCṖ− [VB]×MaLBCP
)
q̇

− (JaṘ + Ω×JaR + [VB]×ΓR)Θ̇ + ([VB]×Ma + Ω×Γ− ΓΩ×)WB (3.39)
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Combining the complete expression of added mass effect with the undersea kite equations of mo-

tion yields a compact form of system dynamics,

M(p)p̈ + C(p, ṗ)ṗ + G(p) = u + H + D, (3.40)

where p is the generalized position of the undersea kite system, p =
(
q Θ

)
. The conservative

force G, control input u, steady hydrodynamic force H and drift force D are given as follows

G(p) =


 −PTGt

−(Gr + Gv)


 , u =


TS

uE


 . (3.41)

H =


PTLCBHB

0


 , D =


 (Ω×Ma −MaΩ×)WB

([VB]×Ma + Ω×Γ− ΓΩ×)WB


 . (3.42)

The system matrices M(p) and C(p, ṗ) are given by

M(p) =


M11 M12

MT
21 M22


 , C(p, ṗ) =


C11 C12

C21 C22


 . (3.43)

where the block matrices in equation (3.43) are given by

M11 =PTLCB

(
Ma + (m+

1

3
ρtr)I3

)
LBCP, (3.44)

M12 =PTLCBΓTR, (3.45)

M22 =RTJaR, (3.46)

C11 =PTLCB(Ω×Ma −MaΩ×)LBCP + PTLCB

(
Ma + (m+

1

3
ρtr)I3

)
LBCṖ, (3.47)

C12 =PTLCB(ΓT Ṙ + Ω×ΓTR), (3.48)

C21 =RT
(

(Ω×Γ− ΓΩ× + [VB]×Ma)LBCP + ΓLBCṖ
)
, (3.49)

C22 =RT
(

[VB]×Γ + Ω×(J + Ja)
)
R + RT (J + Ja)Ṙ. (3.50)

In simulation of the undersea kite motion, the inversion of generalized mass matrix M(p) is re-

quired. The first block matrix is positive definite since the Ma represent the added mass effect

that introduced through translation motion. In other word, 1
2
VT
aMaVa is the kinetic energy of the

45



unsteady fluid field if the kite motion is purely translation which is positive definite. Hence M11

is also invertible and the inversion of the matrix M(p) can be obtained through matrix inversion

lemma.

(
M(p)

)−1

=


I3 −M−1

11 M12

0 I3




M−1

11 0

0 (M22 −M21M
−1
11 M12)−1




 I3 0

−M21M
−1
11 I3


 .

(3.51)

Therefore, the inversion of the larger matrix M(p) is reduced to the inversion of the block matrix

M11 which is smaller in size.

In summary, the complete dynamics of the undersea kite energy systems are given by

• Translational Kinematic Relation is given by

VC = Pq̇ P = r




− sin q1 sin q2 cos q1 cos q2

cos q1 0

− sin q1 cos q2 − cos q1 sin q2


 , q =


q1

q2


 . (3.52)

• The rotational kinematic relation is given by

ω = RΘ̇, R =




1 0 − sin θ

0 cosφ cos θ sinφ

0 − sinφ cos θ cosφ


 Θ =




φ

θ

ψ


 . (3.53)

• The equation of motion is given by

M(p)p̈ + C(p, ṗ)ṗ + G(p) = u + H + D. (3.54)

It is important to notice that the airborne kite energy system dynamics are special case of the

undersea kite energy system dynamics with

Gr = Gv = 0; Ma = Γ = 0.
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In this chapter, the nonlinear dynamical model of the kite energy systems are derived. A unified

simulation model is established. In next chapter, some important nonlinear control techniques will

be reviewed and the outline of the rest of the dissertation will be given.
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Chapter 4

Control System Design Preliminaries

In this chapter, some crucial techniques in developing the control system of nonlinear dynam-

ical systems are reviewed. An outline of the rest of the dissertation is given in the second part of

the chapter.

4.1 Lyapunov Stability Analysis

It is clear that the kite system dynamics given in (3.52)-(3.54) is nonlinear. The Lyapunov and

passivity methods can be used to design the control signal for the kite energy system. Consider the

following autonomous nonlinear dynamical system,

ẋ = f(x) (4.1)

with equilibrium at the origin, i.e. f(0) = 0. Then the equilibrium point x = 0 is

• Stable if ∀ε > 0, ∃δ > 0 such that

‖x(t)‖ < ε,∀t ≥ 0 if ‖x(0)‖ < δ

• Unstable if is not stable.
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• Asymptotically Stable if ∃δ such that

lim
t→0

x(t) = 0 if ‖x(0)‖ < δ

It can be shown that a physical system with nonzero desired behavior can be transformed to prob-

lem (4.1) by considering the error dynamics. Lyapunov theorem gives the sufficient condition for

stability of the nonlinear dynamical system, [36],

Theorem 2 (Lyapunov Theorem). Let x = 0 be a equilibrium point of system (4.1) and D ⊂ Rn

be a domain such that 0 ∈ D. Let V : D → R be a continuous differentiable function such that

V (0) = 0 (4.2)

V (x) > 0 ∀x ∈ D − {0} (4.3)

V̇ (x) ≤ 0 ∀x ∈ D (4.4)

Then x = 0 is stable. Moreover, if

V̇ (x) < 0 ∀x ∈ D − {0} (4.5)

then x = 0 is asymptotically stable.

Corollary 1 (globally asymptotically stable). Let x = 0 be a equilibrium point of system (4.1) and

V : Rn → R be a continuous differentiable function such that

V (0) = 0 (4.6)

V (x) > 0 ∀x 6= 0 (4.7)

lim
‖x‖→∞

V (x) =∞ (4.8)

V̇ (x) < 0 ∀x 6= 0 (4.9)

then x = 0 is globally asymptotically stable.

Often, the time derivative of the Lyapunov function is only negative semi-definiteness. In such
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case, the invariant principle can be used to address the asymptotically stability of the nonlinear

systems.

Theorem 3 (LaSalle’s Invariance Principle). Let x = 0 be a equilibrium point of system (4.1).

Let V : D → R be continuous differentiable where D ⊂ Rn be a domain such that 0 ∈ D and

V̇ (x) ≤ 0 in D. Let S = {x ∈ D|V (x) = 0} and suppose that no solution can stay identically in

S, other than the trivial solution x(t) ≡ 0. Then, the origin is asymptotically stable.

Corollary 2. Let x = 0 be a equilibrium point of system (4.1). Let V : Rn → R be continuous

differentiable such that V̇ (x) ≤ 0 in Rn. Let S = {x ∈ Rn|V (x) = 0} and suppose that no

solution can stay identically in S, other than the trivial solution x(t) ≡ 0. Then, the origin is

globally asymptotically stable.

For non-autonomous nonlinear systems,

ẋ = f(t,x) (4.10)

with the equilibrium point f(t,0) = 0, ∀t > 0. To address the stability of non-autonomous

systems, the comparison functions needs to be introduced.

• A continuous function α : [0, a) → [0,+∞) is said to belong to class K if it is strictly

increasing and α(0) = 0.

• A continuous function α : [0, a)→ [0,+∞) is said to be K∞ if it is a class K function with

a =∞ and lim
r→∞

α(r) =∞.

• A continuous function β : [0, a)× [0,∞)→ [0,∞) is said to belong to class KL if; for each

fixed s, the mapping β(r, s) belongs to class K with respect to r and, for each fixed r, the

mapping β(r, s) is decreasing with respect to s and lim
s→∞

β(r, s) = 0.

The notion of stability also need to extended for non-autonomous systems. The equilibrium point

x = 0 is
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• Stable if ∀ε > 0,∃δ(ε, t0) > 0 such that

‖x(t)‖ < ε,∀t > t0 if ‖x(t0)‖ < δ

• Uniformly stable if ∀ε > 0,∃δ(ε) > 0, independent of t0, such that

‖x(t)‖ < ε,∀t > t0 if ‖x(t0)‖ < δ

• Unstable if it is not stable.

• Asymptotically stable if it is stable and there is a positive constant c = c(t0) such that

lim
t→∞

x(t) = 0 if ‖x(t0)‖ < c.

• Uniformly asymptotically stable if it is uniformly stable and there is a positive constant c

independent of t0 such that

lim
t→∞

x(t) = 0 if ‖x(t0)‖ < c.

• Globally uniformly asymptotically stable if it is uniformly stable with δ(ε) can be chosen

such that lim
ε→∞

δ(ε) =∞.

• Exponentially stable if ∃c > 0, k > 0, λ > 0 such that

‖x(t)‖ ≤ k‖x0(t)‖e−λ(t−t0),∀‖x0(t)‖ < c

The Lyapunov theorem for non-autonomous systems is listed as follows,

Theorem 4. Let x = 0 be a equilibrium point of system (4.10) and D ⊂ Rn be a domain such that

0 ∈ D. Let V : D → R be a continuous differentiable function such that

W1(x) ≤ V (x) ≤ W2(x) (4.11)

51



∂V

∂t
+
∂V

∂x
f(t,x) ≤ 0 (4.12)

∀t > 0,x ∈ D, where W1(x) and W2(x) are continuous positive definite functions in D. Then

x = 0 is uniformly stable.

Corollary 3. Let x = 0 be a equilibrium point of system (4.10) and D ⊂ Rn be a domain such

that 0 ∈ D. Let V : D → R be a continuous differentiable function such that

W1(x) ≤ V (x) ≤ W2(x) (4.13)

∂V

∂t
+
∂V

∂x
f(t,x) ≤ −W3(x) (4.14)

∀t > 0,x ∈ D, where W1(x),W2(x) and W3(x) are continuous positive definite functions in

D. Then x = 0 is uniformly asymptotically stable. Moreover, if D = Rn and W1(x) is radially

unbounded then x = 0 is globally uniformly asymptotically stable.

Corollary 4. Let x = 0 be a equilibrium point of system (4.10) and D ⊂ Rn be a domain such

that 0 ∈ D. Let V : D → R be a continuous differentiable function such that

k1‖x‖a ≤ V (x) ≤ k2‖x‖a (4.15)

∂V

∂t
+
∂V

∂x
f(t,x) ≤ −k3‖x‖a (4.16)

∀t > 0,x ∈ D, where k1, k2, k3 and a are positive constants. Then x = 0 is exponentially stable.

If the assumptions hold globally then x = 0 is globally exponentially stable.

Similarly to the autonomous system, the negative definiteness of the V̇ (t,x) is not always

available. To address the asymptotically stability of the non-autonomous systems, the invariance-

like theorem can be used.

Lemma 4. Let φ : R→ R be a uniformly continuous function on [0,∞). Suppose that lim
t→∞

∫∞
0
φ(τ)dτ

exists and is finite, then

lim
t→∞

φ(t) = 0.

Theorem 5. Let D ⊂ Rn be a domain containing x = 0 and suppose f(t,x) is piecewise contin-

uous in t and locally Lipschitz in x, uniformly in t on [0,∞)×D. Furthermore, suppose f(t,0) is
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uniformly bounded for all t > 0. Let V : [0,∞)×D → R be a continuous differentiable function

such that

W1(x) ≤ V (x) ≤ W2(x) (4.17)

V̇ (t,x) =
∂V

∂t
+
∂V

∂x
f(t,x) ≤ W (x) (4.18)

∀t > 0,x ∈ D, where W1(x) and W2(x) continuous positive definite functions and W (x) is

a continuous positive semidefinite function on D. Choose r > 0 such that Br ⊂ Rn and let

ρ < min‖x‖=rW1(x). Then, all solutions of ẋ = f(t,x) with x(t0) ∈ {x ∈ Br|W2(x) ≤ ρ} are

bounded and satisfy

lim
t→∞

W (x(t)) = 0. (4.19)

Moreover, if all the assumptions hold globally and W1(x) is radially unbounded, the statement is

true for all x(t0) ∈ Rn.

In this section, the Lyapunov analysis for autonomous and non-autonomous nonlinear systems

is reviewed. The emphasis is put on the stability of the nonlinear system. Different stability

properties are discussed. Especially, the invariance and invariance-like principles are given, which

serves as remedies for the negative semi-definiteness of the time derivative of Lyapunov function.

In next section, the boundedness of the system behaviors are discussed through Lyapunov analysis.

4.2 Boundedness and Input to State Stability

The following nonlinear non-autonomous dynamical system is considered in the boundedness

analysis,

ẋ = f(t,x) (4.20)

The solution of (4.20) is said to be,
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• uniformly bounded if there exists a positive constant c, independent of t0 ≥ 0, such that

∀a ∈ (0, c),∃β = β(a) > 0, independent of t0, such that

‖x(t)‖ ≤ β, ∀t > t0 if ‖x(t0)‖ ≤ a

• globally uniformly bounded if it is uniformly bounded with c =∞.

• uniformly ultimately bounded with ultimate bound b if there exist a positive constant b and

c, independent of t0 ≥ 0 and ∀a ∈ (0, c),∃T = T (a, b) ≥ 0, independent of t0 such that,

‖x(t)‖ ≤ b,∀t > t0 + T if ‖x(t0)‖ ≤ a

• globally uniformly ultimately bounded if it is uniformly ultimately bounded with c =∞.

The following theorem can be used to established the ultimately boundedness of system (4.20).

Theorem 6. Let D ⊂ Rn be a domain that contains the origin and V : [0,∞) × D → R be a

continuously differentiable function such that

α1(x) ≤ V (t,x) ≤ α2(x) (4.21)

∂V

∂t
+
∂V

∂x
f(t,x) ≤ −W3(x),∀‖x‖ > µ (4.22)

∀t ≥ 0,x ∈ D, where α1 and α2 are class K functions and W3(x) is a continuous positive definite

function. Take r > 0 such that Br ⊂ D and suppose that

µ < α−1
2 (α1(r)) (4.23)

Then, there exists a class KL function β and for every initial state x(t0), satisfying ‖x(t0)‖ ≤
α−1

2 (α1(r)), there exists a T ≥ 0(dependent on x(t0) and µ) such that the solution of (4.20)

satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0),∀t0 ≤ t ≤ t0 + T (4.24)
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‖x(t)‖ ≤ α−1
2 (α1(µ)),∀t ≥ t0 + T (4.25)

Moreover, if D = Rn and α1 belong to class K∞, then (4.24) and (4.25) hold for any initial state

x(t0), with no restriction on how large µ is.

Another important boundedness property is the boundedness of states with respect to the input

to the system, consider the following nonlinear system,

ẋ = f(t,x,u) (4.26)

The system (4.26) is said to be

• Input to State Stability if there exist a classKL function β and a classK function γ such that

for any initial state x(t0) and any bounded input u(t), the solution x(t) exists for all t > t0

and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ
(

sup
t0≤τ≤t

‖u(τ)‖
)

Then the following theorem gives a sufficient condition for input-to-state stability,

Theorem 7. Let V : [0,+∞)× Rn → R be a continuously differentiable function such that

α1(x) ≤ V (t,x) ≤ α2(x) (4.27)

∂V

∂t
+
∂V

∂x
f(t,x) ≤ −W3(x),∀‖x‖ > ρ(‖u‖) > 0 (4.28)

∀(t,x,u) ∈ [0,+∞) × Rn × Rm, where α1, α2 are class K∞ functions, ρ is a class K function,

and W3(x) is a continuous positive definite function on Rn. Then system (4.26) is input-to-state

stable with γ = α−1
1 ◦ α2 ◦ ρ.

In this section the boundedness property of the non-autonomous nonlinear dynamical system

is considered. In next section, the output structure is added into the system dynamics and the

passivity will be discussed.
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4.3 Passivity

The input-output relation y = h(t,u) is said to be

• Passive if uTy ≥ 0

• Lossless if uTy = 0

• Input strictly passive if uTy ≥ uTϕ(u) and uTϕ(u) > 0,∀u 6= 0

• Output strictly passive if uTy ≥ yTϕ(y) and yTϕ(y) > 0,∀y 6= 0

For a dynamical system represented by a state space model

ẋ = f(x,u) (4.29)

y = h(x,u) (4.30)

where f : Rn × Rp → Rn is locally Lipschitz, h : Rn × Rp → Rp is continuous, f(0,0) = 0

and h(0,0) = 0. The system (4.29)-(4.30) is said to be passive if there exists a continuously

differentiable positive semidefinite function V (x) (called the storage function) such that

uTy ≥ V̇ =
∂V

∂x
f(x,u),∀(x,u) ∈ Rn × Rp (4.31)

Moreover, it is said to be

• lossless if uTy = V̇

• input strictly passive if uTy ≥ V̇ + uTϕ(u) and uTϕ(u) > 0,∀u 6= 0

• output strictly passive if uTy ≥ V̇ + yTρ(y) and yTρ(y) > 0,∀y 6= 0

• strictly passive if uTy ≥ V̇ + ψ(x), where ψ(x) is positive definite.

in all cases, the inequalities hold for all (x,u) ∈ Rn × Rp.
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To illustrate the relations of the passivity and stability, the zero-state observability is required.

The system (4.29) and (4.30) is zero state observable if no solution of ẋ = f(x,0) can stay iden-

tically in S = {x ∈ Rn|h(x,0) = 0}, other than the trivial solution x = 0. The following two

lemmas give the relation between the passivity and stability.

Lemma 5. If the system (4.29)-(4.30) is passive with positive definite storage function V (x), then

the origin of ẋ = f(x,0) is stable.

Lemma 6. Consider the system (4.29)-(4.30). The origin of ẋ = f(x,0) is asymptotically stable

if the system is

• strictly passive or

• output strictly passive and zero-state observable.

Furthermore, if the storage function is radially unbounded, the origin will be globally asymptoti-

cally stable.

4.4 Outline of the System Analysis and Control Design

In previous sections, the complete system dynamics of the kite energy systems are given. To

design control schemes for a kite energy system, a high level description of the kite system is

needed. In an airborne kite energy system, the kite attitudes, φ, θ and ψ, can be treated as inputs to

the aerodynamic model. The aerodynamic model of the kite energy system can be treated as a sys-

tem with kite apparent velocity as input and the aerodynamic force as output. The translational kite

dynamics takes the aerodynamic force as input and kite velocity as output. The cascade relation of

the kite rotational, aerodynamic and translational dynamics is shown in the following Figure 4.1.

The coupling between the rotational and translational dynamics is unidirectional in airborne

kite energy systems. Due to the air density, the influence of kite translational motion to rotational

motion is neglected in the airborne system. On the other hand, the influence of the added mass ef-

fects on the undersea kite system is not negligible. Therefore, the coupling between kite translation

and rotation is more complicated as shown in Figure 4.2
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Figure 4.1: Airborne Kite Energy System Diagram (Open Loop)

ω

R
Dynamics
Rotational

Added Mass

Θ̇

∫
Θ

Steady
HydroDynamics

Translational
Dynamics

-

W

VB

Translational
Kinematics

q

Figure 4.2: Undersea Kite Energy System Diagram (Open Loop)

Based on the analysis of open loop kite energy system dynamics, the input to state stability

of the kite energy system is addressed. In passivity based system analysis, we propose that the

kite mechanical energy with respect to the wind is a more suitable perspective to address the kite

system stability. It can be shown in the analysis that the aerodynamic force is dissipative with

respect to the kite apparent velocity. By considering the undersea kite and its surrounding fluid as

an entire system, a modified PD type control signal is proposed.

Furthermore, the detail system diagram of the steady aero-/hydro-dynamical force can be

shown in the following Figure 4.3. The key concept in calculating the aerodynamic force acting on

the kite is the apparent attitude, angle of attack α and side slip angle β. Therefore, to analysis the

influence of the aerodynamic force on the kite motion, it is important to analyze the procedure for

generating angle of attack α and side slip β. It is important to realize that the kite apparent angles

are spherical coordinates of the kite apparent velocity measure in the body frame, i.e.

(
ua va wa

)
= ‖Va‖

(
cosα cos β sin β sinα cos β

)

Therefore, by transforming the glider system dynamics into spherical representation of the appar-

ent velocity, i.e. ‖Va‖, α, β, the kite angular velocity ω becomes the control input to the kite

translation. The rotational and translational dynamics form a cascade system. The back stepping
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strategy can be applied on the system control design.

On the other hand, the kite apparent angles, α and β, can be treated as output from a nonlinear

function that take kite apparent velocity measured in the earth Cartesian frame, V, as inputs. An

apparent attitude tracking trajectory can be obtained by solving the nonlinear process. The solution

of this desired kite attitude trajectory requires the Euler angles to track a time varying attitude

trajectory. To achieve the tracking behavior, two types of rotational control signals are designed

based on the sliding mode method and passivity based method.

The following table summarize the dynamic model that used to simulate the kite rotational

and translational motion as well as the control strategies that applied for different models.

FlyGen Airborne GroundGen Airborne FlyGen Undersea
Lyapunov/Passivity Based Section 5.1− 5.3 Section 5.1− 5.3 Section 5.4
Dynamic Attitude Tracking section 6.1− 6.2

Geometric Attitude Tracking Section 7.1− 7.3 Section 7.1− 7.3

In the following chapters, three control system design are proposed based on different kite

system dynamics. Based on the steady aerodynamic model proposed in the previous chapter, the

passivity nature of the aero-/hydro-dynamical force with respect to the kite apparent velocity is

addressed. A Lyapunov based control design is proposed in the airborne kite system, the asymp-

totic stability of system is established using invariance principle. On the other hand, the undersea

kite system dynamics are more complicated and the passivity based control design is proposed.

Combining the passivity of the steady aero-/hydro-dynamical force and the passivity/Lyapunov

based control design, the ultimately boundedness of the kite translation under steady aero-/hydro-

dynamic perturbation is established.

As shown in the system dynamics diagram, the aerodynamic force is complicated process

coupling the kite translational and rotational states as well as the wind condition. The aerodynamic
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coupling is the reason of the under-actuation of the kite translation. To decouple the aerodynamic

forces, a time varying rotational attitudes are proposed. To achieve the desired kite attitudes, a non

autonomous desired rotational dynamics are proposed. The sliding mode control method is used

to design the corresponding control scheme and the Lyapunov-like method is used to provide the

asymptotic stability of the rotational control. In the proposed apparent attitude tracking control

system, the first and second order derivatives of the kite attitudes is required. Therefore, a high

gain observer is designed to provide the real time differentiation of the signals. A comparison

study of the Lyapunov based control design and apparent attitude tracking control is conducted on a

baseline simulation. Moreover, the apparent attitude tracking control also modified the original kite

dynamics derived from the Euler-Lagrange approach. By applying the apparent attitude tracking

trajectory to the kite translational dynamics, the aerodynamic force is decoupled. The kite apparent

attitudes, α and β, are introduced to the translational dynamics as control inputs. A cascade kite

dynamics are proposed based on the apparent attitude tracking.

In geometric apparent attitude tracking control, the rotational control signal is transformed to

translational control signal through apparent attitude tracking. However, the translation actuation

can also be achieved by coordinate transformation in modeling kite translational dynamics. As

shown in kinematic relation, the kite apparent velocity can be used as an coordinates that describe

the kite translation. By transforming the kite translational dynamics into a non-inertial body frame,

the kite angular velocity appears in the system dynamics as control inputs. The rotational and

translational kite dynamics form a cascade system. The back-stepping method can be used to

design the control system of kite dynamics.
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Chapter 5

Lyapunov Based Control Design

5.1 Passivity Analysis of Airborne Kite Energy Systems

In last chapter, the passivity property of the kite aerodynamic force is used to obtain the maxi-

mum available power of the airborne kite energy system. In this chapter, this property will be used

to analysis the stability of the kite motion. For simplicity, the airborne kite energy systems are first

to be analyzed. Moreover, it is assumed that the wind velocity is constant:

Assumption 1. The wind velocity W is constant and horizontal.

Consider the airborne kite translational dynamics in Cartesian frame C and rotational dynam-

ics in body frame B

(m+
1

3
ρtr)V̇C = HC + Gt + TC (5.1)

Jω̇ = −ω × Jω + uB (5.2)

Define the input and output of the open loop system (5.1)-(5.2) as follows

u =
(
TC uB

)
, y =

(
VC −W ω

)
(5.3)
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The supply rate to the system is defined as the inner product of the output and input function

s = uTy = TT
C(VC −W) + uTBω (5.4)

The storage function of the airborne kite energy system is defined as

Vs =
1

2
(m+

1

3
ρtr)‖VC −W‖2 + U +

1

2
ωTJω (5.5)

Taking the time derivative of the storage function along the kite system trajectory gives that

V̇s = (VC −W)T (m+
1

3
ρtr)(V̇C − Ẇ)−VT

C

∂U

∂rC
+ ωTJω̇ (5.6)

Using the constant wind velocity assumption, the time derivative of Vs can be simplified as follows

V̇s = (VC −W)T (m+
1

3
ρtr)V̇C −VT

C

∂U

∂rC
+ ωTJω̇

= (VC −W)T (HC + Gt + TC) + VT
C

∂U

∂rC
+ ωT (−ω × Jω + uB)

= (VC −W)THC + (VC −W)TGt + VT
C

∂U

∂rC
+ (VC −W)TTC + ωTuB

Based on the horizontal wind assumption, the wind velocity is perpendicular to the gravitational

force, therefore, the time derivative of the storage function can be simplified as follows

V̇s = (VC −W)THC + VT
CGt + VT

C

∂U

∂rC
+ (VC −W)TTC + ωTuB

= (VC −W)THC + (VC −W)TTC + ωTuB

The second equality holds due to the definition of gravitational force Gt = − ∂U
∂rC

. Additionally,

notice the following identity

(VC −W)THC = (VC −W)TLCBLBCHC = VT
aHB (5.7)
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Figure 5.1: Airborne Kite Energy System Diagram (Open Loop)

Using the passivity of the steady aerodynamic force with respect to apparent velocity,

VT
aHB ≤ 0

the time derivative of the storage function yield

V̇s ≤ (VC −W)TTC + ωTuB (5.8)

Therefore, the airborne kite energy system is passive. However, the kite system dynamics (5.1)

and (5.2) is under actuated, the tether can only provide the tension force in the tether direction.

Therefore, no tension control signal can be design such that V̇s is negative definite. On the other

hand, the overall system is unidirectional coupled as shown in Figure 5.1 and the aerodynamic

force is passive if α, β ∈ (−1
2
π, 1

2
π). Hence, the kite rotational and translational control signal

can be designed separately. The rotational control design will not influence the kite translational

stability as long as the apparent angle α, β ∈ (−1
2
π, 1

2
π).

5.2 Lyapunov Based Rotational Control Design

Since the kite rotational motion is independent with respect to the kite translational motion, the

rotational control design is first studied in this section. Assume that the rotational transformation

matrix R is not singular, i.e.

Assumption 2. The kite pitch angle is bounded away from the singularity, there exist a small

number θε ∈ (0, π
2
) such that −π

2
+ θε ≤ θ ≤ π

2
− θε.
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Under the assumption 2, the complete kite rotational dynamics are given the following state

space model

Θ̇ = R−1ω (5.9)

Jω̇ = −ω × Jω + uB (5.10)

Choose the rotational Lyapunov function as follows

Vr =
1

2
ωTJω +

1

2
(Θ−Θd)

TKΘ(Θ−Θd) (5.11)

where KΘ is a positive definite design matrix and Θd is constant desired kite geometric attitudes.

Take the time derivative of Lyapunov function along kite rotational dynamics gives that

V̇r = ωTJω̇ + Θ̇TKΘ(Θ−Θd)

= ωTuB + Θ̇TKΘ(Θ−Θd)

= Θ̇T
(
RTuB + KΘ(Θ−Θd)

)

Let the control signal uB satisfies the following equation,

RTuB + KΘ(Θ−Θd) = −KΩΘ̇ (5.12)

Then the derivative of rotational Lyapunov function Vr is given by

V̇r = −Θ̇TKΩΘ̇ ≤ 0 (5.13)

Based on the assumption, the rotational velocity transformation matrix R is invertible and the

resulting control signal is

uB = −(RT )−1
(
KΘ(Θ−Θd) + KΩΘ̇

)
(5.14)
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The closed loop system dynamics are

Jω̇ = −ω × Jω − (RT )−1
(
KΘ(Θ−Θd) + KΩΘ̇

)
(5.15)

Using invariance principle, the invariance set of the closed loop system must satisfies that

Θ̇ = 0; ω = 0; ω̇ = 0 (5.16)

Therefore, the only closed loop dynamic trajectory that satisfies the invariant set condition is

Θ = Θd (5.17)

The closed loop kite rotational system dynamics is asymptotically stable.

5.3 Lyapunov Based Translational Control Design

Among the airborne kite energy systems, there are two different power generation modes. In

a lift mode airborne kite energy system, also known as the GroundGen system, the electricity is

generated in a ground based station. On the other hand, in a drag mode airborne kite energy system,

turbines are mounted on the kite or glider to generate power. In this study, we assumed that in a

GroundGen system, the tether length is variable and the mechanical power is converted to the

electrical power through tether tension. While in the FlyGen system, the tether length is assumed

to be constant and the energy in the apparent wind is converted to electrical power through on board

turbines. In both cases, the tether tension is a important factor in achieving kite power generation.

In this section, the influence of the tether tension on kite motion is addressed.

In the case of variable tether length airborne kite energy system, the translational states and
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velocity transformation matrix is given by

q =
(
r q1 q2

)T
P =




cos q1 sin q2 −r sin q1 sin q2 r cos q1 cos q2

sin q1 r cos q1 0

cos q1 cos q2 −r sin q1 cos q2 −r cos q1 sin q2




On the other hand, the translational velocity transformation matrix P and generalized coordinate

q of a constant tether length kite energy system are given by

q =
(
q1 q2

)T
P = r




− sin q1 sin q2 cos q1 cos q2

cos q1 0

− sin q1 cos q2 − cos q1 sin q2




Additionally, denote the wind velocity as W, the kite apparent velocity Va and kite velocity VC

are given by

VC = Pq̇, Va = Pq̇−W (5.18)

Moreover, if the wind velocity W is constant, the kite apparent translational dynamics takes the

same form of kite absolute translational dynamics.

(m+
1

3
ρtr)V̇a = GC + HC + TC (5.19)

To facilitate the system analysis, the following two equivalent assumptions need to be made

Assumption 3. The gravitational force on the kite is bounded by a quadratic function of the kite

apparent velocity, i.e.

‖GC‖ ≤ CG‖Va‖2 (5.20)

Assumption 4. The kite apparent speed is not less that some nonzero minimum value, i.e.

∃Vmin > 0 3 ‖Va‖ ≥ Vmin (5.21)
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To analyze the influence of tether tension on kite motion, the following Lyapunov function

candidate is chosen,

Vt =
1

2
(m+

1

3
ρtr)‖Va‖2 + U (5.22)

By definition, the kite gravitational potential energy is defined by the integration of gravity with

respect to kite displacement

U =

∫
GdrC (5.23)

Using the Assumption 3, the gravitational potential energy is also bounded by a quadratic function

of the kite apparent velocity

U ≤
∫
‖G‖dr ≤ CG‖Va‖2r (5.24)

Therefore, the Lyapunov function candidate (5.22) is bounded by two class K functions

1

2
(m+

1

3
ρtr)‖Va‖2 ≤ Vt ≤

1

2
(m+

1

3
ρtr)‖Va‖2 + CG‖Va‖2r (5.25)

Take the time derivative of the Lyapunov function Vt along the system trajectory gives that

V̇t = VT
aHC + VT

aTC

= −1

2
ρt‖Va‖3Ca + VT

aTC

≤ −1

2
ρtS‖Va‖3Ca + ‖Va‖‖TC‖ (5.26)

To derive the tension control signal that guarantee the boundedness of the kite apparent velocity, it

needs to assume that the coefficient Ca is lower bounded.

Assumption 5. There exist a positive minimum value of Ca, that is

∃(Ca)min > 0 3 Ca ≥ (Ca)min (5.27)
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Hence, for a positive number 0 < εa < Ca, then the following inequality holds

V̇t ≤ −εa‖Va‖3 if ‖Va‖ ≥
√

2‖TC‖
Sρt(Ca − εa)

(5.28)

Hence the kite system dynamics (5.19) is input-to-state stable, that is there exist a class KL func-

tion βa and a class K function γa such that the kite apparent velocity satisfies that

‖Va‖ ≤ βa(‖Va(t0)‖, t− t0) + γa

(
sup
t0≤τ≤t

‖TC‖
)

Therefore, if the magnitude of tether tension is constant, the kite apparent velocity is bounded.

‖Va‖ ≤ βa(‖Va(t0)‖, 0) + γa(µC) if ‖TC‖ ≤ µC (5.29)

Moreover, if the tether tension is proportional to the apparent velocity ‖Va‖, i.e.

‖TC‖ = Ka‖Va‖ for Ka > 0 (5.30)

the kite apparent velocity Va can be shown to be ultimately bounded. The derivative of the Lya-

punov function (5.26) under the control signal (5.30) becomes,

V̇t ≤ −
1

2
ρtS‖Va‖3Ca + ‖Va‖‖TC‖

= −1

2
ρtS‖Va‖3Ca +Ka‖Va‖2 (5.31)

The ultimately boundedness of the kite apparent velocity is given by the following inequality,

V̇t ≤ 0 if ‖Va‖ ≥
2Ka

ρtS(Ca)min
(5.32)

The Lyapunov stability can be guarantee by choosing the following tension control signal

‖TC‖ =
1

2
ρtS‖Va‖2(Ca)min (5.33)
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Table 5.1: GroundGen System Tension Control

Control Signal Formulation System Stability
Bounded Tether Tension ‖TC‖ ≤ µC Bounded
Linear Tether Tension ‖TC‖ = Ka‖Va‖ Ultimately Boundedness
Quadratic Tether Tension ‖TC‖ = 1

2
ρt‖Va‖2(Ca)min Lyapunov Stable

Under the control signal (5.33), the derivative of the Lyapunov function Vt becomes

V̇t ≤ −
1

2
ρtS‖Va‖3

(
Ca − (Ca)min

)
≤ 0 (5.34)

Therefore, the tether tension control design for a GroundGen airborne kite energy systems can be

summarized in the following Table 5.1

For a FlyGen airborne kite energy system, the tether length is assumed to be constant. In this

case, the kite translation is constrained on a half sphere with no motion in the tether direction.

Therefore, the force is balance in the normal direction of the sphere. Using the virtual work

principle, the kite velocity satisfies that

VT
CTC = 0 (5.35)

Choose the same Lyapunov function as (5.22), the time derivative becomes

V̇t = VT
aHC + VT

aTC

= VT
aHC + (VC −W)TTC

≤ −1

2
ρtS‖Va‖3Ca + ‖W‖‖TC‖ (5.36)

It is important to notice that the tether tension can be calculated using the force balance

TC = −
(

(GC + HC) · r̂C
)
r̂C (5.37)

where r̂C is the unit vector in the tether direction. Additionally, the aerodynamic coefficients on
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kite is physically bounded

‖CB‖ ≤ ∞ (5.38)

Therefore, using Assumption 3, the tether tension of a FlyGen kite energy system is bounded by

the following inequality

‖TC‖ ≤
1

2
ρtS‖Va‖2(‖CB‖+ CG) (5.39)

Therefore, kite apparent velocity is ultimately bounded,

V̇t ≤ 0 if ‖Va‖ ≥
‖CB‖+ CG

(Ca)min
(5.40)

In summary, the apparent velocity of a FlyGen airborne kite energy system is ultimately bounded.

The key control and input parameters of a baseline simulation is given in the following table.

In the baseline simulation, the Lyapunov based rotational and translational control signal is applied

on a airborne kite energy system, the results shows that that the consecutive power generation and

retraction motion has been achieved. In the power generation phase, we propose a switching

control law which establishes cross wind kite motion by alternating desired roll, pitch, yaw trim

angles Θd as follows, where the variables q+
2 and q−2 represent the right and left limit in cross wind

motion.

Θd =





[
φ+
d θ+

d ψ+
d

]T
if q2 > q+

2

[
φ−d θ−d ψ−d

]T
if q2 < q−2

In the retraction phase, on the other hand, the control goal is to establish retraction near the mid-

plane (q2 = 0), thus we propose the following desired roll, pitch, yaw trim angles

Θd =
[

0 θ∗ 0
]T
, θ∗ < 0

In the following figures, the robustness of the control system design is tested through simula-

tions. In all cases of different mass and wind speed situation, the Lyapunov based control design
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Table 5.2: Input and Control Parameters

parameter value parameter value parameter value
Kite Mass 15 kg Ka 1000 [φ+

d , θ
+
d , ψ

+
d ] [50◦, 70◦, 20◦]

Kite Area 15 m2 KΩ 1000I [φ−d , θ
−
d , ψ

−
d ] [50◦, 70◦, 20◦]

Tether Density 0.003 kg/m KΘ 1500I θ∗ −25◦

Tether Diameter 0.002 m [q−2 , q
+
2 ] ±11.5◦ q1 300-600m

Wind Velocity 6 m/s

Table 5.3: Power Output

Wind Speed(m/s) mass(kg) Power(kW)

6
12 2.17
15 2.57
18 2.56

7
12 2.57
15 2.58
18 2.37

achieve successively power cycles. In table 5.3, the power of these cases are listed.

5.4 Tethered Undersea Kite Systems

Using the same concepts that have been developed in the airborne kite energy systems, the

kite energy generation can also be applied to the undersea circumstance. There are three major

differences between the airborne and undersea kite energy systems:

• The water provide significant buoyancy than the air, which is not negligible;

• The water is much more dense and viscous than the air, therefore, there is also significant

added mass effects;

• Due to the buoyancy and added mass effects, the typical configuration of the undersea kite

energy system is the FlyGen system.

Similar to the FlyGen airborne kite energy systems, the undersea kite energy system consists of a

fixed length tether, a rigid kite or glider and on-board turbines. To facilitate the system analysis,
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Figure 5.2: Wind Speed = 6m/s, Mass = 12kg

assume that the kite geometric attitudes satisfies the Assumption 2, i.e. R is invertible. The

complete system dynamics of the undersea kite energy systems in body frame B are given by

(m+
1

3
ρtr)(V̇B + ω ×VB) = LBCGt + HB + At + TB (5.41)

Jω̇ + ω × Jω = (R−1)TuE + Ar + (R−1)T (Gr + Gv) (5.42)

It is important to notice that the added mass effects are formulated in the relative motion reference

frame, i.e.

At = −(MaV̇a + ΓT ω̇)− ω × (MaVa + ΓTω)
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Figure 5.3: Wind Speed = 6m/s, Mass = 15kg

73



0

100

-600

200

300

Z
E
(m

)

400

-400

500

XE(m)

-200
150

100

YE(m)

50
0

-500 -100
-150

(a) Kite Spherical Coordinate Trajectory

0 100 200 300 400 500 600 700
0

500

1000
Tether Length (m)

0 100 200 300 400 500 600 700
-20

0

20
Crosswind Angle(deg)

0 100 200 300 400 500 600 700

time(s)

-100

-50

0
Inclination Angle(deg)

(b) Kite Spherical Coordinate Trajectory

0 100 200 300 400 500 600 700
-50

0

50
φ(deg)

actual

0 100 200 300 400 500 600 700
-50

0

50
θ(deg)

actual

0 100 200 300 400 500 600 700

time(s)

-100

0

100
ψ(deg)

actual

(c) Kite Aerodynamics Coefficient

0 100 200 300 400 500 600 700

0

50

100

Kite Air Speed (m/s) V
air

0 100 200 300 400 500 600 700

-20

0

20

Net Power Output(kW)

0 100 200 300 400 500 600 700

0

2

4

Power Consumption(kW)

(d) Angle of attack and control tension

Figure 5.4: Wind Speed = 6m/s, Mass = 18kg
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Figure 5.5: Wind Speed = 7m/s, Mass = 12kg
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Figure 5.6: Wind Speed = 7m/s, Mass = 15kg
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Figure 5.7: Wind Speed = 7m/s, Mass = 18kg
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Ar = −(Jaω̇ + ΓV̇a)− ω × (Jaω + ΓVa)−VB × (MaVa + ΓTω)

To simplify the analysis, assume that the current velocity is constant, then the following lemma

holds

Lemma 7. For constant current velocity,

(m+
1

3
ρtr)(V̇B + ω ×VB) = (m+

1

3
ρtr)(V̇a + ω ×Va) (5.43)

Proof. By definition, the current velocity measured in body frame B is

W = LCBWB (5.44)

Taking the time derivative of the equation above

L̇CBWB + LCBẆB = 0 (5.45)

Using the matrix identity

LCBΩ×WB + LCBẆB = 0 (5.46)

Since the velocity transformation matrix LCB is invertible,

ẆB = −Ω×WB (5.47)

Substituting equation (5.47) into equation (5.43) yields

(m+
1

3
ρtr)(V̇B + ω ×VB)

=(m+
1

3
ρtr)(V̇B + ω ×WB + ω ×VB − ω ×WB)

=(m+
1

3
ρtr)(V̇a + ω ×Va) (5.48)

Thus the lemma statement holds.
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Substituting equation (5.48) into equation (5.41), the dynamics of kite apparent velocity is

given by

(m+
1

3
ρtr)(V̇a + ω ×Va) = LBCGt + HB + At + TB (5.49)

On the other hand, the right hand side of the kite rotational dynamic can be rewritten as follows

Jω̇ + ω × Jω = uB + Ar + (R−1)T (Gr + Gv) (5.50)

where uB = (R−1)TuE . Further define the augmented rotational control signal and augmented

rotational added mass effect as follows

u′B = (R−1)TuE −WB × (MaVa + ΓTω) (5.51)

A′r = −(Jaω̇ + ΓV̇a)− ω × (Jaω + ΓVa)−Va × (MaVa + ΓTω) (5.52)

Furthermore, using the cross product identities,

Va × (m+
1

3
ρtr)Va = 0

Equation (5.52) can be rewritten as follows

A′r = −(Jaω̇ + ΓV̇a)− ω × (Jaω + ΓVa)−Va ×
(
Ma + (m+

1

3
ρtr)I3Va + ΓTω

)
(5.53)

Then the rotational dynamics of the undersea kite is given by

Jω̇ + ω × Jω = u′B + A′r + (R−1)T (Gr + Gv) (5.54)

Therefore, the undersea kite system dynamics are given by

(
Ma + (m+

1

3
ρtr)I3

)
V̇a + ΓT ω̇ + ω ×

((
Ma + (m+

1

3
ρtr)I3

)
Va + ΓTω

)

=LBCGt + H + TB (5.55)

Θ̇ = R−1ω (5.56)
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(J + Ja)ω̇ + ΓV̇a + ω ×
(
(J + Ja)ω + ΓVa

)
+ Va ×

((
Ma + (m+

1

3
ρtr)I3

)
Va + ΓTω

)

=u
′

B + (R−1)T (Gr + Gv) (5.57)

First consider the kite apparent kinetic energy defined in the following equation

Ta =
1

2

(
VT
a ωT

)

Ma + (m+ 1

3
ρtr)I3 ΓT

Γ (J + Ja)




Va

ω


 (5.58)

Taking the time derivative of Ta along the system trajectory (5.55) and (5.57) yields

Ṫa =
(
VT
a ωT

)

Ma + (m+ 1

3
ρtr)I3 ΓT

Γ (J + Ja)




V̇a

ω̇




=
(
VT
a ωT

)

 Qt − ω ×

((
Ma + (m+ 1

3
ρtr)I3

)
Va + ΓTω

)

Qr −Va ×
((

Ma + (m+ 1
3
ρtr)I3

)
Va + ΓTω

)
− ω ×

(
(J + Ja)ω + ΓVa

)




where the generalized force Qt and Qr are given by

Qt = LBCGt + H + TB (5.59)

Qr = u
′

B + (R−1)T (Gr + Gv) (5.60)

Using the properties of the vector triple product, the following equations hold

ωT
(
ω ×

(
(J + Ja)ω + ΓVa

))
= 0 (5.61)

VT
a

(
ω ×

((
Ma + (m+

1

3
ρtr)I3

)
Va + ΓTω

))

=− ωT
(

Va ×
((

Ma + (m+
1

3
ρtr)I3

)
Va + ΓTω

))
(5.62)

Therefore, the time derivative of Ta can be further simplified as follows

Ṫa = VT
aQt + ωTQr (5.63)

Moreover, consider the potential energies of the undersea kite energy system, which consists of
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two parts, the gravitational and buoyancy potential energies and velocity potential energies

U = −GT rC + BT (rC + LCBd) (5.64)

Uv = −1

2
WT

BMaWB (5.65)

For the constant current condition, both U and Uv are bounded by constant value, i.e.

|U | ≤ (‖G‖+ ‖B‖)rmax + ‖B‖‖d‖ (5.66)

|Uv| ≤
1

2
λm‖W‖2 (5.67)

Under the assumption 4, there exist a minimum nonzero kite apparent speed, i.e. ‖Va‖ ≥ Vmin,

there must exist a constant CU such that

|U |+ |Uv| ≤ CU‖Va‖2 (5.68)

Taking the time derivative of the potential energies gives that

U̇ + U̇v = VT
C

∂U

∂rC
+ Θ̇

T ∂U

∂Θ
+ Θ̇

T ∂Uv
∂Θ

(5.69)

Recall the definition of Gt, Gr and Gv,

Gt = − ∂U
∂rC

, Gr = −∂U
∂Θ

, Gv = −∂Uv
∂Θ

Hence the derivative of UT can be simplified as follows

U̇ + U̇v = −VT
CGt − Θ̇

T
(Gr + Gv) (5.70)

Further define the the kite artificial rotational potential energy as

Ur =
1

2
(Θ−Θd)

TKΘ(Θ−Θd) (5.71)
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The time derivative of Ur, if the desired kite attitudes Θd is constant, is given by

U̇r = Θ̇TKΘ(Θ−Θd) (5.72)

Rewrite the kinematic relation of the kite rotation using attitude error Θe = Θ−Θd, the undersea

kite system dynamics become

(
Ma + (m+

1

3
ρtr)I3

)
V̇a + ΓT ω̇ + ω ×

((
Ma + (m+

1

3
ρtr)I3

)
Va + ΓTω

)

=LBCGt + H + TB (5.73)

Θ̇e = R−1ω (5.74)

(J + Ja)ω̇ + ΓV̇a + ω ×
(
(J + Ja)ω + ΓVa

)
+ Va ×

((
Ma + (m+

1

3
ρtr)I3

)
Va + ΓTω

)

=u
′

B + (R−1)T (Gr + Gv) (5.75)

Choose the Lyapunov function candidate as follows

Ea = Ta + U + Uv + Ur + |U |+ |Uv| (5.76)

Notice that both Ta and Ur take positive definite quadratic form,

(σa)min(‖Va‖2 + ‖ω‖2) ≤ Ta ≤ (σa)max(‖Va‖2 + ‖ω‖2) (5.77)

(σΘ)min‖Θe‖2 ≤ U ≤ (σΘ)max‖Θe‖2 (5.78)

Therefore, the Lyapunov function (5.76) is bounded by two class K functions

(σa)min(‖Va‖2 + ‖ω‖2) + (σΘ)min‖Θe‖2 ≤ Ea

≤ (σa)max(‖Va‖2 + ‖ω‖2) + (σΘ)max‖Θe‖2 + CU‖Va‖2 (5.79)

Take the time derivative of the Lyapunov function Ea along the system trajectories (5.73)-(5.75)

gives that

Ėa = Ṫa + U̇ + U̇v + U̇r
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= VT
aQt + ωTQr + VT

C

∂U

∂rC
+ Θ̇

T ∂U

∂Θ
+ Θ̇

T ∂Uv
∂Θ

+ Θ̇TKΘ(Θ−Θd)

= VT
aQt + ωTQr −VT

CGt − Θ̇
T
Gr − Θ̇

T
Gv + Θ̇TKΘ(Θ−Θd) (5.80)

By substituting equations (5.56), (5.59) and (5.60) into equation (5.80), the time derivative of Ea

along the system trajectories (5.73)-(5.75) becomes

Ėa = VT
a (H + TB) + ωTu′B + Θ̇TKΘ(Θ−Θd) (5.81)

Choose the rotational control signal such that the last two term in equation (5.81) is negative

definite

ωTu′B + Θ̇TKΘ(Θ−Θd) = −Θ̇TKΩΘ̇ (5.82)

Solving equation (5.82) gives the augmented rotational control signal as

u′B = R−1
(
−KΩΘ̇−KΘ(Θ−Θd)

)
(5.83)

Therefore, the kite rotational control signal uB is given by

uB = R−1
(
−KΩΘ̇−KΘ(Θ−Θd)

)
+ WB × (MaVa + ΓTω) (5.84)

Under the control signal (5.84), the time derivative of Ea is bounded by the following inequality

Ėa ≤ VT
a (H + TB) (5.85)

Furthermore, since the tether length is constant, the total force acting on the kite is balanced in the

tether direction, i.e.

VT
BTB = 0 (5.86)
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Therefore, the bound of the time derivative of Ea can be further simplified

Ėa ≤ VT
aH + (VB −WB)TTB = VT

aH−WT
BTB (5.87)

If the tether tension satisfies the following assumption,

Assumption 6. Assume the tether tension is bounded by a quadratic function of the kite apparent

velocity

‖TB‖ ≤ KT‖Va‖2 (5.88)

Then the expansion of equation (5.87) becomes

Ėa ≤VT
aH−WT

BTB

=− 1

2
ρtS‖Va‖3Ca +KT‖Va‖2 (5.89)

Therefore, the undersea kite energy system dynamics (5.73)-(5.75) are ultimately bounded, i.e.

Ėa < 0 if ‖Va‖ >
2KT

ρfSCmin
(5.90)

where Cmin is the positive minimum of the coefficient Ca. It is clear that the lower bound of

the parameter Ca has a significant influence of the performance of the kite apparent velocity. It

is also very important to notice that under the steady aerodynamics condition, the parameter Ca

is function kite apparent velocity α and β as shown in equation (??). Therefore, to satisfies the

minimum value assumption of Ca, the control strategies that controlling the α and β needs to be

developed.

For a thin finite wing undersea kite, matrices Ma and Ja take the diagonal form

Ma =




0 0 0

0 0 0

0 0 λ1


 ; Ja =




λ2 0 0

0 λ3 0

0 0 0


 ; Γ = 03×3
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Table 5.4: Input and Control Parameters.

parameter value parameter value parameter value
m 10000kg Jx 2.3×105kgm2 (q−2 , q

+
2 ) (−20◦,+20◦)

Jy 9.4×103kgm2 Jz 2.4×105kgm2 (φ−d , φ
+
d ) (−70◦,+70◦)

S 35m2 AR 2 (θ−d , θ
+
d ) 5◦

ST 7m2 ρt 0.64kg/m (ψ−d , ψ
+
d ) (−40◦,+40◦)

W [2,0,0]m/s ρw 1025kg/m3 KΘ 1.79×105I
cl κ1 0.075 KΩ 1.79×105I
κ2 -0.005 κ3 0.01
N d -0.1m

where λ1, λ2 and λ3 are added mass parameters with kite chord length is c and kite area S, then

the added mass coefficients are defined as,

κ1 =
λ1

ρwcS
; κ2 =

λ2

ρwc3S
; κ3 =

λ3

ρwc3S

where ρw is the volume density of the surrounding fluid, and the coefficients depend on planform.

The key undersea kite system input parameters for the baseline simulation are given in Table 5.4.

The aspect ratio represent kite wing span compared to chord length, AR = b2

S
= S

c2
. To form a

figure eight kite trajectory, we propose a switching law for rotational control. The desired Euler

angle Θd is switched when the cross current positions of the kite CG reaches (q+
1 , q

−
1 ) which are

set cross current angles:

Θd =





(φ+
d θ

+
d ψ

+
d ) q2 > q+

2

(φ−d θ
−
d ψ

−
d ) q2 < q−2

(5.91)

The control design parameters are also listed in Table 5.4. The simulation result of the Lyapunov

based control signal to the undersea kite energy systems are shown in the following figures. To test

the robustness of the control system, simulations are run under two different current speed with

three kite mass and area. In all cases, the Lyapunov based control generates figure-eight trajectory

of the kite motion. The corresponding power output is listed in Table 5.5.
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Table 5.5: Power Output

Current Speed(m/s) Area(m2) mass(ton) Power(kW)

2
30 3.4 31.98
35 4.0 29.79
40 4.6 28.27

2.5
30 3.4 58.06
35 4.0 55.10
40 4.6 43.42
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Figure 5.10: Current Speed = 2.5m/s, Mass = 4.6ton, Area = 40m2
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Figure 5.11: Current Speed = 2m/s, Mass = 3.4ton, Area = 30m2
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Figure 5.12: Current Speed = 2m/s, Mass = 4.0ton, Area = 35m2
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Figure 5.13: Current Speed = 2m/s, Mass = 4.6ton, Area = 40m2
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Chapter 6

Dynamic Apparent Attitude Tracking

In the previous chapter, the influence of the tether tension on kite translational motion is stud-

ied. Although the boundedness of the kite apparent velocity can be guaranteed from the Lyapunov

analysis, no conclusion can be drawn on the detailed information of the kite apparent velocity.

For a FlyGen airborne kite energy system, the power production by the on board turbine can be

formulated as follows

P =
1

2
ρairCpSt(‖Va‖ cosα cos β)3 (6.1)

where Cp is the power harvesting coefficient of the on board turbine. On the one hand, for a

constant apparent wind speed, the maximum power production is achieve by α = β = 0. On the

other hand, to maintain the power generation in flight, the angle of attack α needs to be kept large

enough to provide lift force. To achieve the balance between the sustainability and optimality of

the kite power generation, control schemes that regulate the kite apparent attitudes, α and β need

to be developed.
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6.1 System Dynamics Transformation

If the wind velocity is constant, the kite apparent velocity obey the same dynamics as the kite

absolute velocity as shown in Lemma 7,

(m+
1

3
ρtr)(V̇B + ω ×VB) = (m+

1

3
ρtr)(V̇a + ω ×Va)

The airborne kite system dynamics in frame B is given by

(m+
1

3
ρtr)(V̇B + ω ×VB) = HB + LBCGt + TB

Therefore, the kite apparent translational dynamics are given by

(m+
1

3
ρtr)(V̇a + ω ×Va) = HB + LBCGt + TB (6.2)

Moreover, the kite apparent speed ‖Va‖ and apparent attitudes α, β are the spherical coordinates

of the kite apparent velocity.

Va = Va

(
cosα cos β sin β sinα cos β

)T
(6.3)

Taking the time derivative of equation (6.3) gives the kite apparent acceleration transformation

V̇a = ΛBξ̇B ΛB =




cosα cos β −Va sinα cos β −Va cosα sin β

sin β 0 Va cos β

sinα cos β Va cosα cos β −Va sinα sin β


 (6.4)

where ξB =
(
Va α β

)
. Substituting the velocity and acceleration transformations (6.3) and

(6.4) into kite apparent dynamics (6.2) yields that

(m+
1

3
ρtr)(ΛBξ̇B − [Va]×ω) = HB + LBCGt + TB (6.5)
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where [Va]× is the cross product matrix,

[Va]× =




0 −wa va

wa 0 −ua
−va ua 0


 = Va




0 − sinα cos β sin β

sinα cos β 0 − cosα cos β

− sin β cosα cos β 0


 (6.6)

Taking the inversion of the acceleration transformation matrix is

Λ−1
B =




cosα cos β sin β sinα cos β

sinα
Va cosβ

0 cosα
Va cosβ

cosα sinβ
Va

cosβ
Va

− sinα sinβ
Va




(6.7)

Therefore, the kite system dynamics in ξB is given by

ξ̇B = Λ−1
B [Va]×ω +

1

m+ 1
3
ρtr

Λ−1
B

(
HB + LBCGt + TB

)
(6.8)

The equation (6.8) can be further simplified by noticing that the gravitational force

Gt = (m+
1

2
ρtr)g (6.9)

where g =
(

0 0 g
)

. Therefore, equation (6.8) can be further simplified as follows

ξ̇B = DVω +
1

m+ 1
3
ρtr

DHCB +
m+ 1

2
ρtr

m+ 1
3
ρtr

Λ−1
B LBCg +

1

m+ 1
3
ρtr

Λ−1
B TB (6.10)

If the kite mass is much greater than the tether mass, then equation (6.10) can be further simplified

ξ̇B = DVω +
1
2
ρairS

m+ 1
3
ρtr

V 2
a DHCB + Λ−1

B LBCg +
1

m+ 1
3
ρtr

Λ−1
B TB (6.11)
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where the matrices DV and DH are given by

DV =




0 0 0

−cα tan β 1 −sα tan β

sα 0 −cα


 DH =




0 − sin β − cos β

− 1
Vacβ

0 0

0 cosβ
Va

sinβ
Va


 (6.12)

Denote DT = Λ−1
B LBCg + 1

m+ 1
3
ρtr

Λ−1
B TB, the complete airborne kite energy system dynamics

are given by

ξ̇B = DVω +
1
2
ρairS

m+ 1
3
ρtr

V 2
a DHCB + DT (6.13)

ω̇ = J−1(uB − ω × Jω) (6.14)

It is important to notice that the resulting system dynamics (6.13)-(6.14) is cascade. Therefore, the

back stepping methods can be used for control design.

6.2 Back-stepping Control Design

To design the back-stepping controller, the control signal for translational dynamics (6.13)

needs to be designed first. It is important to notice that there is no control signal acting on Va

as shown in definition (6.12), where the first row of DV is zero. Hence, choose the following

Lyapunov function candidate

Vξ =
1

2
α2
e cos2 β +

1

2
β2
e (6.15)

where the error apparent attitudes are defined as αe = α − αd, βd = β − βd for some constant

desired apparent attitudes αd and βd. The gradient of the Lyapunov function is

∇Vξ =
(

0 αe cos2 β −α2
e sin β cos β + βe

)
(6.16)
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The time derivative of the Lyapunov function (6.15) then becomes

V̇ξ = ∇V T
ξ (DVω +

1
2
ρairS

m+ 1
3
ρtr

V 2
a DHCB + DT ) (6.17)

By substitution, the time derivative of the Vξ can be rewritten as follows

V̇ξ = δTe

(
Ξω +

1
2
ρairS

m+ 1
3
ρtr

V 2
a ΞHCB +

1

Va
ΞT (LBCg +

1

m+ 1
3
ρtr

TB)
)

(6.18)

where δe =
(
βe αe cos2 β αe cos β sin β

)T
and matrices in equation (6.18) are defined as fol-

lows

Ξ =




sinα 0 − cosα

0 1 0

− cosα− αe sinα 0 αe cosα− sinα


 (6.19)

ΞH =




0 cos β sin β

− cos β −αe sin β 0

− sin β 0 −αe sin β


 (6.20)

ΞT =




− cosα sin β cos β − sinα sin β

− sinα cos β −αe sin β cosα cos β

(αe cosα− sinα) sin β 0 (cosα + αe sinα) sin β


 (6.21)

The desired angular velocity can then be calculated by the following equality,

−ζe = Ξωd +
1
2
ρairS

m+ 1
3
ρtr

V 2
a ΞHCB +

1

Va
ΞT (LBCg +

1

m+ 1
3
ρtr

TB) (6.22)

where ζe =
(
k1βe k2αe 0

)T
. The desired angular velocity ωd then becomes

ωd = −Ξ−1
(
ζe +

1
2
ρairS

m+ 1
3
ρtr

V 2
a ΞHCB +

1

Va
ΞT (LBCg +

1

m+ 1
3
ρtr

TB)
)

(6.23)
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The resulting time derivative is

V̇ξ =− k1β
2
e − k2α

2
e cos2 β ≤ −2 min(k1, k2)Vξ (6.24)

Using Barbalat’s lemma the apparent attitudes converge to the desired value asymptotically. The

rotational dynamics (6.14) can also be transformed into the error dynamics form.

Jω̇e + ωe × Jω = ue

where the angular velocity tracking error and error dynamics control signal are given by ωe =

ω − ωd and ue = uB + Jω̇d + ωd × Jω.

Substituting the desired angular velocity ωd into translational dynamics (6.13) and combining

the error rotational dynamics gives that

ξ̇B = DVωe + DVωd +
1
2
ρairS

m+ 1
3
ρtr

V 2
a DHCB + DT (6.25)

Jω̇e = ue − ωe × Jω (6.26)

Choose the Lyapunov function of the error dynamics (6.25) and (6.26) as follows

Ṽξ =
1

2
α2
e cos2 β +

1

2
β2
e +

1

2
ωTe Jωe (6.27)

Taking the time derivative of equation (6.27) along system trajectories (6.25)-(6.26) gives that

˙̃Vξ = δTe Ξωe − k1β
2
e − k2α

2
e cos2 β + ωTe ue

= ωTe (ue + ΞTδe)− k1β
2
e − k2α

2
e cos2 β (6.28)

Choose the error rotational control signal as follows,

ue = −ΞTδe −Keωe (6.29)
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The resulting time derivative of the Lyapunov function (6.28) then becomes

˙̃Vξ = −ωTe Keωe − k1β
2
e − k2α

2
e cos2 β < 0 (6.30)

Then the rotational control signal in body frame is then given by

uB = Jω̇d + ωd × Jω −ΞTδe −Keωe (6.31)

Although the control signal (6.31) guarantee the stability of the tracking error αe and βe, the achiev-

able angular velocity of a kite is limited. In order to handle the saturation issue in the desired

angular velocity, the following scaling is applied in the control system implementation,

ω̃d =ωsat
ωd
‖ωd‖

(6.32)

Moreover, the first order time derivative of the desired angular velocity is required in control signal

(6.31), the high gain observer is applied to provide the real time signal differentiation.

˙̂x1 = x̂2 +
σ1

ε
(ω̃d − x̂1)

˙̂x2 =
σ2

ε
(ω̃d − x̂1)

the σ1, σ2 are coefficients of the Huwitzs polynomial s2 +σ1s+σ2 and ε is a small positive number.

The states x̂1, x̂1 are estimation of the desired angular velocity ω̃d and its first order derivative ˙̃ωd,

the estimation error converge to zero as ε goes to zero. Hence, the actual control signal that applied

on the kite rotation is given by

uB = J ˆ̃̇ωd + ω̃d × Jω −ΞTδe −Keω̃e (6.33)

where ω̃e = ω − ω̃d. In the baseline simulation, it is clear that the limitation on the kite desired

angular velocity will results in nonzero residue errors in kite apparent attitudes. Hence, to achieve

the desired apparent attitudes, a different control approach is required.

The kite system parameters simulated for the baseline condition is list in table 6.1, and the key
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Table 6.1: Input Parameters

parameter value paramter value paramter value
Kite Mass 70kg Turbine Mass 35kg Kδ 20I
Kite Area 15m2 Turbine Area 3m2 ε 0.05
Aspect Ratio 3.27 Jx 1715kg ·m2 Ke 10I
Jy 160kg ·m2 Jz 1875kg ·m2 [σ1, σ2] [8, 16]
Wref [0, 0,−6] zref 10m ωsat 0.05◦/s
αd 10◦ βd 5◦

control parameters are also listed in table 6.1. The kite moment of inertial are label as Jx, Jy and

Jz.The wind field is modeled using the exponential formular

W = Wref

( zE
zref

) 1
7
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Chapter 7

Geometric Apparent Attitude Tracking

In the previous chapter, an apparent attitude tracking control scheme is designed based on

the kite system dynamics transformation. However, since the achievable kite angular velocity is

limited, the saturation of the desired angular velocity will cause nonzero residue error. In other

words, the control input, which is angular velocity in this case, is small compare to other physical

effects in the system, such as the tether tension and aerodynamic force. Therefore, a different

apparent attitude tracking control method needs to be developed. By definition, the kite apparent

velocity and apparent attitudes are given in the following equations

Va = LBC(VC −W) (7.1)

α = arctan
ua
wa

; β = arcsin
va
Va

(7.2)

Therefore, the generation of the kite apparent attitudes can be summarized as the following non-

linear process The new apparent attitude tracking control design is motivated by treating the kite

geometric attitudes as inputs and kite apparent velocity in the inertial reference frame as measure-

ments. It is clear that if the apparent velocity measurement in the inertial reference frames can be

obtained, then it is possible to adjust the kite geometric attitudes Θ such that the desired apparent

attitudes can be achieved.
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Figure 7.1: Generation of Apparent Attitudes

7.1 Apparent Attitude Tracking Theorem

In this section, the attitude trajectory for apparent attitude tracking is proposed. The given

the desired apparent attitude αd, βd can be achieved by a desired kite attitude Θd. Denote the kite

apparent velocity in a inertial reference frame as follows

V =
(
u v w

)
= (VC −W)T . (7.3)

The velocity angles can be further defined as

γ1 = arctan
(v
u

)
(7.4)

γ2 = arctan

(
w√

u2 + v2

)
(7.5)

where the inverse tangent function takes value from interval
(
−π

2
, π

2

)
. The velocity angles γ1

and γ2 are the spherical representation of the kite apparent velocity V as shown in Figure 7.2.

For desired apparent attitude αd and βd, the desired kite attitude Θd can be derived using velocity

angles γ1 and γ2.

Theorem 8 (Apparent Attitude Tracking). To achieve the desired apparent attitude αd, βd ∈(
−π

2
, π

2

)
, αd 6= 0, the desired kite geometric attitude is given by:

ψd = γ1 (7.6)

θd =
αd
|αd|

arccos(cosαd cos βd)−
|u|
u
γ2 (7.7)
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φd =
|u|
u

arctan
(tan βd

sinαd

)
(7.8)

Especially, if αd, βd = 0 the desired kite attitude becomes

ψd = γ1 (7.9)

θd = −|u|
u
γ2 (7.10)

and kite roll can be assigned to any value in the interval φ ∈
(
−π

2
, π

2

)
.

Proof. Consider the generation of kite apparent attitudes α and β as shown in Figure 7.1. Using

equation (7.3) and the definition of matrix LBC , the kite apparent velocity Va is given by




ua

va

wa


 =




cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ

cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ sinψ cosφ cos θ







u

v

w



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By rearrangement, the transformation from V to Va becomes:

ua =(v sinψ + u cosψ) cos θ − w sin θ, (7.11)

va =
(

(v sinψ + u cosψ) sin θ + w cos θ
)

sinφ− (u sinψ − v cosψ) cosφ, (7.12)

wa =
(

(v sinψ + u cosψ) sin θ + w cos θ
)

cosφ+ (u sinψ − v sinψ) sinφ. (7.13)

The linear combination of the sine and cosine function can be simplified as follows

v sinψ + u cosψ =
|u|
u

cos (ψ − γ1)
√
u2 + v2, (7.14)

u sinψ − v cosψ =− |u|
u

sin (ψ − γ1)
√
u2 + v2. (7.15)

Substitute equations (7.14) and (7.15) into equations (7.11)-(7.13),

ua =
( |u|
u

cos (ψ − γ1)
√
u2 + v2

)
cos θ − w sin θ,

va =
(( |u|

u
cos (ψ − γ1)

√
u2 + v2

)
sin θ + w cos θ

)
sinφ+

( |u|
u

sin (ψ − γ1)
√
u2 + v2

)
cosφ,

wa =
(( |u|

u
cos (ψ − γ1)

√
u2 + v2

)
sin θ + w cos θ

)
cosφ+

( |u|
u

sin (ψ − γ1)
√
u2 + v2

)
sinφ.

Let ψ = γ1; then, the transformation from V to Va becomes

ua =
|u|
u

√
u2 + v2 cos θ − w sin θ, (7.16)

va =
( |u|
u

√
u2 + v2 sin θ + w cos θ

)
sinφ, (7.17)

wa =
( |u|
u

√
u2 + v2 sin θ + w cos θ

)
cosφ. (7.18)

Using the linear combination of the trigonometric functions,

|u|
u

√
u2 + v2 cos θ − w sin θ =

|u|
u
‖V‖ cos

(
θ +
|u|
u
γ2

)
(7.19)

|u|
u

√
u2 + v2 sin θ + w cos θ =

|u|
u
‖V‖ sin

(
θ +
|u|
u
γ2

)
(7.20)
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Figure 7.3: Tracking Local Wind

Substitute equations (7.19) and (7.20) into equations (7.16)-(7.18), and notice that ‖V‖ = ‖Va‖

ua =
|u|
u
‖Va‖ cos

(
θ +
|u|
u
γ2

)
,

va =
|u|
u
‖Va‖ sin

(
θ +
|u|
u
γ2

)
sinφ,

wa =
|u|
u
‖Va‖ sin

(
θ +
|u|
u
γ2

)
cosφ.

By definition, the kite angle of attack and side slip angle are given by

tanα = tan
(
θ +
|u|
u
γ2

)
cosφ (7.21)

sin β =
|u|
u

sin
(
θ +
|u|
u
γ2

)
sinφ. (7.22)

Thereby, if αd = 0; βd = 0, the corresponding desired kite attitude is ψd = γ1, θd = − |u|
u
γ2. This

result is shown in Figure 7.3.

If desired apparent attitude αd, βd ∈
(
−π

2
, π

2

)
, αd 6= 0 the desired kite attitude can be solved
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from equalities (7.21) and (7.22). Rewrite equations (7.21) and (7.22) as follows,

cos
(
θ +
|u|
u
γ2

)
tanα = sin

(
θ +
|u|
u
γ2

)
cosφ (7.23)

sin β =
|u|
u

sin
(
θ +
|u|
u
γ2

)
sinφ (7.24)

Take the square sum of equations (7.23) and (7.24):

sin2 β + cos2
(
θ +
|u|
u
γ2

)
tan2 α = 1− cos2

(
θ +
|u|
u
γ2

)
.

By rearrangement, the equation above becomes

cos2
(
θ +
|u|
u
γ2

)
(1 + tan2 α) = 1− sin2 β

Hence, the desired pitch angle must satisfy the following equation

cos2
(
θd +

|u|
u
γ2

)
= cos2 α cos2 β. (7.25)

Take the square ratio of equations (7.22) to (7.21):

sin2 β

tan2 α
= cos2

(
θ +
|u|
u
γ2

)
tan2 φ

Use equation (7.25), the desired roll angle must satisfies that

tan2 φd =
tan2 β

sin2 α
. (7.26)

Assume all angles in equations (7.21) and (7.22) are inside the interval (−π
2
, π

2
) then the sign

relation of equations (7.21) and (7.22) becomes:

sgn(αd) = sgn(θd +
|u|
u
γ2) (7.27)

sgn(βd) = sgn(u)sgn(θd +
|u|
u
γ2)sgn(φd) (7.28)
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Combining equations (7.25)-(7.28), the desired kite attitude can be obtained as:

θd =
αd
|αd|

arccos(cosαd cos βd)−
|u|
u
γ2 (7.29)

φd =
|u|
u

arctan
(tan βd

sinαd

)
. (7.30)

The inverse cosine function takes value from interval
(

0, π
2

)
and inverse tangent takes value from(

−π
2

π
2

)
.

The kite attitude trajectory (7.29) and (7.30) are sum of (7.9), (7.10) and a constant offset.

Discontinuity will be introduced if sudden change occurred in the desired apparent attitude αd and

βd. A smoother kite attitude trajectory can be achieved by using the roll angle, φ, information in

the desired pitch angle , θd.

Theorem 9 (Smoothing Apparent Attitude Tracking). For αd, βd ∈
(
−π

2
, π

2

)
, a smoothing kite

geometric attitude is given by:

ψd = γ1 (7.31)

θd = arctan
(

tanαd secφ
)
− |u|

u
γ2 (7.32)

φd =
|u|
u

arctan
(tan βd

sinαd

)
(7.33)

Proof. The desired pitch angle θd is obtained by directly solving the equation (7.21) by treating θ

as unknown,

tanα = tan(θ +
|u|
u
γ2) cosφ

θ = arctan
(

tanα secφ
)
− |u|

u
γ2 (7.34)

Comparing equation (7.34) with equation (7.29), the desired pitch angle θd is equivalent if and

only if

arctan(tanα secφ) =
|α|
α

arccos(cosα cos β). (7.35)
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The equivalent relation can be obtained by substituting the desired roll angle (7.33) into the left

hand side of the equation (7.35). Rearrange equation (7.35) to the following form,

tanα secφ =
|α|
α

tan
(

arccos(cosα cos β)
)

(7.36)

where the inverse cosine takes value from interval (0, π
2
). Substitute equation (7.33) into equation

(7.36),

tanα sec
( |u|
u

arctan
(tan β

sinα

))
=
|α|
α

tan
(

arccos(cosα cos β)
)

(7.37)

The secant of the inverse tangent function is given by sec(arctan ξ) =
√

1 + ξ2, therefore, the left

hand side of equation (7.37) can be simplified as follows,

tanαd sec
(

arctan
(tan βd

sinαd

))
= tanαd

√
1 +

(tan βd
sinαd

)2

=
|αd|
αd

√
tan2 αd + sec2 αd tan2 βd (7.38)

Moreover, the tangent of the inverse cosine function is given by tan(arccos ξ) =

√
1−ξ2
ξ

, the right

hand side of equation (7.37) can be simplified as follows

|αd|
αd

tan
(

arccos(cosαd cos βd)
)

=
|αd|
αd

√
1− cos2 αd cos2 βd

cos2 αd cos2 βd

=
|αd|
αd

√
sec2 αd sec2 βd − 1

=
|αd|
αd

√
sec2 αd(sec2 βd − 1) + tan2 αd

=
|αd|
αd

√
sec2 αd tan2 βd + tan2 αd (7.39)

Comparing equations (7.38) and (7.39), it is clear that the equation (7.37) holds if the roll angle

achieves the desired value.
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7.2 Back-Stepping Rotational Control Design

In the previous section, two equivalent time varying trajectories for Euler angles Θ are given

in equations (7.6)-(7.8) and (7.31)-(7.33). To achieve the desired geometric attitudes, a rotational

control signal needs to be designed. To facilitate the derivation, Assumption 2 needs to be adopted,

i.e. the rotational transformation matrix R is invertible

∃θε 3 −
π

2
+ θε ≤ θ ≤ π

2
− θε (7.40)

where the constant θε ∈ (0, π
2
). Then, the inverse of the rotational transformation matrix is

R−1 =




1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sec θ sinφ sec θ cosφ


 . (7.41)

Combining the rotational kinematics and the Euler rotational dynamics,

Θ̇ = R−1ω (7.42)

Jω̇ = uB − ω × Jω (7.43)

The structure of attitude dynamics is cascade. The angular velocity ω is the input to kinematic

equation (7.42) and the output of the Euler equation (7.43). The rotational tracking control signal

can be designed using a back-stepping method. Denote the kite attitudes and angular velocity

tracking error as follows

Θe = Θ−Θd; ωe = ω − ωd. (7.44)

where ωd is defined by the following equation

ωd = R
(
Θ̇d −KΘ(Θ−Θd)

)
KΘ > 0 (7.45)

Then the rotational control signal can be designed as in the following theorem,
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Theorem 10. Assume the kite pitch angle is bounded away from the singularity as in (7.40). Given

the kite attitude dynamics (7.42) and (7.43), the rotational control signal can be chosen in the

following form

uB = Jω̇d + ωd × Jω −Kωωe − (RT )−1Θe (7.46)

where Kω is a positive definite design matrix. Then the attitude tracking error Θe is locally asymp-

totically stable.

Proof. Rewrite the rotational kinematic relation as follows

Θ̇ = R−1ωd + R−1ωe

= Θ̇d −KΘ(Θ−Θd) + R−1ωe

Therefore, the attitude tracking error satisfies the following error dynamics

Θ̇e = −KΘΘe + R−1ωe (7.47)

Furthermore, rewrite the angular velocity dynamics into the form of equation (6.26) as follows

Jω̇e + ωe × Jω = ue (7.48)

where ue = uB−Jω̇d−ωd×Jω. Therefore, instead of designing control signal using the original

rotational dynamics, the attitude tracking control signal can be designed using error dynamics

(7.47) and (7.48). Choose the following Lyapunov function,

Ve =
1

2
ωTe Jωe +

1

2
ΘT
e Θe (7.49)

Take the time derivative of Lyapunov function (7.49) along system trajectories (7.47) and (7.48),

V̇e =ωTe Jω̇e + ΘT
e Θ̇e

=ωTe (−ωe × Jω + ue) + ΘT
e (−KΘΘe + R−1ωe)
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=ωTe ue −ΘT
e KΘΘe + ΘT

e R−1ωe (7.50)

The rotational control signal can be solved from the following equation

ωTe ue + ΘT
e R−1ωe = −ωTe Kωωe (7.51)

where the matrix Kω is a positive definite design matrix. Therefore, the error control signal ue

becomes

ue = −Kωωe − (RT )−1Θe (7.52)

The original control signal uB then can be obtained as

uB = Jω̇d + ωd × Jω −Kωωe − (RT )−1Θe

Using Barbarlet lemma, the attitudes tracking error Θe is then locally asymptotically stable.

Moreover, the form of control signal can be further simplified by choosing the design matrix

KΘ and Kω properly. This result is given in the following corollary,

Corollary 5. Assume the kite pitch angle is bounded away from the singularity as in (7.40). Given

the kite attitude dynamics (7.42) and (7.43), the rotational control signal can be chosen in the

following form

uB = Jω̇d + ωd × Jω −Kωωe (7.53)

where Kω is a positive definite design matrix. Then the attitude tracking error Θe is locally asymp-

totically stable.

Proof. Choose the same Lyapunov function as in equation (7.49), take the time derivative along

the system trajectories (7.47) and (7.48) yields,

V̇e =ωTe ue −ΘT
e KΘΘe + ΘT

e R−1ωe
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Notice the following equivalent relation,

‖Θe −R−1ωe‖2 =ΘT
e Θe − 2ΘT

e R−1ωe + ωTe (RRT )−1ωe ≥ 0

Therefore, the following inequality holds,

ΘT
e R−1ωe ≤

1

2

(
ΘT
e Θe + ωTe (RRT )−1ωe

)
(7.54)

By definition (7.41), the largest eigenvalue of the matrix (RRT )−1 can be obtained as follows

σR = max

(
1 1(

cos( θ
2

)−sin( θ
2

)
)2 1(

cos( θ
2

)+sin( θ
2

)
)2
)
<∞ (7.55)

The second inequality holds due to Assumption (7.40), therefore, the time derivative of the Lya-

punov function can be simplified as follows

V̇e =ωTe ue −ΘT
e KΘΘe + ΘT

e R−1ωe

≤ωTe ue −ΘT
e KΘΘe +

1

2
ΘT
e Θe +

1

2
σRω

T
e ωe (7.56)

Therefore, by choosing the design matrices KΘ and Kω satisfies that

KΘ −
1

2
I3 > 0 Kω −

1

2
σRI3 > 0 (7.57)

the time derivative of the Lyapunov function along the trajectories of closed loop system becomes

V̇e ≤− ωTe Kωωe −ΘT
e KΘΘe +

1

2
ΘT
e Θe +

1

2
σRω

T
e ωe

=− ωTe (Kω −
1

2
σRI3)ωe −ΘT

e (KΘ −
1

2
I3)Θe (7.58)

Using Barbarlet lemma, the angular velocity and attitude tracking errors are also asymptotically

converge.

To implement the control signal (7.53) into the simulation, the equivalent form in Euler angles
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need to be obtained. Taking the derivative of desired angular velocity gives

ω̇d =Ṙ(Θ̇d −KΘΘe) + R(Θ̈d −KΘΘ̇e) (7.59)

Further denote the cross product matrix as follows

[Jω]×ωd = Jω × ωd (7.60)

Expending the proposed control signal (7.53) gives that

uB =J
(
Ṙ(Θ̇d −KΘΘe) + R(Θ̈d −KΘΘ̇e)

)
− [Jω]×R(Θ̇d −KΘΘe)−KωR(Θ̇e + KΘΘe)

=(JṘ− [Jω]×R)Θ̇d − (KeR + JRKΘ)Θ̇e + (−KeR− JṘ + [Jω]×R)KΘΘe + JRΘ̈d

By rearrangement, the proposed control signal can be simplified as follows:

uB = K1Θ̇d + K2Θ̈d + K3Θe + K4Θ̇e (7.61)

K1 = JṘ− [Jω]×R (7.62)

K2 = JR (7.63)

K3 = (−KωR− JṘ + [Jω]×R)KΘ (7.64)

K4 = −KωR− JRKΘ (7.65)

Remark 1. If the kite desired attitude Θd is bounded, first order differentiable and Θd is also

bounded then the kite angular velocity ω is bounded under the control signal (7.53). By definition,

the kite angular velocity is the sum of ωe and ωd, i.e.

ω = ωe + ωd = ωe + R
(
Θ̇d −KΘΘe

)

Using trigonometric inequality, the bound of kite angular velocity is given by

‖ω‖ ≤ ‖ωe‖+ ‖R‖
(
‖Θ̇d‖+ ‖KΘ‖‖Θe‖

)
≤ ∞
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In practice, the kite rotational control moment is generated by the control surfaces such as

ailerons, elevators and rudders whose deflection is limited. Thereby, the available control moment

is also limited. The first two terms of the resulting control structure (7.61) is linear with respect

to Θ̇d and Θ̈d and the control gains K3 and K4 is proportional to the design matrices Ke and

KΘ. Hence, by proper choice of the desired kite attitude Θd and design matrices Ke and KΘ, the

control signal can be made accessible to the limited kite control moment. In other words, for slow

varying desired attitude Θd and design matrix KΘ, the desired angular velocity ωd can be made

feasible to the kite rotation in practice.

The first and second order time derivative of the desired attitudes, Θ̇d and Θ̈d, are required

in the control signal (7.61), therefore the real time differentiation are required. Assume that the

desired tracking angles Θd is third order differentiable, then the first and second order derivatives

of the desired tracking angle can be obtained using the high gain observer, [36]:

ẏ1 = y2 +
σ1

ε
(Θd − y1)

ẏ2 = y3 +
σ2

ε
(Θd − y1)

ẏ3 =
σ3

ε
(Θd − y1)

where ε is a small number and σi, i = 1, 2 are the coefficient of a design Hurwitz polynomial

s2 + σ1s+ σ2. The estimate of the first and second order of the desired tracking angle are denoted

as ˆ̇Θd and ˆ̈Θd, which can be obtained as:

(
ˆ̇Θd

ˆ̈Θd

)
=
(
y2 y3

)

The estimation errors vanish as ε vanishes. Substituting the estimation of first and second order

derivative of the tracking attitude into the control signal (7.61) results in

uB =K1
ˆ̇Θd + K2

ˆ̈Θd + K3(Θ−Θd) + K4(Θ̇− ˆ̇Θd) (7.66)

The desired kite angle of attack is chosen to be a constant value α∗ while the desired side slip
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Table 7.1: Input and Control Parameters

parameter value paramter value parameter value paramter value
Kite Mass 40kg Tether Density 0.003kg/m Kω 0.5J KΘ 5I3

Kite Area 30m2 Tether Length 300m ε 0.1 σ1 12
Turbine Mass Ratio 50% Tether Diameter 0.002m σ2 48 σ3 64
Turbine Area Ratio 20% W̄ 6m/s α∗ 10◦ β+ 3.8◦

Aspect Ratio 3.3 Ct 0.072 β− −3.8◦ ∆T 4s
Induction Factor 0.1 Cp 0.324

angle is chosen according to the following switching law

βd =





β+ if q1 > q+
1

β− if q1 < q−1

,

where q−1 and q+
1 are specified cross wind limit angles. To meet the continuity requirement of the

kite desired attitude in the control signal , cosine smoothing is applied at the switch as follows.

Suppose the switching time for the ith cycle is t+i and t−i and t+i > t−i , in the transient period ∆T

of the switching that occurs at t−i , the desired side slip angle is

βd(t) =
β+ + β−

2
− β+ − β−

2
cos

π

∆T
(t− t−i ),

where t ∈ [t−i , t
−
i + ∆T ] and ∆T < t+i − t−i . The smoothing desired angle at t+i can be obtained

similarly. The parameters for rotational control signal are shown in Table 7.1. The following

figures show that the apparent attitude tracking control system forms consecutive figure-eight tra-

jectory of the kite translation. The power output greatly increase compared to the Lyapunov based

control.

7.3 Inertial Apparent Dynamics

In previous section, an attitude trajectory that track the desired kite apparent attitudes, αd and

βd, is proposed. In this section, the proposed attitude trajectory (7.6) - (7.8) is applied on the kite
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Table 7.2: Power Output

Wind Speed(m/s) φ(degree) Power(kW)

6
25 9.99
30 19.5
35 24.3

7
25 14.4
30 30.2
35 36.4

Figure 7.4: Wind Speed = 6m/s, φ = 25◦
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Figure 7.5: Wind Speed = 6m/s, φ = 30◦
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Figure 7.6: Wind Speed = 6m/s, φ = 35◦

0

100

50

100

50 50

150

Z
E
(m

)

200

0

YE(m)

0

250

-50

XE(m)

300

-100-50
-150

-100 -200

(a) Kite Translational Trajectory

0 20 40 60 80 100 120 140 160 180 200
0
5

10
15

Angle of Attack α  (deg)

0 20 40 60 80 100 120 140 160 180 200
-10

0

10
Sideslip Angle β  (deg)

0 20 40 60 80 100 120 140 160 180 200
0

0.5
1

1.5

Resultant Coefficient C
R

0 20 40 60 80 100 120 140 160 180 200

time(s)

0

5

10

Resultant to Drag Ratio C
R
/C

D

(b) Kite Apparent Attitudes Trajectory

0 20 40 60 80 100 120 140 160 180 200
-10

0

10
φ(deg) tracking error

0 20 40 60 80 100 120 140 160 180 200
-10

0

10
θ(deg)tracking error

0 20 40 60 80 100 120 140 160 180 200

time(s)

-10

0

10
ψ(deg)tracking error

(c) Kite Euler Angle Tracking Error

0 20 40 60 80 100 120 140 160 180 200

0

20

40

Kite Air Speed (m/s) V
air

0 20 40 60 80 100 120 140 160 180 200

0

20

Net Power Output(kW)

0 20 40 60 80 100 120 140 160 180 200

0

5

10

Power Consumption(kW)

(d) Power Output

118



Figure 7.7: Wind Speed = 7m/s, φ = 25◦
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Figure 7.8: Wind Speed = 7m/s, φ = 30◦
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Figure 7.9: Wind Speed = 7m/s, φ = 35◦

0

100

50

100

50 50

150

Z
E
(m

)

200

0

YE(m)

0

250

-50

XE(m)

300

-100-50
-150

-100 -200

(a) Kite Translational Trajectory

0 20 40 60 80 100 120 140 160 180 200
0
5

10
15

Angle of Attack α  (deg)

0 20 40 60 80 100 120 140 160 180 200
-10

0

10
Sideslip Angle β  (deg)

0 20 40 60 80 100 120 140 160 180 200
0

0.5
1

1.5

Resultant Coefficient C
R

0 20 40 60 80 100 120 140 160 180 200

time(s)

0

5

10

Resultant to Drag Ratio C
R
/C

D

(b) Kite Apparent Attitudes Trajectory

0 20 40 60 80 100 120 140 160 180 200
-10

0

10
φ(deg) tracking error

0 20 40 60 80 100 120 140 160 180 200
-10

0

10
θ(deg)tracking error

0 20 40 60 80 100 120 140 160 180 200

time(s)

-10

0

10
ψ(deg)tracking error

(c) Kite Euler Angle Tracking Error

0 20 40 60 80 100 120 140 160 180 200

0

20

40

Kite Air Speed (m/s) V
air

0 20 40 60 80 100 120 140 160 180 200

0

20

Net Power Output(kW)

0 20 40 60 80 100 120 140 160 180 200

0

5

10

Power Consumption(kW)

(d) Power Output

121



translational dynamics. It can be shown that under the desired kite attitudes, the aerodynamic force

can be decoupled and explicit control signal can be introduced to the kite translational dynamics.

Recall that the glider apparent velocity in frame C as V = VC−W, then the apparent velocity

angles can be defined as follows

γ1 = arctan
(v
u

)
(7.67)

γ2 = arcsin
(w
V

)
(7.68)

where u, v and w are the components of the apparent velocity, i.e. V =
(
u v w

)
, and V is the

glider apparent speed, i.e. V = ‖V‖. The apparent attitude tracking trajectory can be developed

using velocity angles as follows




φ

θ

ψ


 =




|u|
u

arctan

(
tanβ
sinα

)

|α|
α

arccos
(
cosα cos β

)
− |u|

u
γ2

γ1




(7.69)

Notice that the apparent velocity angles can be treated as the spherical coordinates of the apparent

velocity, i.e.

VC = V + W V = V
(
u
|u| cos γ1 cos γ2

u
|u| sin γ1 cos γ2 sin γ2

)
(7.70)

Using the notation ξC =
(
V γ1 γ2

)
, the apparent acceleration can be found by taking the time

derivative of equation (7.70):

V̇ = Λξ̇C Λ =




u
|u| cos γ1 cos γ2 − u

|u|V sin γ1 cos γ2 − u
|u|V cos γ1 sin γ2

u
|u| sin γ1 cos γ2

u
|u|V cos γ1 cos γ2 − u

|u|V sin γ1 sin γ2

sin γ2 0 V cos γ2


 (7.71)
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Therefore, the inverse acceleration transformation becomes

ξ̇C =Λ−1V̇ Λ−1 =
1

V




u
|u|V cos γ1 cos γ2

u
|u|V sin γ1 cos γ2 V sin γ2

− u
|u| sin γ1 sec γ2

u
|u| cos γ1 sec γ2 0

− u
|u| cos γ1 sin γ2 − u

|u| sin γ1 sin γ2 cos γ2


 (7.72)

If the wind velocity is constant, V̇ = V̇C , then the dynamical equation for apparent velocity V is

given by

(m+
1

3
ρtr)V̇ = AC + GC + TC (7.73)

Combining equations (7.72) and (7.73), the dynamical equation for variable ξC becomes

(m+
1

3
ρtr)ξ̇C = Λ−1(HC + GC + TC)

Using the generalized force transformation HC = LCBHB, we have

(m+
1

3
ρtr)ξ̇C = Λ−1(LCBHB + GC + TC) (7.74)

Additionally, the rotational matrix LBC can be decomposed into three elementary rotational matri-

ces

LBC = L1(φ)L2(θ)L3(ψ) (7.75)

L1(φ) =




1 0 0

0 cφ sφ

0 −sφ cφ


 L2(θ) =




cθ 0 −sθ

0 1 0

sθ 0 cθ


 L3(ψ) =




cψ sψ 0

−sψ cψ 0

0 0 1




Since the rotational matrix is orthogonal, the rotational matrix from frame B to frame C is

LCB = LT
3 (ψ)LT

2 (θ)LT
1 (φ) (7.76)
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For angle χ1 and χ2, each elementary rotational matrix Li satisfies the following properties

LT
i (χ1) = Li(−χ1) (7.77)

Li(χ1 + χ2) = Li(χ1)Li(χ2) = Li(χ2)Li(χ1) (7.78)

where i = 1, 2, 3. Under the apparent attitude tracking, the rotational matrix LCB becomes

LCB = L3

(
− γ1

)
L2

(
|u|
u
γ2

)
L2

(
− |α|

α
arccos

(
cosα cos β

)
)

L1

(
− |u|

u
arctan(

tan β

sinα
)

)

(7.79)

Moreover, the steady aerodynamic force on kite is given by

HB =
1

2
ρairV

2SCB

By substitution of equation (7.79) into equation (7.74), the glider translational dynamics under the

apparent attitude tracking is given by

ξ̇C =
1

m+ 1
3
ρtr

(
D(ξC)τ + Λ−1(GC + TC)

)

D(ξC) =
1

2
ρairSV

2Λ−1L3

(
− γ1

)
L2

(
|u|
u
γ2

)
(7.80)

τ = L2

(
− |α|

α
arccos

(
cosα cos β

)
)

L1

(
− |u|

u
arctan(tan βcscα)

)
CB

Through coordinate transformation, the glider apparent attitudes are introduced into apparent dy-

namics (7.80) as control inputs. Yet (7.80) is too complicated that simplification is needed for

further analysis.

Substituting equation (7.72) to equation (7.80), the control gain matrix D can be simplified as
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follows

D =
1

2
ρairSV




u
|u|V 0 0

0 u
|u| sec γ2 0

0 0 1


 (7.81)

Recall the aerodynamic coefficient in frame B is given by

CB =




1 0 0

0 1 0

0 0 −1







sinα 0 − cosα

0 1 0

cosα 0 sinα







CL

Cy

CD


−




Ct

0

0




which can be put into matrix form

CB = −L3(π)L2(
π

2
− α)Cn −Ct (7.82)

where Cn =
(
CL Cy CD

)
and Ct =

(
Ct 0 0

)
. Then the vector τ in equation (7.80) can be

expressed in the following way

τ =ΓnCn − ΓtCt (7.83)

Γt =L2

(
− |α|

α
arccos

(
cosα cos β

)
)

L1

(
− |u|

u
arctan(tan βcscα)

)

Γn =ΓtI−L2(
π

2
− α)

By substitution, it can be shown that

ΓtCt = Ct




cosα cos β

0

− α
|α|

√
1− cos2 α cos2 β


 (7.84)
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Denote the trigonometric functions η1 =
√

1− cos2 α cos2 β and η2 =
√

1 + csc2 α tan2 β, then

Γn =




sinα cosα cos β − α
|α|

η1
η2

cosα u
|u|

α
|α|

η1
η2

cscα tan β − cos2 α cos β − α
|α|

η1
η2

sinα

u
|u|

1
η2

cotα tan β 1
η2

u
|u|

1
η2

tan β

− α
|α|η1 sinα− 1

η2
cos2 α cos β u

|u|
1
η2

cotα sin β α
|α|η1 cosα− 1

η2
sinα cosα cos β




(7.85)

Additionally, using trigonometric identities, the following equation can be proven

1 + csc2 α tan2 β = 1 + csc2 α(sec2 β − 1)

= 1 + csc2 α sec2 β − csc2 α

= csc2 α sec2 β(sin2 α cos2 β + 1− cos2 β)

= csc2 α sec2 β
(

(sin2 α− 1) cos2 β + 1
)

= csc2 α sec2 β(1− cos2 α cos2 β)

Therefore, for α, β ∈ (−π
2
, π

2
),

η1 =
α

|α|η2 sinα cos β (7.86)

Using equation (7.86), the matrix Γn can be simplified as follows

Γn =




0 u
|u| sin β − cos β

u
|u|

α
|α|

1
η1

cosα sin β α
|α|

1
η1

sinα cos β u
|u|

α
|α|

1
η1

sinα sin β

− α
|α|

1
η1

sinα u
|u|

α
|α|

1
η1

cosα sin β cos β α
|α|

1
η1

cosα sin2 β


 (7.87)

Under the apparent attitude tracking (7.69), the airborne kite system translational apparent

dynamics are given by

ξ̇C =
1

m+ 1
3
ρtr

(
D(ΓnCn − ΓtCt) + Λ−1(GC + TC)

)
(7.88)
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D =
1

2
ρairSV




u
|u|V 0 0

0 u
|u| sec γ2 0

0 0 1




Γn =




0 u
|u| sin β − cos β

u
|u|

α
|α|

1
η1

cosα sin β α
|α|

1
η1

sinα cos β u
|u|

α
|α|

1
η1

sinα sin β

− α
|α|

1
η1

sinα u
|u|

α
|α|

1
η1

cosα sin β cos β α
|α|

1
η1

cosα sin2 β




ΓtCt = Ct




cosα cos β

0

− α
|α|

√
1− cos2 α cos2 β




The glider apparent velocity dynamics can be further simplified using the following lemma:

Lemma 8. If the glider geometric attitude follows the desired attitude given in (7.69), then the

following sign equation holds

ua
|ua|

=
u

|u| (7.89)

Proof. According to the apparent velocity transformation Va = LBCV, the apparent velocity

component ua can be rewritten as follows

ua = (v sinψ + u cosψ) cos θ − w sin θ (7.90)

Using the following trigonometric identity,

v sinψ + u cosψ =
u

|u|
√
u2 + v2 cos(ψ − γ1) (7.91)

Therefore, under the desired glider geometric attitude ψ = γ1, the ua can be simplified as

ua =
u

|u|
√
u2 + v2 cos θ − w sin θ (7.92)

Using the trigonometric identity of sum of the sine and cosine function, the ua can be further
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simplified as

ua =
u

|u|‖Va‖ cos
(
θ − u

|u|γ2

)
(7.93)

Substituting the desired pitch angle θ = u
|u|γ2 + α

|α| arccos(cosα cos β), equation (7.93) becomes

ua =
u

|u|‖Va‖ cosα cos β (7.94)

Since α, β ∈ (−π
2
, π

2
), cosα cos β > 0, hence

ua
|ua|

=
u

|u|

In modeling of the glider aerodynamics, it is assumed that the glider apparent velocity along

iB axis is positive, i.e. ua > 0. Using lemma 8, this implies that u > 0, hence the glider apparent

velocity dynamics becomes

ξ̇C =
1

m+ 1
3
ρtr

(
D(ΓnCn − ΓtCt) + Λ−1(GC + TC)

)

Cn =
(
CL Cy CD

)
Ct =

(
0 0 Ct

)

D =
1

2
ρairSV




V 0 0

0 sec γ2 0

0 0 1




Γn =




0 sin β − cos β

α
|α|

1
η1

cosα sin β α
|α|

1
η1

sinα cos β α
|α|

1
η1

sinα sin β

− α
|α|

1
η1

sinα α
|α|

1
η1

cosα sin β cos β α
|α|

1
η1

cosα sin2 β


 (7.95)

ΓtCt = Ct




cosα cos β

0

− α
|α|

√
1− cos2 α cos2 β




Combining the apparent velocity dynamics (7.95) and the kinematic relation (4.5), a cascade dy-
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Figure 7.10: Inertial Apparent Velocity System Diagram

namical system can be proposed under the apparent attitude tracking as shown in the following

theorem:

Theorem 11. Denote the glider position vector in Cartesian earth frame C as rC =
(
xC yC zC

)

and velocity vector as VC =
(
uC vC wC

)
. If the glider apparent velocity component ua > 0,

then the glider attitudes follow the apparent attitude tracking trajectories




φ

θ

ψ


 =




|u|
u

arctan

(
tanβ
sinα

)

|α|
α

arccos
(
cosα cos β

)
− |u|

u
γ2

γ1




where the
(
α β

)
are the desired apparent attitudes and

(
γ1 γ2

)
=
(

arctan( v
u
) w

V

)
are ap-

parent velocity angles. Denote the state variables ξC =
(
V γ1 γ2

)
, the glider translational

dynamics becomes a cascade dynamical system

ṙC = V + W (7.96)

V = V
(

cos γ1 cos γ2 sin γ1 cos γ2 sin γ2

)
(7.97)

ξ̇C =
1

m+ 1
3
ρtr

(
Dτ + Λ−1(GC + TC)

)
(7.98)

Under the apparent attitude tracking, the aerodynamic forces on glider motion are decoupled.

The angle of attack α and sideslip angle β are introduced into the apparent velocity dynamics as

control inputs. The resulting dynamical system possess a cascade structure as shown in Figure

7.10.
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Chapter 8

Conclusion and Future Works

In this dissertation, the modeling and control of the kite energy system are studied. The fun-

damental aspects of the kite energy system are first considered. Four different coordinate systems

are established to describe the kite motion. The kinematic relations of the kite motion in different

coordinate systems are derived. Four important aspect of the physics acting on the kite energy sys-

tems are investigated, including the steady aerodynamics, added mass effects, conservative force

and tether tension. Based on the kinematic relations of the aerodynamics, the passivity property of

the steady aerodynamic force with respect to the kite apparent velocity is established. This prop-

erty reflects the dissipativity of the steady aerodynamic force. The power generation limits of the

kite energy system is then derived in the three dimensional case.

Based on Euler-Lagrange dynamics and system kinematic relations, the dynamical equation

of the kite energy systems are established. It can be shown that the kite system dynamics are equiv-

alent in different reference frames, therefore, a unified simulation model for airborne and undersea

kite energy system can be established. The structures of kite rotational and translational dynamics

are studied based on the established dynamical model. In the airborne case, the overall system

dynamics is cascade and the rotational motion can be treated as inputs to the kite translational mo-

tion. On the other hand, the rotational and translational dynamics are fully coupled in the undersea

kite energy systems.

The Lyapunov and passivity methods are used to studied the stability of the kite translational
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motion. In airborne kite energy system, by choosing the apparent energy function as storage func-

tion for kite translational motion, the ultimately boundedness and boundedness of the kite apparent

velocity are established and three different tether control algorithms are designed. Using the rota-

tional energy function as Lyapunov function candidate, the stability of the kite rotational motion

about a constant desirable attitude can be established. By switching the desired kite attitudes,

a figure eight kite translational trajectory can be formed which results in net power output. In

undersea kite energy systems, the total energy of the kite and surrounding fluid is chosen as the

Lyapunov function of the system. The ultimately boundedness of the undersea kite energy system

is established using Lyapunov method.

Although the boundedness property of the kite translation can be established through Lya-

punov and passivity analysis, there is no direct control input in kite translational dynamics. To

achieve better performance in translational motion, the transformation of the kite translational dy-

namics into relative motion frame is investigated. The system dynamics transformation allows the

kite angular velocity appears in the equations of motion as direct control inputs. The back-stepping

method is used to design the rotational control input to achieve desirable translational states. How-

ever, the simulation shows that the control signal cause a large error in tracking performance since

the magnitude of the control input is very limited.

To achieve the tracking performance in translational motion, the apparent attitude tracking

theorem is proposed. Using geometric relations of the kite apparent attitudes, a desired trajectory

of the Euler angles is derived. The back-stepping method is used to designed the rotational control

signal for achieving desired angle of attack and side-slip angle. Based on the geometric apparent

attitude tracking control, the apparent dynamics of the kite energy system is proposed where the

angle of attack and side-slip angle are introduced into the translational dynamics as control inputs.

In summary, the following contributions are made in this research of kite energy systems,

• The physics and fundamental power generation limit of the kite energy systems are studied.

• A unified simulation model of both airborne and undersea kite motion is proposed.

• Three different control systems are designed for the kite energy systems.
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• A modified kite system dynamic is proposed and the direct control input is introduced into

the kite translational motion.

Although the geometric apparent attitude tracking control system achieves the desired kite

apparent attitudes, there are several drawbacks in the proposed algorithm. From the modeling

perspective, the following aspects needs to be addressed, the unsteady aerodynamics caused by

the switching of the kite attitudes needs to be modeled. The stability issue of the kite motion

needs to be considered if the unsteady aerodynamics are included in the model. From the control

perspective, the following issues need to be addressed in the future. First the apparent attitude

tracking is given in terms of the Euler angles, which have the singularity issues that may cause

the failure of the control system. Second, the geometric apparent attitude tracking depends on

the global measurement of the kite apparent velocity, which is difficult to obtained from the local

sensing device mounted on the kite. Therefore, the apparent attitude tracking algorithm needs to

be modified so that only the local measurement is required for tracking. Based on the modified

kite translational dynamics, the optimal power harvesting strategy of the kite energy system can be

design.
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