
Alloy-Guided Veri�cation of Cooperative Autonomous Driving

Behavior

by

MaryAnn Elizabeth VanValkenburg

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial ful�llment of the requirements for the

Degree of Master of Science

in Computer Science

by

May 2020

APPROVED:

Dr. Daniel J. Dougherty, Advisor

Dr. Craig A. Shue, Co-Advisor

Dr. Craig E. Wills, Head of Department

Abstract

Alloy is a lightweight formal modeling tool that generates instances of a software speci�cation
to check properties of the design. This work demonstrates the use of Alloy for the rapid
development of autonomous vehicle driving protocols. We contribute two driving protocols:
a Normal protocol that represents the unpredictable yet safe driving behavior of typical
human drivers, and a Connected protocol that employs connected technology for cooperative
autonomous driving. Using �ve properties that de�ne safe and productive driving actions,
we analyze the performance of our protocols in mixed tra�c. Lightweight formal modeling
is a valuable way to reason about driving protocols early in the development process because
it can automate the checking of safety and productivity properties and prevent costly design
�aws.

i

Acknowledgements
I would like to thank my husband, Art VanValkenburg, for his support during this project.
I would also like to thank my advisors for their constant patience and kindness throughout
the project. I daresay I enjoyed the experience.

ii

Contents

Abstract i

Acknowledgements ii

List of De�nitions v

List of Figures vi

1 Introduction 1

2 Background 3
2.1 Cooperative autonomous driving . 3

2.1.1 Mixed tra�c . 4
2.2 Formal methods for veri�cation of design . 5

2.2.1 Alloy . 6

3 Approach 8
3.1 Alloy signatures, relations, and facts . 8
3.2 Alloy functions . 10
3.3 Alloy predicates . 12

3.3.1 Driving Policy: Oblivious . 12
3.4 Alloy assertions . 14

3.4.1 The noCollision property . 14
3.5 Analysis of the Oblivious and Paranoid policies 15

3.5.1 Driving Policy: Paranoid . 16
3.5.2 The noDeadlock assertion . 18

3.6 Analysis of mixed tra�c . 20

4 Results 22
4.1 Normal driving policies . 23

4.1.1 The possibleNextNotEmpty property 24
4.1.2 Driving Policy: NormalAvoid . 24
4.1.3 Driving Policy: NormalAvoidLaneChange 26
4.1.4 The noCrossing assertion . 28

4.2 Development of Connected policies . 30
4.2.1 Driving Policy: ConnectedI . 31
4.2.2 Driving Policy: ConnectedII . 34
4.2.3 Driving Policy: ConnectedIII . 35
4.2.4 The AvoidDiagonalIfNormalAdjacentElseCrossing �lter 37
4.2.5 The progress assertion . 39

iii

4.2.6 Driving Policy: ConnectedIV . 40
4.3 Summary of analysis . 41
4.4 Modeling insights . 42

5 Discussion 46
5.1 Future work . 47
5.2 Conclusion . 48

Appendices 49
C Physical speci�cation . 49
D Safety properties . 52
E Driving policies . 55
F Analysis of Oblivious and Paranoid driving policies 60
G Analysis of Normal and Connected driving policies 64

Bibliography 79

iv

List of Definitions

1 De�nition (The ForeDiagOrStop �lter) . 13
2 De�nition (The Oblivious policy) . 13
3 De�nition (The noCollision property) . 14
4 De�nition (The AvoidForeDiagOrStopOfPeerExceptSelf �lter) 17
5 De�nition (The Paranoid policy) . 17
6 De�nition (The noDeadlock property) . 19

7 De�nition (The possibleNextNotEmpty property) 24
8 De�nition (The ForeOrStop �lter) . 24
9 De�nition (The AvoidOccupiedExceptSelf �lter) 24
10 De�nition (The NormalAvoid policy) . 25
11 De�nition (The AvoidDiagonalIfAdjacentOccupied �lter) 27
12 De�nition (The NormalAvoidLaneChange policy) 28
13 De�nition (The noCrossing property) . 28
14 De�nition (The AvoidConnectedPossibleNextExceptSelf �lter) 31
15 De�nition (The ConnectedI policy) . 32
16 De�nition (The ConnectedII policy) . 34
17 De�nition (The AvoidNormalOccupiedExceptSelf �lter) 34
18 De�nition (The ConnectedIII policy) . 37
19 De�nition (The AvoidDiagonalIfNormalAdjacentElseCrossing �lter) . . 37
20 De�nition (The ConnectedIII policy) . 39
21 De�nition (The progress property) . 40
22 De�nition (The ConnectedIV policy) . 41

v

List of Figures

3.1 Alloy speci�cation of Segment, Car, and Time signatures 9
3.2 Supporting Alloy facts for Segment, Car, and Time 10
3.3 The possibleNext and current tables hold information about the location

of cars . 11
3.4 Driving Policy: Oblivious . 12
3.5 Instance of all cars following Oblivious policy with no collisions 13
3.6 Checking noCollision property when cars follow the Oblivious policy . . . 15
3.7 Counterexample to the noCollision assertion when all cars follow the Oblivious

policy . 16
3.8 Driving Policy: Paranoid . 17
3.9 Instance of all cars following Paranoid policy with no collisions 18
3.10 Checking the noDeadlock assertion when all cars follow Paranoid policy . . 19
3.11 Counterexample to noDeadlock assertion when all cars follow Paranoid policy 19
3.12 Speci�cation of mixed tra�c: Oblivious and Paranoid 20

4.1 Instance of all cars following the NormalAvoid policy with no collisions . . . 25
4.2 Counterexample to noCollision when all cars follow the NormalAvoid policy

with the addition of the diagonal segment 27
4.3 Example of a noCrossing collision between cars following the Oblivious policy 29
4.4 Counterexample to noCollision assertion in mixed tra�c with NormalAvoid

and ConnectedI . 33
4.5 Counterexample to noCrossing assertion in the ConnectedIII policy with

the exclusion of the AvoidDiagonalIfAdjacentOccupied �lter 36
4.6 Comparing two policies for equivalency . 38
4.7 Instance of a maneuver that AvoidDiagonalIfNormalAdjacentElseCrossing

�lter allows that AvoidDiagonalIfAdjacentOccupied �lter does not 38
4.8 Informal descriptions of the �lters used in the Oblivious, Paranoid, Normal,

and Connected driving policies . 42
4.9 Summary of the Oblivious, Paranoid, Normal, and Connected driving poli-

cies according to their �lters on possibleNext. 43
4.10 Results of asserting of possibleNextNotEmpty, noCollision, noCrossing,

noDeadlock, and progress properties on homogeneous tra�c. Bold font
identi�es unusual results. 44

4.11 Results of asserting noCollision and noCrossing in mixed tra�c. Bold font
identi�es unusual results. 45

vi

1 Introduction

Autonomous vehicles can prevent accidents that result from driver distraction and negli-

gence. Connected technology such as the Vehicle-to-Vehicle communication system allows

autonomous vehicles to not only predict and react to human drivers but to coordinate driving

actions for improved road capacity and tra�c �ow.

Many obstacles stand in the way of the adoption of autonomous vehicles. In this work,

we focus on the problem of ensuring the safety of autonomous vehicles in mixed tra�c when

they drive alongside human-driven vehicles.

Two competing goals for autonomous vehicles in mixed tra�c are safety and productivity.

Autonomous vehicles must drive defensively to account for the unpredictable nature of human

drivers. However, safety alone is insu�cient. A driving protocol that only protects safety

may choose to prevent the car from moving at all. A driving protocol must allow the vehicle

to make progress towards its destination.

Most e�orts related to the development of autonomous driving protocols rely on simu-

lation to demonstrate their protocols in action. Simulation can measure the performance

driving protocols in complicated driving situations and can generate useful statistics about

the predicted behavior of a protocol in real life. However, a simulation may not detect design

�aws that only a�ect driving in rare situations. Formal modeling, or the use of mathemati-

cally rigorous tools to reason about a system, can be used to ensure that autonomous driving

protocols are both safe and productive in all driving scenarios.

Safety and productivity are not the only goals in protocol design, yet safety and pro-

ductivity alone dictate a sophisticated protocol. As the protocol becomes complicated, it

becomes harder to reason about its correctness. In this project, we use the Alloy Analyzer

to guide the development of a safe and productive driving protocol. This lightweight formal

1

modeling tool allows for rapid speci�cation and veri�cation.

We de�ne �ve properties for the assessment of driving policies. We refer to the assertion

of these properties possibleNextNotEmpty, noCollision, noCrossing, noDeadlock, and

progress. The possibleNextNotEmpty assertion checks that a driving policy does not

exclude all possible courses of action. The noCollision and noCrossing assertions check

that protocols are safe. The noDeadlock and progress assertions check that driving policies

progress towards their destinations. Together, these properties demonstrate the competing

needs for a protocol to be safe and productive.

We present four types of driving policies: Oblivious, Paranoid, Normal, and Connected.

The Oblivious policy fails the noCollision assertion. The Paranoid policy �xes the �aw

in the Oblivious policy that allowed collisions, but as a result, it fails the noDeadlock

property. These two policies show the challenges in achieving both safety and productivity.

The Normal policy describes typical human driving behavior. The Connected policy is the

behavior of connected autonomous vehicles. These policies represent the various driving

behaviors that are present in mixed tra�c.

Chapter 2 presents current research into cooperative autonomous driving behaviors and

approaches to testing these behaviors. We provide an overview of formal methods and the

Alloy Analyzer. Chapter 3 shows how we used Alloy to model and analyze driving policies.

Chapter 4 describes the driving policies we created and the evaluation criteria we developed

to compare them. The chapter ends with a summary comparison of the di�erent driving

policies. Chapter 5 talks about key insights about modeling gained from analysis. We

conclude that modeling complements simulation, especially at the development stage, and

can be used in an automated way to check that a design is safe and productive.

2

2 Background

In this chapter, we provide an overview of the current research regarding connected au-

tonomous vehicles. One challenge of introducing connected autonomous vehicles to the road

is operating in mixed tra�c with human-driven vehicles. Autonomous vehicles must be able

to predict and react to human driving behavior. Most e�orts to solve mixed tra�c rely on

simulations to demonstrate the safety of their proposed driving protocol. However, simula-

tion is incapable of proving that the protocol works in every possible driving scenario. We

suggest formal methods to ensure that driving protocols are safe in every scenario.

2.1 Cooperative autonomous driving

For the past 30 years, researchers have investigated dedicated short-range radio communi-

cation (DSRC) to improve the safety and e�ciency of tra�c [1]. Vehicles can use DSRC

to communicate with each other through Vehicle-to-Vehicle (V2V) communication for safer

and more e�cient driving. Potential applications of V2V include emergency electronic brake

light, in which the vehicle broadcasts an emergency-braking alert to nearby drivers, and

intersection movement assist, which warns the driver when it is not safe to enter an intersec-

tion [2]. These connected applications have the potential to prevent accidents by promptly

warning drivers of hazards. However, there is also interest in applying connected technology

for cooperative autonomous driving.

Cooperative driving is the behavior of coordinating with other drivers for mutual gain.

Examples of cooperative behavior include slowing down to allow other cars to merge, keeping

to the leftmost lane of a tra�c circle, and signaling to a driver at a four-way stop. Cooperative

autonomous driving uses V2V to cooperate with other vehicles without needing input from

the driver. The two main features of interest are autonomous lane changing and cooperative

3

adaptive cruise control. In autonomous lane changing, vehicles negotiate merging order and

accelerate or decelerate to provide space [3, 4, 5, 6]. In cooperative adaptive cruise control,

vehicles rely on speed and location data from V2V rather than radar to match speed [7].

Cooperative autonomous driving can extend beyond the capacities of human drivers. One

popular application is platooning [8, 9, 10, 11, 12]. Platooning involves vehicles driving at

close distances to reduce wind drag and improve road capacity. Autonomous vehicles can

drive in tight formation and at high speeds by continually communicating their location, car

length, speed, and direction to the other members of the platoon over V2V. The platoon

leader can broadcast an alert to all members of the platoon for a prompt reaction if the

platoon needs to slow down or swerve to avoid obstacles.

Despite clear advantages to cooperative autonomous driving, the dependence of these

behaviors on V2V raises concerns of privacy [13, 14, 15, 16], trust and integrity [17, 18, 19],

and security [20, 21, 22, 23, 24]. Other concerns involve the safety of autonomous vehicles

interacting with human drivers, known as mixed tra�c. We focus on the issue of ensuring

safety in mixed tra�c.

2.1.1 Mixed traffic

It is unlikely that all drivers will upgrade to autonomous vehicles. For this reason, au-

tonomous vehicles need to anticipate uncertainties involved with human drivers.

E�orts to improve autonomous vehicle driving protocols involve classifying observed driv-

ing situations according to their complexity to navigate [25, 26, 27], describing human driving

behaviors [28], and using machine learning to predict the intentions of human drivers [29, 30].

Shladover [31], Zhou [7], and Navas [32] used simulation to demonstrate the performance

degradation of cooperative autonomous features in mixed tra�c.

Cooperative autonomous driving is a new research area, and few e�orts have tested the

safety of cooperative autonomous protocols in mixed tra�c. All of the works mentioned so

far used simulation to demonstrate their proposed protocols.

4

Simulation is the use of virtual models, hardware testbeds, or closed test tracks to test

the design or implementation of a vehicle. Virtual simulations use computer models of tra�c

to test driving protocol performance. Virtual simulations work well for estimating response

times of autonomous vehicles and improvements in tra�c e�ciency without the use of real

vehicles. Hardware testbeds and closed test tracks use real vehicle components in secure test

areas and are more expensive than virtual simulation but can provide additional assurance

that the protocols will perform well in real tra�c.

Amoozadeh uses virtual simulation to verify the design of a collision avoidance model

[12]. Luo [5], Gao [29], and Wang [30] use virtual simulation and Hardware-in-the-loop

testbeds to show the safety of their lane changing models. Vieira proposes a highly realistic

simulation framework to verify the safety of autonomous protocols [33].

Simulation can show protocol designs working in complex tra�c scenarios and can chance

upon �aws in a design. However, simulation cannot prove that a protocol design is devoid of

�aws. We investigated formal methods as a means to prove the correctness of autonomous

driving protocols.

2.2 Formal methods for verification of design

Formal methods refers to a collection of mathematically rigorous techniques for exploring,

and in some cases proving, the correctness of a design. Unlike simulation, formal methods

do not require a coded implementation of the design. Formal methods test the properties of

a design. By abstracting continuous data representations into �nite values, they can prove

the correctness of those properties.

There are two categories of formal methods: theorem provers and model checkers.

Theorem provers are tools for writing mathematical proofs. Interactive theorem provers

such as Coq [34], PVS [35], and Isabelle [36] help the user to see what they have proved so

far and how close they are to completing the proof. Of these, Coq and Isabelle can extract

code from a proof development.

5

Theorem provers require user expertise to construct a proof of a property and cannot

show why an attempted proof fails to be complete. If the user is unable to complete the

proof, they have no way to tell whether they are not capable enough to complete the proof

or that the result is not provable.

In contrast, model checkers can help the user see why a property might fail by showing

counterexamples. Model checkers compile formally-written system speci�cations and then

perform an automated search for counterexamples to user-speci�ed properties about the

system.

There are several existing model checkers with a range of applications. The symbolic

model checker, nuXmv [37] is often used for hardware systems. Völker et. al. [38], used

nuXmv to identify potential deadlock scenarios in an autonomous driving protocol. The work

provided a method for analysis but did not apply the method to any speci�c automotive

protocol. The SPIN model checker [39] is most often used for verifying software. One

application of SPIN is Java Path�nder, developed at NASA for the veri�cation of spacecraft

[40], which checks assertions about Java programs. TLA+ [41] has been used to model

hardware and software. Notably, it was used by Intel for veri�cation of their processor chip

design [42].

Model checkers have push-button simplicity because they use an abstract version of the

real system. Within the abstraction, they can prove things about the system. While they

cannot conclude the correctness of the real system based on proof of the abstraction, model

checkers are lightweight and have demonstrated e�ectiveness in uncovering subtle design

�aws.

2.2.1 Alloy

Alloy [43] is a speci�cation language and an analyzer for modeling software based on model

checking. Because Alloy has a discrete representation of the design, it can perform an

exhaustive analysis of software up to a given scope. Alloy presents counterexamples of

6

asserted properties in a graphical format to help the user understand the design �aw.

Alloy natively supports more data types than SMV and supports structural properties

better than SPIN and Java Path�nder [44]. Notable applications of Alloy are by Zave to

uncover concurrency bugs in the Chord distributed hash table protocol [45] and Svendsen

[46] to verify safety and interoperability of train control protocols.

7

3 Approach

In the previous chapter, we explored research in the automotive industry related to new

autonomous driving policies. We suggested formal modeling as a method to generate more

persuasive statements of safety than simulation alone. We choose Alloy, a lightweight-formal

modeling tool, to check that cars following connected autonomous driving policies are safe

and productive even when intermingled with human-driven cars.

In this chapter, we introduce the abstraction of cars in segments of the road moving as

a function of time. We de�ne two simple driving policies, Oblivious and Paranoid. A car

following an Oblivious policy can certainly have a collision, and a car following a Paranoid

policy never will. The key result of this chapter is that Alloy automatically (i) discovers the

non-safety of the Oblivious policy and shows the user a speci�c unsafe scenario, and (ii)

exhaustively checks that there are no unsafe scenarios for Paranoid up to a given bound.

This automated analysis is crucial when reasoning about policies whose properties are

not obvious to an informal human reasoner. Such policies are the topic of Chapter 4.

3.1 Alloy signatures, relations, and facts

The sig keyword, short for signature, is Alloy syntax to de�ne a new type of object. Fig-

ure 3.1 is the Alloy speci�cation for cars on the road. This speci�cation shows three signa-

tures: Segment, Car, and Time.

The Segment signature has two attributes, or relations, named row and lane. The row is

labeled with positive integers such that a larger integer refers to a segment that is further

ahead on the road. For simplicity, the road has two lanes, right and left. This speci�cation

could later evolve to a highway with more than two lanes.

The Time signature is also speci�ed here. Time is a set of objects, which we will refer to

8

1 open util/ordering[Time] as trace
2
3 sig Time { }
4
5 pred exactlyPrecedes [pre, post : Time] {
6 post = pre.next
7 }
8
9 sig Segment {

10 lane : one Lanes,
11 row : one Int,
12 }
13
14 // Currently, just a two-lane road.
15 abstract sig Lanes {}
16 one sig Left extends Lanes {}
17 one sig Right extends Lanes {}
18
19 sig Car {
20 current : Segment one -> Time, // Where the car currently is
21 possibleNext : Segment -> Time, // Where the car can go next per policy
22 }

Figure 3.1: Alloy specification of Segment, Car, and Time signatures

in this text as time points. Time does not have any relations, but the open command on the

top line speci�es that time points are ordered. The exactlyPrecedes predicate speci�ed

on lines 5 to 7 says a time point, pre exactly precedes time point post, if post is the next

element in the ordered set Time. This predicate is convenient when reasoning about two

sequential time points. We explain predicates in detail later in this section.

The Car signature has two relations: current and possibleNext. The current relation

speci�es the Segment that the car occupies at a point in time. The possibleNext relation

contains the set of segments that a car may occupy in the next point in time. For example,

the Segment directly ahead of a Car may be included in possibleNext because it is within

driving distance.

In simulation, one would expect positions on the road and time to be continuous values.

In the Alloy speci�cation, Segment and Time are discrete objects. Because Alloy has a

discrete representation of the design, Alloy can complete an exhaustive search of the state

space.

The keyword, fact, refers to properties of the system that are always true. Figure 3.2

shows three facts that add additional information about the Car, Segment, and Time signa-

9

tures.

1 // Larger integer means further ahead on the road
2 fact rowMustBePositive {
3 all r : Segment.row | r ≥ 0
4 }
5
6 // Uniqueness of segments
7 fact sameRowSameLaneImpliesSameSegment {
8 all s1, s2 : Segment |
9 s1.row = s2.row and s1.lane = s2.lane implies s1 = s2

10 }
11
12 fact nextCurrentLocDerivedFromPossibleNext {
13 all c : Car, t : Time |
14 some t.next implies
15 c.current.(t.next) in c.possibleNext.t
16 }

Figure 3.2: Supporting Alloy facts for Segment, Car, and Time

The �rst fact states that all segments must have positive row numbers. This statement

has no real in�uence on the results of the modeling but ensures clarity when comparing

rows. The second fact guarantees the uniqueness of segments by saying that segments with

the same row and same lane must be the same segment. The last fact relates current

with possibleNext. A car's current segment for the next sequential time point must be

in possibleNext.

3.2 Alloy functions

The fun keyword, short for function, is a method for naming complex expressions. We

use functions to �lter the segments, relative to the current segment, that may be in

possibleNext. We will soon explain how we use these �lters to de�ne driving policies.

Figure 3.3 shows how we model cars moving through space and time. The cycle shows

the possibleNext and current segments from the Car represented in a table of values.

In this report, we usually refer to the possibleNext and current relations as sets. How-

ever, the perspective of tables of values is useful in understanding the relationship between

possibleNext and current.

10

Figure 3.3: The possibleNext and current tables hold information about the location of cars.
Driving policies determine the segments in possibleNext based on the car’s current location.
Alloy chooses a segment from possibleNext to be the car’s next current location.

The current table, labeled in Figure 3.3 as Event 0, speci�es which segment a car

occupies in each time point. Cars can only occupy one segment at a time, so the current

table has a 1-1-1 relation between Time, Car, and Segment. The possibleNext table, labeled

as Event 3, contains the segments that the car might occupy in the next time point. It has

a 1-1-many relation between Time, Car, and Segment. Each car, at any given point in time,

can have many segments in possibleNext.

A driving policy is a combination of �lters that determine the segments in possibleNext.

In Figure 3.3, a driving policy is shown as two distinct events, labeled 1 and 2, to distinguish

its dual action. In Event 1, Generate Reachable Segments, the driving policy �lters out

segments that are too physically distant from current. In Event 2, Filter by Policy, the

policy �lters, out of the remaining segments, those that it decides might cause a collision. In

the Alloy speci�cation, Events 1 and 2 occur simultaneously as an intersection of arbitrarily

many �lters.

Event 4, Adversary Chooses, represents the transition between the possibleNext seg-

11

ments in one time point and the current segment of the next time point. If there are multiple

segments in possibleNext for a given car and time, one is chosen at random for the car

to occupy next. When we assert properties of the policy, such as the noCollision prop-

erty in Section 3.4.1, Alloy acts as an adversary and chooses segments from possibleNext

that result in a collision for the next current. If Alloy fails to �nd counterexamples to the

assertion, we can be con�dent that the property is true within the scope of the search.

3.3 Alloy predicates

An Alloy predicate, or pred, is a named constraint that can be applied to the model. Our

driving policies are de�ned using predicates and formulated by combining �lters. Another

way we use the Alloy pred is to specify properties about our model, such as the noCollision

property, which we will discuss later in this section.

3.3.1 Driving Policy: Oblivious

Figure 3.4 shows a simple driving policy with one �lter on possibleNext.

1 // RULE
2 fun ForeDiagOrStop (c : Car, t : Time) : set Segment {
3 // + := set union
4 fore[c, t] + diag[c, t] + here[c, t]
5 }
6
7 sig Oblivious extends Car {}
8
9 pred ObliviousPolicy [c : Car, t : Time] {

10 c.possibleNext.t = ForeDiagOrStop[c, t]
11 c in Oblivious
12 }

Figure 3.4: Specification of ForeDiagOrStop filter and the Oblivious driving policy

The function ForeDiagOrStop on line 2 of Figure 3.4 is a �lter that determines which

segments are within driving reach of the car. The function takes, as input, a car and a time

point and returns, as output, the set of segments that are within reach of the car at the time

point. The fore, diag, and here keywords are helper functions that �nd the segments in

12

front of, diagonal to, and currently occupied by the car. The helper functions are shown in

full in Appendix C.

De�nition 1 (The ForeDiagOrStop �lter) For a given Car and Time, the �lter

ForeDiagOrStop returns the segments that are in front of, diagonal to, or currently occupied

by the car.

De�nition 2 (The Oblivious policy) For a given Car and Time, the Oblivious policy

de�nes possibleNext as the segments that are returned by the ForeDiagOrStop �lter.

(a) At Time0, Oblivious0 is in Segment1 and Oblivious1 is in Segment2.

(b) At Time1, Oblivious0 moves into Segment0 and Oblivious1 moves into Segment1.

Figure 3.5: Instance of all cars following Oblivious policy with no collisions

13

Figure 3.5 is an Alloy-generated instance of the Oblivious policy. The �gure shows two

separate diagrams projected over Time; but together, these diagrams comprise one Alloy-

generated instance.

In the �rst time point, the two cars occupy di�erent segments. In the next time point,

both cars move. Oblivious0 moves forward from the left lane of row 5 to the left lane of row

6. Oblivious1 moves from the left lane of row 4 to the left lane of row 5.

The instance in Figure 3.5 shows two cars safely driving no the road. However, our goal

is to check that the Oblivious policy prevents cars from colliding with each other. For this,

we write an assertion of a safety property.

3.4 Alloy assertions

An assertion, or assert, is a claim about the speci�cation. Alloy generates instances of

the speci�cation to check that the assertion holds. If the assertion is false, Alloy �nds

counterexamples and displays them to the user.

3.4.1 The noCollision property

De�nition 3 (The noCollision property) A collision occurs when two cars occupy the

same segment at the same time. A time point has the noCollision property when no two

cars occupy the same segment.

Figure 3.6 shows the assertion of the noCollision property for cars following the

Oblivious policy. The predicate on line 1 speci�es that, for a speci�ed time point, all

cars follow the Oblivious policy. The assertion on lines 5 through 13 states, �for any two

sequential points in time, when all cars follow the Oblivious policy, if cars start in a state

of no collision then they will end in a state of no collision.�

The assertion requires that cars originate in a state of no collision. Without this con-

straint, Alloy would present counterexamples in which cars start in a state of collision.

14

1 pred AllOblivious [t : Time] {
2 all c : Car | ObliviousPolicy[c, t]
3 }
4
5 assert AOnoCollision {
6 all pre, post : Time |
7 (
8 exactlyPrecedes[pre, post] and
9 noCollision[pre] and

10 AllOblivious[pre]
11)
12 implies noCollision[post]
13 }
14 check AOnoCollision for 5 but 2 Time

Figure 3.6: Checking noCollision property when cars follow the Oblivious policy

These counterexamples are uninformative of faults within the driving policy. However, if the

noCollision property is maintained after cars follow the driving policy, then the driving

policy is su�cient to prevent collisions.

Line 14 of Figure 3.6 is a command for Alloy to check the truthfulness of the assertion.

The value 5 is the scope for which Alloy should check all instances. A scope of 5 includes all

instances that employ up to 5 Segments and 5 Cars. The scope for Time is 2 because only

two sequential time points, pre and post, are needed to check the behavior of the policy.

Alloy guarantees the truthfulness of assertions up to the speci�ed scope. Increasing the

scope increases the con�dence that the assertions are true in all cases. Increasing the scope

also increases the number of instances Alloy checks and is exponentially complex. However,

the small-scope hypothesis says that most, if not all, �aws in the speci�cation are evident in

a small scope. For all of the analyses in this work, the scope is below 7.

3.5 Analysis of the Oblivious and Paranoid policies

Figure 3.7 shows an Alloy-generated counterexample to the noCollision assertion when cars

follow the Oblivious policy. Oblivious0 and Oblivious1 start in adjacent rows. Oblivious1

then changes lanes and collides with the stopped Oblivious0.

15

(a) At Time0, Oblivious0 is in Segment0 and Oblivious1 is in Segment1.

(b) At Time1, Oblivious1 changes lanes into Segment0 and collides with Oblivious0.

Figure 3.7: Counterexample to the noCollision assertion when all cars follow the Oblivious
policy

The Oblivious policy did not prevent collisions. After examining the counterexamples,

we hypothesize that we can make the policy safe by restricting possibleNext segments to

those that no other car can reach.

3.5.1 Driving Policy: Paranoid

The Paranoid policy, shown in Figure 3.8, includes the ForeDiagOrStop �lter present in

the Oblivious policy. This �lter keeps the segments in front of, diagonal to, or currently

16

1 sig Paranoid extends Car {}
2
3 // RULE
4 fun AvoidForeDiagOrStopOfPeerExceptSelf (c : Car, t : Time) : set Segment {
5 // The set of segments where for each segment s, s is not physically
6 // reachable by another car
7 {s : Segment | all peer : Car-c |
8 s in c.current.t or
9 s not in ForeDiagOrStop[peer, t]}

10 }
11
12 pred ParanoidPolicy [c : Car, t : Time] {
13 // & := set intersection
14 c.possibleNext.t = ForeDiagOrStop[c, t] &
15 AvoidForeDiagOrStopOfPeerExceptSelf[c, t]
16 c in Paranoid
17 }

Figure 3.8: Driving Policy: Paranoid

occupied by the car. The Paranoid policy has an additional �lter,

AvoidForeDiagOrStopOfPeerExceptSelf, that excludes segments that are in front of, di-

agonal to, or currently occupied by another car.

De�nition 4 (The AvoidForeDiagOrStopOfPeerExceptSelf �lter) For a given Car and

Time, the �lter AvoidForeDiagOrStopOfPeerExceptSelf returns the current segment.

The �lter also returns all other segments that are not in front of, diagonal to, or currently

occupied by another car.

De�nition 5 (The Paranoid policy) For a given Car and Time, the Paranoid policy de-

�nes possibleNext as the segments that are returned by both the ForeDiagOrStop and

AvoidForeDiagOrStopOfPeerExceptSelf �lters.

With the inclusion of the AvoidForeDiagOrStopOfPeerExceptSelf �lter, Alloy �nds

no counterexamples to the noCollision assertion. Figure 3.9 shows an instance of cars

following the Paranoid policy with no collisions.

17

(a) At Time0, Paranoid0 is in Segment1, and Paranoid1 is in Segment2.

(b) At Time1, Paranoid0 moves forward into Segment0, and Paranoid1 changes lanes into Segment4.

Figure 3.9: Instance of all cars following Paranoid policy with no collisions

The Paranoid policy is safe from collisions. However, safety is not the only requirement

of a driving protocol. The Paranoid policy also needs to be productive.

3.5.2 The noDeadlock assertion

A driving protocol is productive if it allows cars to reach their destinations. One way a

protocol can be unproductive is when deadlocks occur. A deadlock is a scenario in which

each car waits for the other to act before deciding its own course of action. Autonomous

vehicles following the same driving protocol are susceptible to deadlocks. Without a tie-

18

breaking procedure, neither car is able to move.

De�nition 6 (The noDeadlock property) A deadlock occurs when the only segment in

possibleNext is the current segment. A time point has the noDeadlock property if at least

one car has a segment other than current in possibleNext.

Figure 3.10 shows the assertion of noDeadlock applied to the scenario where all cars

follow the Paranoid policy. The assertion is interpreted as, �at any point in time, if no cars

are colliding and all cars are following the Paranoid policy, then we assert that there exists

a car that has a segment other than the current segment in possibleNext.�

1 assert APnoDeadlock {
2 all t : Time |
3 (
4 noCollision[t] and
5 AllParanoid[t]
6)
7 implies noDeadlock[t]
8 }
9 check APnoDeadlock for 5 but 1 Time

Figure 3.10: Checking the noDeadlock assertion when all cars follow Paranoid policy

Alloy �nds a counterexample, shown in Figure 3.11, to the noDeadlock assertion. Two

cars start in adjacent segments. Since both cars have the ability to move into Segment2, the

Paranoid policy excludes Segment2 from each car's possibleNext.

Figure 3.11: Counterexample to noDeadlock assertion when all cars follow Paranoid policy

19

The behavior shown in Figure 3.11 is similar to the situation in which cars from two lanes

try to merge into one lane. Without clear and timely cues, both drivers may slow down to

prevent colliding with the other car and neither will proceed.

The Paranoid policy is not aware of the segments in the other car's possibleNext.

The policy �lters segments that are observed to be within the immediate reach of the other

car. In Chapter 4, we create a Connected policy in which connected autonomous vehicles

broadcast their possibleNext tables to each other. Sharing possibleNext represents the

information �ow a�orded by V2V. By sharing their intentions with each other, connected

autonomous vehicles can avoid deadlocks.

In subsequent analyses, we add a predicate to the noDeadlock assertion that says that

there exists some vacant segment ahead on the road. This rules out the counterexample in

which cars are in gridlock, the scenario in which the road is saturated with vehicles. The

gridlock counterexample is uninformative; without vacant segments, no driving policy can

resolve a gridlock. With this additional vacancy criterion, we ensure the counterexamples to

the noDeadlock assertion result from the driving policy.

3.6 Analysis of mixed traffic

So far, we have considered scenarios in which all cars on the road follow the same policy.

We can easily specify a scenario in which cars follow either the Oblivious or the Paranoid

policy. We show the speci�cation of this scenario in Figure 3.12.

1 pred MixedObliviousOrParanoid [t : Time] {
2 all c : Car | ObliviousPolicy[c, t] or ParanoidPolicy[c, t]
3 }

Figure 3.12: Specification of mixed traffic: Oblivious and Paranoid

This predicate allows for mixed tra�c with any proportion of Oblivious or Paranoid

policy-following cars. This predicate includes the scenarios in which all cars follow the

same policy. The mixed tra�c scenario inherits the �aws of both policies. This mixture

20

of Oblivious and Paranoid policy-following cars fails the noCollision and noDeadlock

assertions. In the next chapter, we show two policies that are safe when all cars follow the

same policy but result in collisions when cars follow di�erent policies.

Autonomous driving policies must be safe and productive. In this Alloy speci�cation,

policies are safe and productive if the noCollision and noDeadlock assertions are true. The

Oblivious policy failed the noCollision assertion by taking no action to check for nearby

cars. The Paranoid policy, with the addition of the AvoidForeDiagOrStopOfPeerExceptSelf

�lter, passed the noCollision assertion, but it failed the noDeadlock assertion.

In the next chapter, we create driving policies composed of multiple �lters such that

safety and productivity are not as obvious. We also introduce three more properties to check

for safety or productivity. Even in complex driving scenarios, Alloy automatically checks for

counterexamples of these properties. We use Alloy-generated counterexamples to inform the

development of driving protocols. By checking that driving policies ensure all �ve properties,

we gain con�dence that our driving policy will perform well on the road.

21

4 Results

In the last chapter, we used the Oblivious and Paranoid policies to introduce analysis using

Alloy and to demonstrate the assertion of the noCollision and noDeadlock properties.

In this chapter, we describe Normal and Connected driving policies. Two versions of the

Normal policy, NormalAvoid and NormalAvoidLaneChange, represent the typical driving

behavior of non-autonomous, human-operated vehicles at di�erent levels of complexity. The

Connected policy represents the behavior of a connected autonomous vehicle. We show four

iterations of the Connected policy, numbered from I to IV, to demonstrate Alloy-guided

design. ConnectedIV is the most advanced policy, and it meets all of our speci�ed safety

and productivity goals in mixed tra�c.

In addition to the noCollision and noDeadlock properties de�ned in Chapter 3, we

introduce the possibleNextNotEmpty, noCrossing, and progress properties.

The possibleNextNotEmpty property requires that the �lters that compose a driving

policy are not mutually exclusive. The noCrossing property refers to the type of collision

in which cars in adjacent lanes attempt to change lanes at the same time. The progress

property is a stronger statement than noDeadlock and says at least one car will move to a

di�erent segment in the next time point. These �ve properties employ di�erent techniques

for checking the safety and productivity of policies.

Section 4.3 summarizes the results of analyzing each driving policy with all �ve properties.

Section 4.4 reviews key takeaways from this modeling. Chapter 5 goes into further detail

about modeling with Alloy.

22

4.1 Normal driving policies

To compare the safety of a connected autonomous vehicle in mixed tra�c, we invent a policy

that describes human drivers. Because it represents the baseline behavior of modern drivers,

we refer to it as the Normal policy. The Normal policy has two requirements: it needs to

be somewhat unpredictable to represent the variability of human driving, and it needs to be

safe when all cars follow it to not confound the property assertions of mixed tra�c.

It is di�cult to specify how humans drive. (See Moridpour's review for an extensive

taxonomy of lane-changing behaviors including psychological models of human drivers [3].)

Rather than de�ne the behavior of human drivers, the Normal policy allows for unpredictable

maneuvers. The Oblivious policy described in Chapter 3 allowed for multiple segments

in possibleNext, and the Alloy analyzer chose one at random to be the next current

segment. The Normal policy, like the Oblivious policy, allows multiple segments to be in

possibleNext. The randomness of Alloy's selection is used to represent the di�culty of

predicting a driver's behavior.

Mixed tra�c is susceptible to the �aws of the individual policies. To assess the safety of

Connected policies mixed tra�c, the Normal policy needs to be safe in homogeneous tra�c.

If the Normal policy is safe, then counterexamples are informative of the interaction between

the di�erent policies.

One of the counterexamples to the noCollision assertion of the Oblivious policy was

two adjacent cars moving forward and diagonally into the same segment. The noCollision

assertion failed because the cars shared a segment in possibleNext. However, each car's

possibleNext also contained segments that would not have resulted in a collision. The

Normal policy ensures the uniqueness of segments in possibleNext by using observable

information about other cars to avoid the segments they may occupy next. Unlike the

Paranoid policy, the Normal policy passes the noDeadlock assertion.

We used two Normal policies to assess the Connected policy. In the �rst policy, NormalAvoid,

23

cars may move forward or stop, but they do not move to a segment that is currently occupied

by another car. This version excludes lane changing maneuvers for simplicity. The second

policy, NormalAvoidLaneChange, allows cars to move to the diagonal lane, but only if the

segment next to the car is vacant. When all cars follow the same policy, both Normal policies

prevent collisions.

4.1.1 The possibleNextNotEmpty property

One danger of using multiple �lters to de�ne a policy is that the �lters might exclude all

segments. If this is the case, possibleNext may be an empty set. This phenomenon does

not translate to the physical world. In the real world, an empty possibleNext would mean

cars cannot move forward nor can they remain stopped. Their only course of action is to

cease to exist.

Thus, for the current and possibleNext model to work properly, possibleNext must

include at least one segment for each time point. It may be that possibleNext only contains

the current segment. If that is the case, the car will remain in place for the next time point.

For both of the Normal policies, the possibleNextNotEmpty assertion is true.

De�nition 7 (The possibleNextNotEmpty property) A time point has the property

possibleNextNotEmpty if all cars have some segment in possibleNext.

4.1.2 Driving Policy: NormalAvoid

The NormalAvoid policy is comprised of two �lters: ForeOrStop and

AvoidOccupiedExceptSelf.

De�nition 8 (The ForeOrStop �lter) For a given Car and Time, the �lter ForeOrStop

returns the segments that are in front of or currently occupied by the car.

De�nition 9 (The AvoidOccupiedExceptSelf �lter) For a given Car and Time, the �l-

ter AvoidOccupiedExceptSelf returns the current segment. The �lter also returns all

other segments that are not in another car's current.

24

De�nition 10 (The NormalAvoid policy) For a given Car and Time, the NormalAvoid

policy de�nes possibleNext as the segments that are returned by both the ForeOrStop and

AvoidOccupiedExceptSelf �lters.

The intersection of ForeOrStop and AvoidOccupiedExceptSelf is always at least one

segment, current, and at most two segments, current and the forward segment. The

forward segment may be excluded because it does not exist in the Alloy instance or because

it is currently occupied by another car. The NormalAvoid policy satis�es the assertion

possibleNextNotEmpty.

(a) At Time0, Normal0 and Normal1 are in adjacent Segment0 and Segment2.

(b) At Time1, Normal0 moves forward into Segment1 and Normal1 remains in Segment0.

Figure 4.1: Instance of all cars following the NormalAvoid policy with no collisions

25

Alloy found no counterexamples to the noCollision assertion when all cars follow the

NormalAvoid policy. Figure 4.1 shows an instance of cars following the NormalAvoid policy

without collisions.

Unlike the Paranoid policy, cars following the NormalAvoid policy cannot change lanes.

This allows them to safely move past each other, so the NormalAvoid policy passes the

noDeadlock assertion.

The NormalAvoid policy is a representation of stop-and-go tra�c. In stop-and-go tra�c,

the safest course of action is to remain in the same lane. Changing lanes does not signi�cantly

improve travel time, and it incurs additional risk of collision. As long as all cars stay in their

lanes, they need not worry about other cars merging in front of them.

In reality, cars in stop-and-go tra�c still sometimes collide due to sudden braking or

driver distraction. These accidents are due to human error and not faulty policies, so we

exclude them from analysis.

4.1.3 Driving Policy: NormalAvoidLaneChange

To introduce lane-changing capabilities, the ForeOrStop �lter is replaced with ForeDiagOrStop.

With this change, Alloy �nds a counterexample to the noCollision assertion. Figure 4.2

shows two adjacent cars. One car attempts to move forward into a vacant segment. The

other car attempts to move diagonally into the same vacant segment.

26

(a) At Time0, Normal0 is in Segment0 and Normal1 is in Segment2.

(b) At Time1, both Normal0 and Normal1 move into Segment1.

Figure 4.2: Counterexample to noCollision when all cars follow the NormalAvoid policy with
the addition of the diagonal segment

This counterexample is similar to when a driver �cuts o�� another driver by merging into

their lane and causing them to slow down. In this scenario, the merging driver is responsible

for checking that the lane is empty before attempting to merge. We represent this lane check

with the AvoidDiagonalIfAdjacentOccupied �lter.

De�nition 11 (The AvoidDiagonalIfAdjacentOccupied �lter) For a given Car and

Time, if the adjacent segment to the Car is occupied, the �lter AvoidDiagonalIfAdjacentOccupied

excludes the diagonal segment. The �lter AvoidDiagonalIfAdjacentOccupied returns all

27

other segments.

De�nition 12 (The NormalAvoidLaneChange policy) For a given Car and Time, the

NormalAvoidLaneChange policy de�nes possibleNext as the segments that are returned by

the conjunction of the ForeDiagOrStop, AvoidOccupiedExceptSelf, and

AvoidDiagonalIfAdjacentOccupied �lters.

If the segment next to the car is occupied, AvoidDiagonalIfAdjacentOccupied �lters

out the diagonal segment, reasoning that the adjacent car will most likely move forward.

This would be like the human driver checking to see if there is a car beside them. With the

AvoidDiagonalIfAdjacentOccupied �lter, the NormalAvoidLaneChange policy passes the

noCollision assertion.

The NormalAvoidLaneChange policy is very similar to the Paranoid policy, but unlike

the Paranoid policy, the NormalAvoidLaneChange policy passes the noDeadlock assertion.

In the Paranoid policy noDeadlock counterexample shown in Figure 3.11, the adjacent cars

were unable to move forward. Each car assumed that the other included the forward and di-

agonal segments in possibleNext while, actually, neither did. In NormalAvoidLaneChange,

adjacent cars both exclude the diagonal segment from possibleNext. However, they both

retain the forward segment in possibleNext and are able to make forward progress.

4.1.4 The noCrossing assertion

The noCollision property checks for collisions within a given time point. However, there is

another type of collision can occur in the transition between time points. A crossing collision

is the occurrence where two adjacent cars attempt to change lanes at the same time. The

noCollision property cannot detect this type of collision, so we created the noCrossing

property.

De�nition 13 (The noCrossing property) A crossing collision occurs when adjacent cars

attempt to perform a lane-change maneuver at the same time. Two sequential time points,

28

pre and post have the noCrossing property if there are no two cars c1 and c2 such that:

� Cars c1 and c2 are adjacent in the pre time point.

� Cars c1 and c2 are adjacent in the post time point.

� Car c1's current segment in post is diagonal to c1's current segment in pre

(a) At Time0, Oblivious0 is in the right lane of row 6 and Oblivious1 is in the left lane of row 6.

(b) At Time1, Oblivious0 moves into the left lane of row 7 and Oblivious1 crosses into the right lane of row
7.

Figure 4.3: Example of a noCrossing collision between cars following the Oblivious policy

This di�erent type of collision is an artifact of the level of abstraction chosen for the

speci�cation. We chose to de�ne a car as occupying exactly one segment at every time point.

This prevented the need to de�ne which sets of segments a car could occupy simultaneously.

For example, a car could occupy four segments at a time by having one wheel in each segment.

29

It also avoided edge cases where two cars occupy the same segment but may not collide, such

as when one car is in the front of the segment and another is in the back.

This design choice does have tradeo�s. Here, we needed to create an additional speci�-

cation to address crossing collisions that is more di�cult to read than the speci�cation of

noCollision. If, in future work, we wanted to include motorcycles that safely drive in be-

tween lanes, we would encounter the same simultaneous occupancy complications mentioned

in the previous paragraph.

The counterexample in Figure 4.3 shows cars following the Oblivious policy. The

NormalAvoid policy passes noCrossing trivially because the policy does not allow lane-

changing. The NormalAvoidLaneChange policy also passes the noCrossing assertion.

4.2 Development of Connected policies

Connected autonomous vehicles can gather more information via connected technology and

use it to inform their driving decisions. This di�ers from human drivers that make decisions

based on visually observable clues like the location of other cars.

A Connected policy describes the programmed driving behavior of a connected au-

tonomous vehicle. Like the Normal policies, a Connected policy should �rst be safe on

its own. Unlike the Normal policies, the Connected policy does not require unpredictability.

Indeed, if a Connected policy can specify exactly one segment in possibleNext, ideally

a forward or diagonal segment, its behavior will be predictable in other Connected poli-

cies. This may allow Connected policy-following vehicles to drive in tighter formation for

improved road e�ciency.

Connected vehicles must integrate with established tra�c behaviors, and they bear the

responsibility of ensuring safety in mixed tra�c. When we found counterexamples to our

property assertions in mixed tra�c, we chose to modify the Connected policy rather than

the Normal policy.

The Connected policy is allowed to be complicated; the only requirement is that the

30

vehicle can decide a course of action quickly enough to react to other cars. In contrast, the

Normal policy ideally does not behave di�erently in the presence of connected vehicles. In

this work, we assume that the connected vehicle has unlimited computational resources and

makes driving decisions instantaneously. Further work, possibly using complexity analysis,

can determine if a particular policy is feasible for real-time driving.

The four policies described in this section are as follows: ConnectedI is a policy that

allows cars to move forward or stop and broadcasts the segments in possibleNext to other

connected vehicles. ConnectedII adds a �lter that makes it safe around Normal vehicles.

ConnectedIII incorporates lane-change functionality and is safe around Normal vehicles.

ConnectedIV adds a strategy for picking the most productive segment to be possibleNext.

4.2.1 Driving Policy: ConnectedI

The main bene�t of the connected vehicle is the additional information that can be gained

from the connected technology. There are many di�erent things connected cars might com-

municate with each other for better driving. In the Connected policies described in this

work, connected cars choose to communicate their possible future locations, the segments

in possibleNext, to other connected cars. Connected cars make use of this information by

excluding segments �claimed� by other cars from their own set of possibleNext. This is

a di�erent behavior than the Paranoid policy that excluded segments that appeared to be

within reach of other cars.

De�nition 14 (The AvoidConnectedPossibleNextExceptSelf �lter) For a given Car

and Time, the �lter AvoidConnectedPossibleNextExceptSelf returns the current seg-

ment. The �lter also returns all segments that are not occupied by cars following a Connected

policy.

AvoidConnectedPossibleNextExceptSelf includes the current segment as a way of

ensuring that the possibleNextNotEmpty assertion passes.

31

In real life, there is a negotiation between connected vehicles about which car has priority

to occupy a space on the road. This negotiation might factor in if a car has access to

other spaces, or if one car has higher priority than the other. Such a negotiation, if poorly

managed, may take a signi�cant amount of time to �nish. Thus, it is important to check that

a prospective negotiation protocol will always resolve con�ict within a reasonable amount of

time. (see Ploeg et al. for a discussion on timely autonomous decision making [11]).

We did not design this Alloy speci�cation to test negotiation protocols. At our speci�ed

level of abstraction, we assume that vehicles can communicate information instantaneously.

The result of the AvoidConnectedPossibleNextExceptSelf �lter is that no segment exists

in two connected vehicle's possibleNext. When Alloy checks assertions of the speci�cation,

it only generates instances that obey this �lter. This means that Alloy checks all of the

instances in which cars eventually decide who keeps the segment in possibleNext, but

Alloy cannot assess instances where the negotiation fails.

De�nition 15 (The ConnectedI policy) For a given Car and Time, the ConnectedI pol-

icy de�nes possibleNext as the segments that are returned by both the ForeOrStop and

AvoidConnectedPossibleNextExceptSelf �lters.

The ConnectedI policy passes the possibleNextNotEmpty, noCollision, noCrossing,

and noDeadlock property assertions in homogeneous tra�c. However, the policy fails

noCollision and noCrossing in mixed tra�c with Normal Avoid cars.

32

(a) At Time0, the Normal vehicle is in Segment0 and the Connected vehicle is in Segment1.

(b) At Time1, the Connected vehicle moves forward and collides with the Normal vehicle.

Figure 4.4: Counterexample to noCollision assertion in mixed traffic with NormalAvoid and
ConnectedI

Figure 4.4 shows a counterexample to the noCollision assertion. The Connected car

moves forward and rear-ends the stopped Normal car. The same counterexample exists in

mixed tra�c with the NormalAvoidLaneChange policy.

One explanation of why the assertion fails is because the Connected car takes no action to

avoid non-connected cars. The Normal policy includes the AvoidOccupiedExceptSelf �lter

which prevents the car from rear-ending a Connected car. However, since the Connected pol-

icy does not have this �lter, the Connected car rear-ends the Normal car. In ConnectedII,

33

we add the AvoidOccupiedExceptSelf �lter from the Normal policy and the noCollision

assertion passes in mixed tra�c.

There are other ways to explain the failure. For example, one could argue that the

Normal car failed to get out of the way of the Connected car. Our decision to blame the

Connected policy is based on our belief that the Connected policy should integrate with

existing driving norms. If we believed that Connected vehicles should have priority access to

the road, perhaps because they are on a road reserved for platooning, we may have blamed

the Normal policy instead. This hints at the value of Alloy as a validation tool; a method

for checking that a speci�cation meets the needs of a customer. We will discuss this further

in Chapter 5.

4.2.2 Driving Policy: ConnectedII

As mentioned above, the ConnectedII policy passes noCollision and noCrossing in mixed

tra�c with the addition of the AvoidOccupiedExceptSelf �lter.

De�nition 16 (The ConnectedII policy) For a given Car and Time, the ConnectedII

policy de�nes possibleNext as the segments that are returned by the conjunction of the

ForeOrStop, AvoidConnectedPossibleNextExceptSelf, and AvoidOccupiedExceptSelf

�lters.

It is possible to replace the AvoidOccupiedExceptSelf �lter in the ConnectedII policy

with a new �lter, AvoidNormalOccupiedExceptSelf, that only avoids segments occupied

by Normal vehicles.

De�nition 17 (The AvoidNormalOccupiedExceptSelf �lter) For a given Car and Time,

the �lter AvoidNormalOccupiedExceptSelf returns the current segment. The �lter also

returns all other segments that are not in a Normal car's current.

The AvoidConnectedPossibleNextExceptSelf �lter already prevents Connected cars

from colliding with each other by virtue of the fact that the current segment is always

34

in possibleNext. The proposed AvoidNormalOccupiedExceptSelf does not a�ect the re-

sults of analyzing mixed tra�c, but it is technically correct. For simplicity, we use the

AvoidOccupiedExceptSelf for Connected policies. The two �lters are checked for equiva-

lence in the appendix.

4.2.3 Driving Policy: ConnectedIII

The ConnectedIII policy is the ConnectedII policy with the addition of lane-changing

capabilities.

If we exclude the AvoidDiagonalIfAdjacentOccupied �lter that made

NALC a safe policy, the scenario with all cars obeying ConnectedIII passes the noCollision

assertion but fails the noCrossing assertion. In the scenario where all cars followed the

NormalAvoidLaneChange policy, it was necessary to check for cars in the adjacent segment

that might travel forward into the diagonal segment. In the ConnectedIII policy, an ad-

jacent Connected car is able to inform the ego car if it intends to travel forward. If the

adjacent car has the disputed segment in possibleNext, then the ego car will exclude it

from possibleNext.

35

(a) At Time0, Connected0 is in the right lane of row 6 and Connected1 is in the left lane of row 6.

(b) At Time1, Connected0 moves diagonally into the left lane of row 7 while Connected1 moves diagonally
into the right lane of row 7 resulting in a crossing collision.

Figure 4.5: Counterexample to noCrossing assertion in the ConnectedIII policy with the ex-
clusion of the AvoidDiagonalIfAdjacentOccupied filter

However, the ConnectedIII policy without AvoidDiagonalIfAdjacentOccupied is sus-

ceptible to crossing collisions such as the one in Figure 4.5. Cars ensure no segments are

shared across possibleNext, but the policy does not explicitly check whether a choice of

possibleNext will inhibit a lane change maneuver.

When we include the AvoidDiagonalIfAdjacentOccupied �lter, the ConnectedIII pol-

icy passes the noCrossing assertion. This is due to the fact that the ConnectedIII car,

observing a car next to it, will not attempt a lane-change maneuver.

36

4.2.4 The AvoidDiagonalIfNormalAdjacentElseCrossing filter

De�nition 18 (The ConnectedIII policy) For a given Car and Time, the ConnectedIII

policy de�nes possibleNext as the segments that are returned by the conjunction of the

ForeDiagOrStop, AvoidConnectedPossibleNextExceptSelf, AvoidOccupiedExceptSelf,

and AvoidDiagonalIfAdjacentOccupied �lters.

It is more technically correct, rather than reuse the AvoidDiagonalIfAdjacentOccupied

�lter from the NormalAvoidLaneChange policy, to invent a new �lter that excludes the

diagonal segment if either: (a) the adjacent car follows a Normal policy, or (b) the adjacent

car follows a Connected policy and has a segment in possibleNext that may cause a collision

(either the forward or the diagonal segment).

De�nition 19 (The AvoidDiagonalIfNormalAdjacentElseCrossing �lter) For a given

Car and Time, if the adjacent segment to the ego Car is occupied by a Normal car, the �lter

AvoidDiagonalIfNormalAdjacentElseCrossing excludes the diagonal segment. If the ad-

jacent segment to the ego Car is occupied by a Connected car and the ego's fore segment is in

the adjacent car's possibleNext, the �lter AvoidDiagonalIfNormalAdjacentElseCrossing

excludes the diagonal segment. The �lter AvoidDiagonalIfNormalAdjacentElseCrossing

returns all other segments.

We hypothesized that this subtle nuance, like the AvoidNormalOccupiedExceptSelf �l-

ter in the ConnectedII policy, would have no e�ect. The two �lters are compared for equiva-

lence in Figure 4.6. The assertion states that, when ConnectedIII policy-following vehicles

are in mixed tra�c with NormalAvoidLaneChange vehicles, the alternative, technically-

correct policy using the AvoidDiagonalIfNormalAdjacentElseCrossing �lter behaves the

same as the policy using the AvoidDiagonalIfAdjacentOccupied �lter.

In this case, the technically correct version does make a functional di�erence. Figure 4.7

shows a scenario that the AvoidDiagonalIfNormalAdjacentElseCrossing �lter allows that

the other does not.

37

1 assert ACIIIbehavesLikeCIIInoCollision {
2 all t : Time |
3 MixedNALCConnectedIII[t]
4 iff
5 MixedNALCAlternativeConnectedIII[t]
6 }
7 check ACIIIbehavesLikeCIIInoCollision for 4 but 2 Car, 1 Time
8 // False

Figure 4.6: Comparing two policies for equivalency

(a) At Time0, Connected0 and Connected1 are in adjacent segments in row 1.

(b) At Time1, Connected1 safely crosses in front of Connected0 into the left lane of row 2.

Figure 4.7: Instance of a maneuver that AvoidDiagonalIfNormalAdjacentElseCrossing filter
allows that AvoidDiagonalIfAdjacentOccupied filter does not

This result highlights the e�ects of over-specifying the policy. By using the

AvoidDiagonalIfAdjacentOccupied �lter from the Normal policy in the Connected pol-

38

icy, we failed to make full use of the information gained from communicating possibleNext.

The ConnectedIII policy, with either the AvoidDiagonalIfAdjacentOccupied or

AvoidDiagonalIfNormalAdjacentElseCrossing, is safe in mixed tra�c. However, the

AvoidDiagonalIfNormalAdjacentElseCrossing �lter allows the connected vehicle to change

lanes in front of another connected vehicle.

De�nition 20 (The ConnectedIII policy) For a given Car and Time, the ConnectedIII

policy de�nes possibleNext as the segments that are returned by the conjunction of the

ForeDiagOrStop, AvoidConnectedPossibleNextExceptSelf, AvoidOccupiedExceptSelf,

and AvoidDiagonalIfNormalAdjacentElseCrossing �lters.

4.2.5 The progress assertion

So far, we have de�ned four properties for assessing the safety and productivity of our driving

policies. The possibleNextNotEmpty property checked that the �lter that composed a

policy were not mutually exclusive. The noCollision and noCrossing properties checked

that cars would not collide by occupying the same segment at the same time or crossing over

each other. The noDeadlock property said that, as long as cars were not in gridlock, at least

one car would have a segment in possibleNext other than its current segment.

All of the properties evaluated in this work are generally called safety properties, referring

to the method in which they can be checked. Safety properties only require one time point

(or two sequential time points) to �nd a counterexample that shows they are unsafe.

In contrast, liveness properties state that positive outcomes occur eventually. For exam-

ple, liveness properties in autonomous vehicle design might state �all cars make it to their

destinations eventually�, or �all cars make it to their destinations promptly.� Alpern and

Schneider provide tests for determining whether a property is safety or liveness [47].

The productivity of driving protocols is actually a liveness property. Alloy is designed

to test safety properties, but cannot reason about liveness properties. For this reason, we

speci�ed the productivity properties of noDeadlock and progress that can be understood

39

with simple counterexamples.

De�nition 21 (The progress property) Two time points, pre and post have the progress

property if there exists a car whose current segment in pre is di�erent from its current

segment in post.

The progress property in says that in any two points in time, at least one car moves.

The assertion of progress says that in any two sequential points of time, if cars follow the

policy, then at least one car makes progress.

All of the Normal and Connected policies so far fail the progress assertion. This is, in

part, because we chose to explicitly include the current segment in possibleNext to ensure

the possibleNextNotEmpty property.

It is not signi�cant that the Normal policies fail the progress assertion. The purpose of

the Normal policy was to represent a baseline driving behavior that was safe and somewhat

unpredictable. Human drivers are already motivated to reach their destinations, and if they

have segments in possibleNext that get them closer to their destinations, they will choose

to move there.

However, it is signi�cant that the Connected policies fail the progress assertion. After

ensuring safety, the Connected vehicle must attempt to reach its destination. All of our

Connected policies so far fail the progress assertion, which means the vehicle may choose

to remain stopped on the road inde�nitely even if there is another segment closer to the

destination.

4.2.6 Driving Policy: ConnectedIV

The ConnectedIV policy ensures progress. It accomplishes this by applying a strategy:

when there are multiple segments that will not cause collisions, choose the segment that

makes the most forward progress to be in possibleNext. This strategy assumes that the

Connected car's destination is somewhere further down the road. Another potential desti-

40

nation could be any row in the right lane, perhaps because the Car is preparing to exit the

road.

De�nition 22 (The ConnectedIV policy) For a given Car and Time, the ConnectedIV

policy identi�es safe segments as those segments that are returned by the conjunction of the

ForeDiagOrStop, AvoidConnectedPossibleNextExceptSelf, AvoidOccupiedExceptSelf,

and AvoidDiagonalIfNormalAdjacentElseCrossing �lters. The ConnectedIV policy de-

�nes possibleNext as the �rst segment in the following ordered list to be present in the

intersection of these �lters: forward segment, diagonal segment, current segment.

The ConnectedIV policy passes all �ve properties and is safe in mixed tra�c with both

Normal policies.

4.3 Summary of analysis

In this chapter, we developed several versions of Normal and Connected driving policies and

analyzed them, both in homogeneous and mixed tra�c, against �ve desireable properties of

safety and productivity. The �lters that compose the policies are summarized in Figure 4.8

and Figure 4.9.

The results of each property assertion for each policy in homogeneous tra�c is summa-

rized in Figure 4.10. As discussed in Chapter 3, the Oblivious policy fails the noCollision

and noCrossing assertions, and the Paranoid policy fails the noDeadlock assertion. Only

the ConnectedIV policy employs a strategy for picking the most productive possibleNext

segment, and it is the only policy that passes the progress assertion.

Figure 4.11 summarizes the noCollision and noCrossing results of mixed tra�c. The

noCollision and noCrossing assertions both passed or failed, so the results in this table

apply to both assertions. Only the ConnectedI policy was unsafe with Normal cars in mixed

tra�c.

41

Filter Name Description

ForeOrStop
Returns all segments that are in front of or currently occupied
by the ego car

ForeDiagOrStop
Returns all segments that are in front of, diagonal to,
or currently occupied by the ego car

AvoidForeDiagOrStopOfPeer-
ExceptSelf

Returns all segments that are not in front of, diagonal to,
or currently occupied by another car, as well as the segment
currently occupied by the ego car

AvoidOccupiedExceptSelf
Returns all segments that are not occupied by another car,
as well as the segment currently occupied by the ego car

AvoidDiagonal-
IfAdjacentOccupied

Returns all segments, except if there is a car next to the ego
car, then it excludes the segment diagonal to the ego car
(in front of the other car)

AvoidDiagonalIfNormal-
Adjacent ElseCrossing

Returns all segments, except if there is a car adjacent to the ego
car, then if the adjacent car is Normal, it excludes the
segment in front of the adjacent car. Else if the adjacent car
is Connected, it excludes the segment in front of the
adjacent car if the adjacent car has forward or diagonal segment
in PossibleNext

AvoidConnectedPossibleNext-
ExceptSelf

Returns all segments that are not present in another
Connected car’s set of possibleNext, as well as the segment
currently occupied by the ego car

Figure 4.8: Informal descriptions of the filters used in the Oblivious, Paranoid, Normal, and
Connected driving policies

4.4 Modeling insights

The main goal of this work was to understand how Alloy can be used to make assertions

about policies. We used the Oblivious, Paranoid, Normal, and Connected policies to

show the ways that assertions might fail and how di�erent kinds of assertions are needed to

check the contrasting goals safety and productivity. These policies and properties were used

to demonstrate the design choices and considerations when modeling with Alloy. The key

results of our modeling are as follows:

� The abstraction of possibleNext as a set segments can model unpredictable human

drivers by allowing multiple segments in possibleNext. Communicating the contents

of possibleNext amongst Connected vehicles can model the connected capabilities of

42

Policy Filters on Possible Next

Oblivious ForeDiagOrStop

Paranoid
ForeDiagOrStop &
AvoidForeDiagOrStopOfPeerExceptSelf

Normal Avoid
ForeOrStop &
AvoidOccupiedExceptSelf

Normal Avoid
with Lane Change

ForeDiagOrStop &
AvoidOccupiedExceptSelf &
AvoidDiagonalIfAdjacentOccupied

Connected I
ForeOrStop &
AvoidOccupiedExceptSelf

Connected II
ForeOrStop &
AvoidConnectedPossibleNextExceptSelf &
AvoidOccupiedExceptSelf

Connected III

ForeDiagOrStop &
AvoidConnectedPossibleNextExceptSelf &
AvoidOccupiedExceptSelf &
AvoidDiagonalIfNormalAdjacentElseCrossing

Connected IV

Most "productive" segment from:
(ForeDiagOrStop &
AvoidConnectedPossibleNextExceptSelf &
AvoidOccupiedExceptSelf &
AvoidDiagonalIfNormalAdjacentElseCrossing)

Figure 4.9: Summary of the Oblivious, Paranoid, Normal, and Connected driving policies
according to their filters on possibleNext.

autonomous vehicles.

� The NormalAvoidLaneChange policy, unlike the Paranoid policy, was able to avoid

deadlock scenarios by reasoning that an adjacent car would not attempt a lane-change

maneuver.

� The ConnectedI policy showed that two policies that are safe on their need not be

safe in mixed tra�c.

� Alloy can show instances of maneuvers that are permitted under one policy but ex-

cluded from another. Figure 4.7 shows an example of a Connected car safely cutting

in front of another Connected car with the additional knowledge that the other car is

43

Assertions when all cars follow the same policy
Policy possibleNext-

NotEmpty noCollision noCrossing noDeadlock progress

Oblivious True False False True False
Paranoid True True True False False
Normal Avoid True True True True False
NALC True True True True False
Connected I True True True True False
Connected II True True True True False
Connected III True True True True False
Connected IV True True True True True

Figure 4.10: Results of asserting of possibleNextNotEmpty, noCollision, noCrossing,
noDeadlock, and progress properties on homogeneous traffic. Bold font identifies unusual re-
sults.

planning to stop.

� Human drivers are motivated to make progress, but connected policies need to be

explicitly instructed. If a connected policy has multiple safe options, the policy needs

to determine which one they should go to.

44

Normal
Avoid NALC

Connected
I

Connected
II

Connected
III

Connected
IV

Normal
Avoid True True False True True True

NALC True False True True True
Connected
I True True True True

Connected
II True True True

Connected
III True True

Connected
IV True

Figure 4.11: Results of asserting noCollision and noCrossing in mixed traffic. Bold font
identifies unusual results.

45

5 Discussion

This work was successful at checking safety and productivity properties of connected au-

tonomous vehicle driving policies. The following are the key outcomes from this analysis.

Automated model checking allows us to reason about complicated policies.

Our �rst policies, Oblivious and Paranoid, had obvious �aws; the Oblivious policy did

not protect against collisions, and the Paranoid policy cased deadlocks. The Alloy ana-

lyzer found counterexamples to our noCollision and noDeadlock assertions that helped us

understand how our policies were �awed. As we developed Normal and Connected driving

policies that were comprised of several �lters, Alloy allowed us to automatically check the

safety and productivity properties of our policies.

The level of abstraction determines what can be learned about a system.

By using the abstraction of cars in road segments, we de�ned cars as occupying exactly

one segment at a time. This make it easy to de�ne the noCollision property where cars

occupy the same segment at the same time. However, with this level of granularity, we had

to de�ne the noCrossing property to check for collisions that occur between time points.

The discrete representation of time worked well to reason about the safety of pre-determined

driving decisions but prevented us from assessing the ability of driving protocols to swerve

or accelerate to avoid potential collisions.

Safety, productivity, and efficiency are complementary goals.

As the Paranoid policy showed, safety alone allows for driving protocols that do not move. In

contrast, the Oblivious policy showed that productivity without safety results in collisions.

46

These two goals helped us reason about the properties of driving protocols that make them

useful.

A third goal, e�ciency, is also necessary to ensure that a driving protocol is useful. A

safe and productive yet ine�cient protocol might cause cars to maintain a large gap between

themselves and neighboring cars and would cause bottleneck congestion on busy roads. A

safe and e�cient yet unproductive protocol might result in cars assembling into a gridlock.

Gridlocks are the optimal example of road use e�ciency, and once cars are no longer able

to proceed, they safely stop. Finally an e�cient and productive yet unsafe protocol might

attempt to construct platoons of vehicles moving in tight formation at high speeds. Without

safety measures that account for the unpredictability of human drivers, these protocols might

result in high-speed crashes.

5.1 Future work

As mentioned in Chapter 2, the automotive research community is interested in the appli-

cation of connected technology for cooperative autonomous behaviors such as platooning.

Platooning is a natural extension of our models. Our driving policies mostly focused on

choosing safe maneuvers, but the ConnectedIV policy introduced the notion of a driving

strategy to pick the forward-most segment from the set of safe segments. Strategies can

be used to enact perform higher-level platooning operations like assembling into a tight

formation.

Platooning also introduces classical distributed system problems like concurrency and

leader election. Zave demonstrated the e�cacy of Alloy to uncover �aws in the Chord

distributed hash table protocol [45]. Future work may seek to understand the impact of

mixed driving on the operation of platoon management systems.

The Alloy analyzer can be used to assess safety properties, or properties that can be

invalidated by the discovery of a counterexample. Recent e�orts extend Alloy to reason about

events happening over a many time points [48]. Cunha explores the use of the temporal logic

47

in Alloy to assert liveness properties [49].

5.2 Conclusion

We used Alloy to develop and test autonomous vehicle driving protocols. We contributed two

driving protocols that represent the autonomous and human-driven vehicles present in mixed

tra�c. Using �ve properties of safety and productivity, we showed our driving protocols were

safe in mixed tra�c. This thesis represents a case study in the ways that lightweight formal

modeling can be used to reason about driving protocols early in the development process.

48

Appendices

Here is the Alloy speci�cation for the work described in the thesis.

C Physical specification

1 /* ===
2 A DEFINITION OF THE PHYSICAL WORLD
3 MaryAnn VanValkenburg, Spring 2020
4
5 The universe is defined in terms of Cars, Segments, and Time. Cars occupy
6 segments. Cars can move between segments as a function of time.
7
8 Segments are discrete units of road. They have a lane and a row. The road is
9 currently constrained to two lanes, labeled left and right. The rows are

10 positive integers. Larger integers mean further ahead on the road.
11
12 A table (relation), called current (see sig Car), records the physical
13 position (Segment) of each car at each time.
14
15 A table (relation), called possibleNext (see Car), records the
16 segments a car may occupy in the next sequential unit of time. This is
17 generated by applying the car’s driving policy to the current segment.
18
19 === */
20
21 module physical
22 open util/ordering[Time] as trace
23
24 /* ===
25 TEMPORAL STRUCTURE
26 + Event-based idiom
27 + Time uses the util/ordering module
28 + exactlyPrecedes predicate for convenience of comparing two units of time
29 === */
30
31 sig Time { }
32
33 pred exactlyPrecedes [pre, post : Time] {
34 post = pre.next
35 }
36
37 /* ===
38 PHYSICAL WORLD DEFINITIONS
39 + Segments are physical units that have a unique fixed position
40 + Segments are a lane (Left/Right) and a row (positive Int)
41 + Cars exist in segments
42 + Segments can be vacant or occupied by one or more cars
43 + current.t.next is taken randomly from the set of possibleNext.t
44 === */
45
46 /* ================================ SEGMENT ================================= */
47 // A segment has a lane and a row.

49

48 // Int uses util/ordering module.
49 // Larger Int row means further ahead on the road.
50 // Road stretches forward infinitely.
51
52 sig Segment {
53 lane : one Lanes,
54 row : one Int,
55 }
56
57 // Currently, just a two-lane road.
58 abstract sig Lanes {}
59 one sig Left extends Lanes {}
60 one sig Right extends Lanes {}
61
62 // Larger integer means further ahead on the road
63 // Simply because it is easier to reason about positive numbers
64 fact rowMustBePositive {
65 all r : Segment.row | r ≥ 0
66 }
67
68 // Uniqueness of segments
69 fact sameRowSameLaneImpliesSameSegment {
70 all s1, s2 : Segment |
71 s1.row = s2.row and s1.lane = s2.lane implies s1 = s2
72 }
73
74 /* ================================== CARS ================================== */
75
76 sig Car {
77 current : Segment one -> Time, // Where the car currently is
78 possibleNext : Segment -> Time, // Where the car can go next per policy
79 }
80
81 // This is how current.t.next is related to possibleNext.t
82 // A random pick of possible next
83 fact nextCurrentLocDerivedFromPossibleNext {
84 all c : Car, t : Time |
85 some t.next implies
86 c.current.(t.next) in c.possibleNext.t
87 }
88
89
90 /* ============================ DERIVE SEGMENTS ============================= */
91
92 // Straight ahead and same lane is fore
93 fun fore (c : Car, t : Time) : set Segment {
94 // the set of segments such that for each segment s...
95 {s : Segment |
96 // s is in the next row
97 s.row = (c.current.t).(row.next) and
98 // and in the same lane
99 s.lane = (c.current.t).lane

100 }
101 }
102
103 // Ahead and switching lanes is diag
104 fun diag (c : Car, t : Time) : set Segment {
105 // the set of segments such that for each segment s...
106 {s : Segment |
107 // s is in the next row
108 s.row = (c.current.t).(row.next) and
109 // and in the other lane
110 s.lane != (c.current.t).lane
111 }

50

112 }
113
114 // Current segment is here
115 fun here (c : Car, t : Time) : set Segment {
116 // the set of segments in which the car currently resides
117 {c.current.t}
118 }
119
120 /* ============================ SANITY CHECKING ============================= */
121
122 // fore
123 pred foreIsAtLeastOne {
124 all c : Car, t : Time |
125 #fore[c, t] = 1
126 }
127 run foreIsAtLeastOne for 3
128
129 assert foreIsAtMostOne {
130 all c : Car, t : Time |
131 #fore[c, t] ≤ 1
132 }
133 check foreIsAtMostOne
134
135 // diag
136 pred diagIsAtLeastOne {
137 all c : Car, t : Time |
138 #diag[c, t] = 1
139 }
140 run diagIsAtLeastOne for 3
141
142 assert diagIsAtMostOne {
143 all c : Car, t : Time |
144 #diag[c, t] ≤ 1
145 }
146 check diagIsAtMostOne
147
148 // here
149 assert hereIsExactlyOneSegment {
150 all c : Car, t : Time |
151 c.possibleNext.t = here[c, t] implies
152 // will always have this segment (because currently existing in!)
153 #(c.possibleNext.t) = 1
154 }
155 check hereIsExactlyOneSegment for 5
156
157 // all
158 fun physicallyReachable (c : Car, t : Time) : set Segment {
159 {s : Segment | s in fore[c, t] + diag[c, t] + here[c, t]}
160 }
161
162 pred physicallyReachableIsAtLeastThree [c : Car, t : Time] {
163 #physicallyReachable[c, t] = 3
164 }
165 run physicallyReachableIsAtLeastThree for 6 but 1 Time
166
167 assert physicallyReachableIsAtMostThree {
168 all c : Car, t : Time |
169 #physicallyReachable[c, t] ≤ 3
170 }
171 check physicallyReachableIsAtMostThree for 7

51

D Safety properties

1 /* ===
2 PROPERTIES OF THE PHYSICAL WORLD
3 MaryAnn VanValkenburg, Spring 2020
4
5 This builds off of the physical module which defines Cars, Segments, and
6 Time.
7
8 === */
9

10 module properties
11 open physical
12
13 /* ======================== POSSIBLE NEXT NOT EMPTY ========================= */
14 // Used to check that policy rules are not mutually exclusive.
15 // All cars must have at least one segment in possibleNext. It may be the car’s
16 // current segment.
17 // PASSING CONDITION: possibleNextNotEmpty
18
19 pred possibleNextNotEmpty [t : Time] {
20 all c : Car | some c.possibleNext.t
21 }
22
23 /* ================================ COLLISION =============================== */
24 // Collision is when different cars occupy the same segment at the same time.
25 // NOTE: collision is NOT reflexive
26 // PASSING CONDITION: noCollision
27
28 pred collision [c1, c2 : Car, t : Time] {
29 // Different cars
30 c1 != c2
31 // Same segment at the same time
32 c1.current.t = c2.current.t
33 }
34
35 pred noCollision [t : Time] {
36 no c1, c2 : Car | collision[c1, c2, t]
37 }
38
39 /* ================================ CROSSING ================================ */
40 // Crossing is a type of collision in which two cars try switching lanes over
41 // each other in sequential points in time.
42 // Crossing is NOT reflexive.
43 // PASSING CONDITION: noCrossing
44
45 pred crossing [c1, c2 : Car, pre, post : Time] {
46 // Different cars
47 c1 != c2
48
49 // c1 and c2 are adjacent (same row, different lane)
50 c1.current.pre.row = c2.current.pre.row
51 c1.current.pre.lane != c2.current.pre.lane
52
53 // they swap lanes
54 c1.current.pre.lane = c2.current.post.lane
55
56 // now adjacent but different row than before
57 c1.current.post.row = c2.current.post.row
58 c1.current.post.lane != c2.current.post.lane
59 c1.current.pre.row != c1.current.post.row
60 }

52

61
62 pred noCrossing [pre, post : Time] {
63 no c1, c2 : Car | crossing[c1, c2, pre, post]
64 }
65
66 /* ================================ DEADLOCK ================================ */
67 // Deadlock occurs when no cars have possibleNext other than current.
68 // PASSING CONDITION: noDeadlock
69
70 pred noDeadlock [t : Time] {
71 // There exists a car that has a segment other than current in possibleNext
72 some c : Car | some c.possibleNext.t - c.current.t
73 }
74
75 pred EmptyFore [c : Car, t : Time] {
76 some s : Segment |
77 s in fore[c, t] and
78 no other : Car | s in other.current.t
79 }
80
81 pred someEmptyFore [t : Time] {
82 some c : Car | EmptyFore[c, t]
83 }
84
85 pred EmptyForeOrDiag [c : Car, t : Time] {
86 some s : Segment |
87 s in (fore[c, t] + diag[c, t]) and
88 no other : Car | s in other.current.t
89 }
90
91 pred someEmptyForeOrDiag [t : Time] {
92 some c : Car | EmptyForeOrDiag[c, t]
93 }
94
95 /* ================================ PROGRESS ================================ */
96 // Progress occurs when at least one car moves between two time points.
97 // PASSING CONDITION: progress
98
99 pred progress [pre, post : Time] {

100 some c : Car | c.current.pre != c.current.post
101 }
102
103 /* ============================ SANITY CHECKING ============================= */
104
105 // Collision
106 run collision for 5 but 1 Time
107 run noCollision for 5 but 1 Time
108
109 assert collisionIsNotReflexive {
110 no c : Car, t : Time |
111 collision[c, c, t]
112 }
113 check collisionIsNotReflexive for 2
114 // True
115
116 assert collisionIsSymmetric {
117 all c1, c2 : Car, t : Time |
118 collision[c1, c2, t] implies collision[c2, c1, t]
119 }
120 check collisionIsSymmetric for 2
121 // True
122
123 assert collisionIsTransitive {
124 all c1, c2, c3 : Car, t : Time |

53

125 (
126 collision[c1, c2, t] and
127 collision[c2, c3, t]
128) implies collision[c1, c3, t]
129 }
130 check collisionIsTransitive for 4
131 // False. Fails when c1 = c3
132
133 assert noCollisionImpliesNoDoublyOccupied {
134 all t : Time |
135 noCollision[t] implies
136 no c1, c2 : Car | c1 != c2 and c1.current.t = c2.current.t
137 }
138 check noCollisionImpliesNoDoublyOccupied for 5 but 1 Time
139 // True
140
141 // Crossing
142 run crossing for 5 but 2 Time
143 run noCrossing for 5 but 2 Time
144
145 assert crossingIsNotReflexive {
146 no c : Car, pre, post : Time | crossing[c, c, pre, post]
147 }
148 check crossingIsNotReflexive for 5
149
150 assert crossingIsSymmetric {
151 all c1, c2 : Car, t1, t2 : Time |
152 crossing[c1, c2, t1, t2] implies crossing[c2, c1, t1, t2]
153 }
154
155 // Progress
156 assert progressImpliesNoDeadlock {
157 all pre, post : Time |
158 exactlyPrecedes[pre, post] and
159 // noDeadlock is a necessary condition for progress
160 progress[pre, post] implies noDeadlock[pre]
161 }
162 check progressImpliesNoDeadlock for 5

54

E Driving policies

1 /* ===
2 OBLIVIOUS, PARANOID, NORMAL, AND CONNECTED DRIVING POLICIES
3 MaryAnn VanValkenburg, Spring 2020
4 === */
5 module policies
6 open physical
7 open properties
8
9

10 /* ============================ Oblivious Policy ============================ */
11 // The oblivious policy says cars can go forward, diagonally, or stop. They do
12 // not take any action with respect to the position of other cars.
13
14 sig Oblivious extends Car {}
15
16 // FILTER
17 fun ForeDiagOrStop (c : Car, t : Time) : set Segment {
18 // + := set union
19 fore[c, t] + diag[c, t] + here[c, t]
20 }
21
22 pred ObliviousPolicy [c : Car, t : Time] {
23 c.possibleNext.t = ForeDiagOrStop[c, t]
24 c in Oblivious
25 }
26
27 /* ============================ Paranoid Policy ============================= */
28 // The paranoid policy says cars can go forward, diagonally, or stop, but they
29 // should not travel to a segment into which another car may go.
30
31 sig Paranoid extends Car {}
32
33 // FILTER
34 fun AvoidForeDiagOrStopOfPeerExceptSelf (c : Car, t : Time) : set Segment {
35 // The set of segments where for each segment s, s is not physically
36 // reachable by another car
37 {s : Segment | all peer : Car-c |
38 s in c.current.t or
39 s not in ForeDiagOrStop[peer, t]}
40 }
41
42 pred ParanoidPolicy [c : Car, t : Time] {
43 // & := set intersection
44 c.possibleNext.t = ForeDiagOrStop[c, t] &
45 AvoidForeDiagOrStopOfPeerExceptSelf[c, t]
46 c in Paranoid
47 }
48
49 /* =========================== Normal Avoid Policy =========================== */
50 // Normal Avoid cars can go forward or stop. If the fore segment is occupied,
51 // they cannot move forward.
52
53 sig Normal extends Car {} // Human-operated vehicle
54
55 // FILTER
56 fun ForeOrStop (c : Car, t : Time) : set Segment {
57 fore[c, t] + here[c, t]
58 }
59
60 // FILTER

55

61 fun AvoidOccupiedExceptSelf (c : Car, t : Time) : set Segment {
62 // Set of segments not occupied by other cars
63 {s : Segment | s not in (Car-c).current.t}
64 }
65
66 pred NormalAvoidPolicy [c : Car, t : Time] {
67 c.possibleNext.t = ForeOrStop[c, t] &
68 AvoidOccupiedExceptSelf[c, t]
69 c in Normal
70 }
71
72 /* ==================== Normal Avoid Lane Change Policy ===================== */
73 // GOAL: Advance the normal driving policy to allow changing lanes
74 // Normal Avoid Policy with the additional rule: can change lanes as long as no
75 // one is beside you.
76
77
78 // Returns the set of cars that are beside the ego car
79 fun adjacent (c : Car, t : Time) : set Car {
80 {peer : Car |
81 // Same row
82 c.current.t.row = peer.current.t.row and
83 // Different lane
84 c.current.t.lane != peer.current.t.lane}
85 }
86
87 // FILTER
88 fun AvoidDiagonalIfAdjacentOccupied (c : Car, t : Time) : set Segment {
89 {s : Segment | all peer : adjacent[c, t] | s not in fore[peer, t] }
90 }
91
92 pred NormalAvoidLaneChangePolicy [c : Car, t : Time] {
93 c.possibleNext.t =
94 ForeDiagOrStop[c, t] & // Can now go diagonally
95 AvoidOccupiedExceptSelf[c, t] &
96 AvoidDiagonalIfAdjacentOccupied[c, t]
97 c in Normal
98 }
99

100 /* ============================ Connected I Policy ============================ */
101 // Connected cars can go forward or stop. Connected cars "broadcast" their
102 // possible next segments to other connected cars. No connected cars share
103 // possibleNext segments.
104
105 sig Connected extends Car {} // Connected autonomous vehicle
106
107 // FILTER
108 fun AvoidConnectedPossibleNextExceptSelf (c : Car, t : Time) : set Segment {
109 // Set of segments not in possibleNext of other connected cars
110 {s : Segment | s in c.current.t or s not in (Connected-c).possibleNext.t}
111 }
112
113 pred ConnectedIPolicy[c : Car, t : Time] {
114 c.possibleNext.t = ForeOrStop[c, t] &
115 AvoidConnectedPossibleNextExceptSelf[c, t]
116 c in Connected
117 }
118
119 /* ========================= Connected II Policy ========================= */
120 // Normal Avoid and Connected I did not prevent collision because Connected did
121 // not avoid currently occupied segments. Connected II amends Connected I to
122 // include AvoidOccupiedExceptSelf predicate, just like Normal Avoid.
123
124 pred ConnectedIIPolicy [c : Car, t : Time] {

56

125 c.possibleNext.t = ForeOrStop[c, t] &
126 AvoidConnectedPossibleNextExceptSelf[c, t] &
127 AvoidOccupiedExceptSelf[c, t]
128 c in Connected
129 }
130
131 /* =================== Connected III Policy =================== */
132 // Connected II but with lane change (and check adjacent rule)
133
134 // FILTER
135 fun AvoidDiagonalIfNormalAdjacentElseCrossing (c : Car, t : Time) : set Segment {
136 {
137 {s : Segment |
138 // All normal peers
139 all peer : adjacent[c, t] & Normal |
140 // s is not in the peer’s fore segment
141 s not in fore[peer, t]
142 }
143 &
144 {s : Segment |
145 // All connected peers
146 all peer : adjacent[c, t] & Connected |
147 // if fore[peer] in peer’s possible next, exclude it
148 s not in (peer.possibleNext.t & fore[peer, t]) and
149 // if diag[peer] in peer’s possible next, will have crossing
150 // collision, so exclude fore[peer]
151 s not in adjacent_segment[peer.possibleNext.t & diag[peer, t]]
152 }
153 }
154 }
155
156 fun adjacent_segment (s : Segment) : set Segment {
157 {t : Segment | t.row = s.row and t.lane != s.lane}
158 }
159
160 pred ConnectedIIIPolicy [c : Car, t : Time] {
161 c.possibleNext.t =
162 ForeDiagOrStop[c, t] &
163 AvoidConnectedPossibleNextExceptSelf[c, t] &
164 AvoidOccupiedExceptSelf[c, t] &
165 AvoidDiagonalIfNormalAdjacentElseCrossing[c, t]
166 c in Connected
167 }
168
169 /* ========================= Connected IV Policy ========================== */
170 // Connected III policy with the additional strategy that the car will
171 // prioritize the fore segment, then the diag, then the stop segment in
172 // possibleNext.
173
174 fun ConnectedIIIPolicySegments (c : Car, t : Time) : set Segment {
175 ForeDiagOrStop[c, t] &
176 AvoidConnectedPossibleNextExceptSelf[c, t] &
177 AvoidOccupiedExceptSelf[c, t] &
178 AvoidDiagonalIfNormalAdjacentElseCrossing[c, t]
179 }
180
181 pred ConnectedIVPolicy [c : Car, t : Time] {
182 c in Connected
183
184 // if
185 (some fore[c, t] & ConnectedIIIPolicySegments[c, t])
186 // then
187 implies (c.possibleNext.t = fore[c, t])
188 // else

57

189 else
190 (
191 // if
192 (some diag[c, t] & ConnectedIIIPolicySegments[c, t])
193 // then
194 implies (c.possibleNext.t = diag[c, t])
195 // else; should just be here[c, t]
196 else (c.possibleNext.t = ConnectedIIIPolicySegments[c, t])
197)
198 }
199
200
201 /* ============================ SANITY CHECKING ============================= */
202
203 // ForeOrStop
204 run ForeOrStop for 6 but 1 Time
205
206 pred AllCarForeOrStop [t : Time] {
207 all c : Car | c.possibleNext.t = ForeOrStop[c, t]
208 }
209
210 assert allCarFOSImpliesNoCollision {
211 all pre, post : Time |
212 exactlyPrecedes[pre, post] and
213 noCollision[pre] and
214 AllCarForeOrStop[pre] implies
215 noCollision[post]
216 }
217 check allCarFOSImpliesNoCollision for 5 but 2 Time
218 // Collision. Forward-moving car rear-ends a stopped car.
219
220 assert ForeOrStopIsTwo {
221 all c : Car, t : Time |
222 some fore[c, t] implies #ForeOrStop[c, t]=2
223 }
224 check ForeOrStopIsTwo for 5
225
226 assert ForeOrStopIsAlwaysAtLeastOne {
227 all c : Car, t : Time | #ForeOrStop[c, t]≥1
228 }
229 check ForeOrStopIsAlwaysAtLeastOne for 5
230
231 assert ForeOrStopAlwaysIncludesCurrent {
232 all c : Car, t : Time |
233 c.current.t in ForeOrStop[c, t]
234 }
235 check ForeOrStopAlwaysIncludesCurrent for 5
236
237
238 // AvoidOccupiedExceptSelf
239 run AvoidOccupiedExceptSelf for 5 but 1 Time
240
241 assert SelfSegmentInAvoidOccupiedExceptSelf {
242 all c : Car, t : Time | noCollision[t] implies
243 c.current.t in AvoidOccupiedExceptSelf[c, t]
244 }
245 check SelfSegmentInAvoidOccupiedExceptSelf for 5 but 1 Time
246
247 pred AllCarAvoidOccupiedExceptSelf [t : Time] {
248 all c : Car | c.possibleNext.t = AvoidOccupiedExceptSelf[c, t]
249 }
250
251 assert AllCarAvoidOccupiedExceptSelfNoCollision {
252 all pre, post : Time |

58

253 exactlyPrecedes[pre, post] and
254 noCollision[pre] and
255 AllCarAvoidOccupiedExceptSelf[pre] implies
256 noCollision[post]
257 }
258 check AllCarAvoidOccupiedExceptSelfNoCollision for 5 but 2 Time
259 // Not safe on its own, two cars attempt to move to same vacant segment
260
261 // AvoidConnectedPossibleNextExceptSelf
262 run AvoidConnectedPossibleNextExceptSelf for 5 but 1 Time
263
264 pred AllCarConnectedAvoidConnectedPossibleNext [t : Time] {
265 all c : Car |
266 c in Connected and
267 c.possibleNext.t = AvoidConnectedPossibleNextExceptSelf[c, t]
268 }
269 run AllCarConnectedAvoidConnectedPossibleNext for 5 but 1 Time
270
271 assert AllCarConnectedAvoidConnectedPossibleNextNoCollision {
272 all pre, post : Time |
273 exactlyPrecedes[pre, post] and
274 noCollision[pre] and
275 AllCarConnectedAvoidConnectedPossibleNext[pre] implies
276 noCollision[post]
277 }
278 check AllCarConnectedAvoidConnectedPossibleNextNoCollision for 5
279 // Safe (when all cars are connected)
280
281 // Adjacent
282 assert adjacentNotReflexive {
283 all c : Car, t : Time | c not in adjacent[c, t]
284 }
285 check adjacentNotReflexive for 5
286
287 assert noAdjacent {
288 no c : Car, t : Time | some adjacent[c, t]
289 }
290 check noAdjacent for 5 but 1 Time
291 // want this to fail, meaning that adjacent is possible (shows examples of adjacent)
292
293 pred showSegmentsNotAdjacentFore [c : Car, t : Time] {
294 c.possibleNext.t = physicallyReachable[c,t] &
295 AvoidDiagonalIfAdjacentOccupied[c, t]
296 #Segment ≥ 6
297 }
298 run showSegmentsNotAdjacentFore for 7 but 1 Time

59

F Analysis of Oblivious and Paranoid driving policies

1 /* ===
2 ANALYSIS OF OBLIVIOUS AND PARANOID DRIVING POLICIES
3 MaryAnn VanValkenburg, Spring 2020
4 === */
5 open properties
6 open policies
7
8
9 /* ======================== Scenario: All Oblivious ========================= */

10 pred AllOblivious [t : Time] {
11 all c : Car | ObliviousPolicy[c, t]
12 }
13
14 pred showSafeOblivious [pre, post : Time] {
15 exactlyPrecedes[pre, post]
16 AllOblivious[pre]
17 AllOblivious[post]
18 noCollision[pre]
19 noCollision[post]
20 Car.current.pre != Car.current.post
21 #Car = 2
22 }
23 run showSafeOblivious for 5 but 2 Time
24
25 assert AOpossibleNextNotEmpty {
26 all t : Time |
27 (
28 AllOblivious[t]
29)
30 implies possibleNextNotEmpty[t]
31 }
32 check AOpossibleNextNotEmpty for 5
33 // True
34
35 assert AOnoCollision {
36 all pre, post : Time |
37 (
38 exactlyPrecedes[pre, post] and
39 noCollision[pre] and
40 AllOblivious[pre]
41)
42 implies noCollision[post]
43 }
44 check AOnoCollision for 5 but 2 Time
45 // False. Rear-end a stopped car
46
47 assert AOnoCrossing {
48 all pre, post : Time |
49 (
50 exactlyPrecedes[pre, post] and
51 noCollision[pre] and
52 AllOblivious[pre]
53)
54 implies noCrossing[pre, post]
55 }
56 check AOnoCrossing for 4 but 2 Car, 2 Time
57 // False. Adjacent cars swap lanes
58
59 assert AOnoDeadlock {
60 all t : Time |

60

61 (
62 noCollision[t] and
63 AllOblivious[t] and
64 someEmptyForeOrDiag[t]
65)
66 implies noDeadlock[t]
67 }
68 check AOnoDeadlock for 5 but 1 Time
69 // True
70
71 assert AOprogress {
72 all pre, post : Time |
73 (
74 exactlyPrecedes[pre, post] and
75 AllOblivious[pre] and
76 noDeadlock[pre]
77)
78 implies progress[pre, post]
79 }
80 check AOprogress for 5 but 2 Time
81 // False. No incentive to progress
82
83 /* ========================= Scenario: All Paranoid ========================= */
84 pred AllParanoid [t : Time] {
85 all c : Car | ParanoidPolicy[c, t]
86 }
87
88 pred showAllParanoid [pre, post : Time] {
89 exactlyPrecedes[pre, post]
90 AllParanoid[pre]
91 AllParanoid[post]
92 noCollision[pre]
93 noCollision[post]
94 Car.current.pre != Car.current.post
95 #Car = 2
96 }
97 run showAllParanoid for 5 but 2 Time
98
99 assert APpossibleNextNotEmpty {

100 all t : Time |
101 (
102 noCollision[t] and
103 AllParanoid[t]
104)
105 implies possibleNextNotEmpty[t]
106 }
107 check APpossibleNextNotEmpty for 5 but 1 Time
108 // True with addition of (+ c.current.t in the policy definition)
109
110 assert APnoCollision {
111 all pre, post : Time |
112 (
113 exactlyPrecedes[pre, post] and
114 noCollision[pre] and
115 AllParanoid[pre]
116)
117 implies noCollision[post]
118 }
119 check APnoCollision for 5 but 2 Time
120 // True
121
122 pred APrunning [pre, post : Time] {
123 exactlyPrecedes[pre, post]
124 noCollision[pre]

61

125 AllParanoid[pre]
126 AllParanoid[post]
127 !noDeadlock[pre]
128 #Car = 2
129 all c : Car | EmptyForeOrDiag[c, pre]
130 }
131 run APrunning for 5 but 2 Time
132
133 assert APnoCrossing {
134 all pre, post : Time |
135 (
136 exactlyPrecedes[pre, post] and
137 noCollision[pre] and
138 AllParanoid[pre]
139)
140 implies noCrossing[pre, post]
141 }
142 check APnoCrossing for 4 but 2 Car, 2 Time
143 // True
144
145 assert APnoDeadlock {
146 all t : Time |
147 (
148 noCollision[t] and
149 AllParanoid[t] and
150 someEmptyForeOrDiag[t]
151)
152 implies noDeadlock[t]
153 }
154 check APnoDeadlock for 5 but 1 Time
155 // False. Two adjacent cars cancel each other out
156
157 assert APprogress {
158 all pre, post : Time |
159 (
160 exactlyPrecedes[pre, post] and
161 AllParanoid[pre] and
162 noDeadlock[pre]
163)
164 implies progress[pre, post]
165 }
166 check APprogress for 5 but 2 Time
167 // False. No incentive to progress
168
169 /* ================= Scenario: Mixed Oblivious or Paranoid ================== */
170 pred MixedObliviousOrParanoid [t : Time] {
171 all c : Car | ObliviousPolicy[c, t] or ParanoidPolicy[c, t]
172 }
173
174 assert MOPnoCollision {
175 all pre, post : Time |
176 (
177 exactlyPrecedes[pre, post] and
178 noCollision[pre] and
179 MixedObliviousOrParanoid[pre]
180)
181 implies noCollision[post]
182 }
183 check MOPnoCollision for 5 but 2 Time
184 // False. Oblivious car rear-ends Paranoid car
185
186 assert MOPnoCrossing {
187 all pre, post : Time |
188 (

62

189 exactlyPrecedes[pre, post] and
190 noCollision[pre] and
191 MixedObliviousOrParanoid[pre]
192)
193 implies noCrossing[pre, post]
194 }
195 check MOPnoCrossing for 4 but 2 Car, 2 Time
196 // False. Inherits flaw from Oblivious Policy

63

G Analysis of Normal and Connected driving policies

1 /* ===
2 ANALYSIS OF NORMAL AND CONNECTED DRIVING POLICIES
3 MaryAnn VanValkenburg, Spring 2020
4 === */
5 open properties
6 open policies
7
8 /* ======================= Scenario: All Normal Avoid ======================= */
9 pred AllNormalAvoid [t : Time] {

10 all c : Car | NormalAvoidPolicy[c, t]
11 }
12
13 pred showAllNormalAvoid [pre, post : Time] {
14 exactlyPrecedes[pre, post]
15 AllNormalAvoid[pre]
16 AllNormalAvoid[post]
17 noCollision[pre]
18 noCollision[post]
19 Car.current.pre != Car.current.post
20 #Car = 2
21 }
22 run showAllNormalAvoid for 5 but 2 Time
23
24 assert ANApossibleNextNotEmpty {
25 all t : Time |
26 (
27 noCollision[t] and
28 AllNormalAvoid[t]
29)
30 implies possibleNextNotEmpty[t]
31 }
32 check ANApossibleNextNotEmpty for 5 but 1 Time
33 // True
34
35 assert ANAnoCollision {
36 all pre, post : Time |
37 (
38 exactlyPrecedes[pre, post] and
39 noCollision[pre] and
40 AllNormalAvoid[pre]
41)
42 implies noCollision[post]
43 }
44 check ANAnoCollision for 5 but 2 Time
45 // True
46
47 assert ANAnoCrossing {
48 all pre, post : Time |
49 (
50 exactlyPrecedes[pre, post] and
51 noCollision[pre] and
52 AllNormalAvoid[pre]
53)
54 implies noCrossing[pre, post]
55 }
56 check ANAnoCrossing for 4 but 2 Car, 2 Time
57 // True
58
59 assert ANAnoDeadlock {
60 all t : Time |

64

61 (
62 noCollision[t] and
63 AllNormalAvoid[t] and
64 someEmptyFore[t] // Diag doesn’t apply to this policy
65)
66 implies noDeadlock[t]
67 }
68 check ANAnoDeadlock for 7
69 // True
70
71 assert ANAprogress {
72 all pre, post : Time |
73 (
74 exactlyPrecedes[pre, post] and
75 AllNormalAvoid[pre] and
76 noDeadlock[pre]
77)
78 implies progress[pre, post]
79 }
80 check ANAprogress for 5 but 2 Time
81 // False. No incentive to progress
82
83 /* =============== Scenario: Naiive Normal Avoid Lane Change ================ */
84 // Naiive version without additional rule about checking for adjacent car
85 pred NormalAvoidLaneChangePolicyNaiive [c : Car, t : Time] {
86 c.possibleNext.t =
87 ForeDiagOrStop[c, t] & // Can now go diagonally
88 AvoidOccupiedExceptSelf[c, t]
89 c in Normal
90 }
91
92 pred AllNALCNaiive [t : Time] {
93 all c : Car | NormalAvoidLaneChangePolicyNaiive[c, t]
94 }
95
96 assert ANALCNnoCollision {
97 all pre, post : Time |
98 (
99 exactlyPrecedes[pre, post] and

100 noCollision[pre] and
101 AllNALCNaiive[pre]
102)
103 implies noCollision[post]
104 }
105 check ANALCNnoCollision for 5 but 2 Time
106 // False
107
108 assert ANALCNnoCrossing {
109 all pre, post : Time |
110 (
111 exactlyPrecedes[pre, post] and
112 noCollision[pre] and
113 AllNALCNaiive[pre]
114)
115 implies noCrossing[pre, post]
116 }
117 check ANALCNnoCrossing for 5 but 2 Time
118 // False
119
120 /* ================= Scenario: All Normal Avoid Lane Change ================= */
121 pred AllNormalAvoidLaneChange [t : Time] {
122 all c : Car | NormalAvoidLaneChangePolicy[c, t]
123 }
124

65

125 assert ANALCpossibleNextNotEmpty {
126 all t : Time |
127 (
128 noCollision[t] and
129 AllNormalAvoidLaneChange[t]
130)
131 implies possibleNextNotEmpty[t]
132 }
133 check ANALCpossibleNextNotEmpty for 5 but 1 Time
134 // True
135
136 assert ANALCnoCollision {
137 all pre, post : Time |
138 (
139 exactlyPrecedes[pre, post] and
140 noCollision[pre] and
141 AllNormalAvoidLaneChange[pre]
142)
143 implies noCollision[post]
144 }
145 check ANALCnoCollision for 5 but 2 Time
146 // True
147
148 assert ANALCnoCrossing {
149 all pre, post : Time |
150 (
151 exactlyPrecedes[pre, post] and
152 noCollision[pre] and
153 AllNormalAvoidLaneChange[pre]
154)
155 implies noCrossing[pre, post]
156 }
157 check ANALCnoCrossing for 4 but 2 Car, 2 Time
158 // True
159
160 assert ANALCnoDeadlock {
161 all t : Time |
162 (
163 noCollision[t] and
164 AllNormalAvoidLaneChange[t] and
165 someEmptyForeOrDiag[t] // Diag DOES help this policy
166)
167 implies noDeadlock[t]
168 }
169 check ANALCnoDeadlock for 7
170 // True
171
172 assert ANALCprogress {
173 all pre, post : Time |
174 (
175 exactlyPrecedes[pre, post] and
176 AllNormalAvoidLaneChange[pre] and
177 noDeadlock[pre]
178)
179 implies progress[pre, post]
180 }
181 check ANALCprogress for 5 but 2 Time
182 // False. No incentive to progress
183
184 /* ========================= Scenario: Mixed Normal ========================= */
185 pred MixedNormal [t : Time] {
186 all c : Car | NormalAvoidPolicy[c, t] or NormalAvoidLaneChangePolicy[c, t]
187 }
188

66

189 assert MNnoCollision {
190 all pre, post : Time |
191 (
192 exactlyPrecedes[pre, post] and
193 noCollision[pre] and
194 MixedNormal[pre]
195)
196 implies noCollision[post]
197 }
198 check MNnoCollision for 5 but 2 Time
199 // True
200
201 assert MNnoCrossing {
202 all pre, post : Time |
203 (
204 exactlyPrecedes[pre, post] and
205 noCollision[pre] and
206 MixedNormal[pre]
207)
208 implies noCrossing[pre, post]
209 }
210 check MNnoCrossing for 4 but 2 Car, 2 Time
211 // True
212
213
214
215 /* =========================== Connected Policies =========================== */
216
217 /* ======================= Scenario: All Connected I ======================== */
218 pred AllConnectedI [t : Time] {
219 all c : Car | ConnectedIPolicy[c, t]
220 }
221
222 assert ACIpossibleNextNotEmpty {
223 all t : Time |
224 (
225 noCollision[t] and
226 AllConnectedI[t]
227)
228 implies possibleNextNotEmpty[t]
229 }
230 check ACIpossibleNextNotEmpty for 5 but 1 Time
231 // True
232
233 assert ACInoCollision {
234 all pre, post : Time |
235 (
236 exactlyPrecedes[pre, post] and
237 noCollision[pre] and
238 AllConnectedI[pre]
239)
240 implies noCollision[post]
241 }
242 check ACInoCollision for 5 but 2 Time
243 // True
244
245 assert ACInoCrossing {
246 all pre, post : Time |
247 (
248 exactlyPrecedes[pre, post] and
249 noCollision[pre] and
250 AllConnectedI[pre]
251)
252 implies noCrossing[pre, post]

67

253 }
254 check ACInoCrossing for 4 but 2 Car, 2 Time
255 // True
256
257 assert ACInoDeadlock {
258 all t : Time |
259 (
260 noCollision[t] and
261 AllConnectedI[t] and
262 someEmptyFore[t] // Diag doesn’t apply to this policy
263)
264 implies noDeadlock[t]
265 }
266 check ACInoDeadlock for 5 but 1 Time
267 // True
268
269 assert ACIprogress {
270 all pre, post : Time |
271 (
272 exactlyPrecedes[pre, post] and
273 AllConnectedI[pre] and
274 noDeadlock[pre]
275)
276 implies progress[pre, post]
277 }
278 check ACIprogress for 5 but 2 Time
279 // False. No incentive to progress
280
281 /* ============== Scenario: Mixed Normal Avoid or Connected I =============== */
282 pred MixedNormalAvoidConnectedI [t : Time] {
283 all c : Car | NormalAvoidPolicy[c, t] or ConnectedIPolicy[c, t]
284 }
285
286 assert MNACInoCollision {
287 all pre, post : Time |
288 (
289 exactlyPrecedes[pre, post] and
290 noCollision[pre] and
291 MixedNormalAvoidConnectedI[pre]
292)
293 implies noCollision[post]
294 }
295 check MNACInoCollision for 5 but 2 Time
296 // False. Connected car does not avoid segments occupied by Normal cars
297
298 assert MNACInoCrossing {
299 all pre, post : Time |
300 (
301 exactlyPrecedes[pre, post] and
302 noCollision[pre] and
303 MixedNormalAvoidConnectedI[pre]
304)
305 implies noCrossing[pre, post]
306 }
307 check MNACInoCrossing for 4 but 2 Car, 2 Time
308 // True
309
310 /* ================== Scenario: Mixed NALC or Connected I =================== */
311 pred MixedNALCConnectedI [t : Time] {
312 all c : Car | NormalAvoidLaneChangePolicy[c, t] or ConnectedIPolicy[c, t]
313 }
314
315 assert MNALCCInoCollision {
316 all pre, post : Time |

68

317 (
318 exactlyPrecedes[pre, post] and
319 noCollision[pre] and
320 MixedNALCConnectedI[pre]
321)
322 implies noCollision[post]
323 }
324 check MNALCCInoCollision for 5 but 2 Time
325 // False. Connected car does not avoid segments occupied by Normal cars
326
327 assert MNALCCInoCrossing {
328 all pre, post : Time |
329 (
330 exactlyPrecedes[pre, post] and
331 noCollision[pre] and
332 MixedNALCConnectedI[pre]
333)
334 implies noCrossing[pre, post]
335 }
336 check MNALCCInoCrossing for 4 but 2 Car, 2 Time
337 // True
338
339
340 /* ======================= Scenario: All Connected II ======================= */
341 pred AllConnectedII [t : Time] {
342 all c : Car | ConnectedIIPolicy[c, t]
343 }
344
345 assert ACIIpossibleNextNotEmpty {
346 all t : Time |
347 (
348 noCollision[t] and
349 AllConnectedII[t]
350)
351 implies possibleNextNotEmpty[t]
352 }
353 check ACIIpossibleNextNotEmpty for 5 but 1 Time
354 // True
355
356 assert ACIInoCollision {
357 all pre, post : Time |
358 (
359 exactlyPrecedes[pre, post] and
360 noCollision[pre] and
361 AllConnectedII[pre]
362)
363 implies noCollision[post]
364 }
365 check ACIInoCollision for 5 but 2 Time
366 // True
367
368 assert ACIInoCrossing {
369 all pre, post : Time |
370 (
371 exactlyPrecedes[pre, post] and
372 noCollision[pre] and
373 AllConnectedII[pre]
374)
375 implies noCrossing[pre, post]
376 }
377 check ACIInoCrossing for 4 but 2 Car, 2 Time
378 // True
379
380 assert ACIInoDeadlock {

69

381 all t : Time |
382 (
383 noCollision[t] and
384 AllConnectedII[t] and
385 someEmptyFore[t] // Diag doesn’t apply to this policy
386)
387 implies noDeadlock[t]
388 }
389 check ACIInoDeadlock for 5 but 1 Time
390 // True
391
392 assert ACIIprogress {
393 all pre, post : Time |
394 (
395 exactlyPrecedes[pre, post] and
396 AllConnectedII[pre] and
397 noDeadlock[pre]
398)
399 implies progress[pre, post]
400 }
401 check ACIIprogress for 5 but 2 Time
402 // False. No incentive to progress
403
404 /* ============== Scenario: Mixed Normal Avoid or Connected II ============== */
405 pred MixedNormalAvoidConnectedII [t : Time] {
406 all c : Car | NormalAvoidPolicy[c, t] or ConnectedIIPolicy[c, t]
407 }
408
409 assert MNACIInoCollision {
410 all pre, post : Time |
411 (
412 exactlyPrecedes[pre, post] and
413 noCollision[pre] and
414 MixedNormalAvoidConnectedII[pre]
415)
416 implies noCollision[post]
417 }
418 check MNACIInoCollision for 5 but 2 Time
419 // True
420
421 assert MNACIInoCrossing {
422 all pre, post : Time |
423 (
424 exactlyPrecedes[pre, post] and
425 noCollision[pre] and
426 MixedNormalAvoidConnectedII[pre]
427)
428 implies noCrossing[pre, post]
429 }
430 check MNACIInoCrossing for 4 but 2 Car, 2 Time
431 // True
432
433 // Accomplished goal: Normal and Connected safely on the road together
434
435
436 /* ================== Scenario: Mixed NALC or Connected II ================== */
437 pred MixedNALCConnectedII [t : Time] {
438 all c : Car | NormalAvoidLaneChangePolicy[c, t] or ConnectedIIPolicy[c, t]
439 }
440
441 assert NALCCIInoCollision {
442 all pre, post : Time |
443 (
444 exactlyPrecedes[pre, post] and

70

445 noCollision[pre] and
446 MixedNALCConnectedII[pre]
447)
448 implies noCollision[post]
449 }
450 check NALCCIInoCollision for 5 but 2 Time
451 // True
452
453 assert NALCCIInoCrossing {
454 all pre, post : Time |
455 (
456 exactlyPrecedes[pre, post] and
457 noCollision[pre] and
458 MixedNALCConnectedII[pre]
459)
460 implies noCrossing[pre, post]
461 }
462 check NALCCIInoCrossing for 4 but 2 Car, 2 Time
463 // True
464
465 /* ============ Scenario: Mixed NALC or Alternative Connected II ============ */
466 // What if Connected II used the AvoidOccupiedExceptSelf rule instead of
467 // AvoidNormalOccupiedExceptSelf? Would they behave the same?
468
469 // RULE
470 fun AvoidNormalOccupiedExceptSelf (c : Car, t : Time) : set Segment {
471 // Set of segments not occupied by Normal cars
472 {s : Segment | s not in (Normal-c).current.t}
473 }
474
475 pred AlternativeConnectedIIPolicy [c : Car, t : Time] {
476 c.possibleNext.t = ForeOrStop[c, t] &
477 AvoidConnectedPossibleNextExceptSelf[c, t] &
478 AvoidNormalOccupiedExceptSelf[c, t]
479 c in Connected
480 }
481
482 pred MixedNALCAlternativeConnectedII [t : Time] {
483 all c : Car |
484 NormalAvoidLaneChangePolicy[c, t] or
485 AlternativeConnectedIIPolicy[c, t]
486 }
487
488 assert ACIIbehavesLikeCII {
489 all t : Time |
490 (MixedNALCConnectedII[t] iff MixedNALCAlternativeConnectedII[t])
491 }
492 check ACIIbehavesLikeCII for 4 but 2 Car, 1 Time
493 // False. It appears that the counterexample is when two connected cars start in
494 // the same segment
495
496 assert ACIIbehavesLikeCIInoCollision {
497 all t : Time |
498 (
499 noCollision[t] and
500 MixedNALCConnectedII[t]
501)
502 iff
503 (
504 noCollision[t] and
505 MixedNALCAlternativeConnectedII[t]
506)
507 }
508 check ACIIbehavesLikeCIInoCollision for 4 but 2 Car, 1 Time

71

509 // True
510
511 assert ACIIbehavesLikeCIIProgress {
512 all pre, post : Time |
513 // MixedNALCConnectedII results in progress...
514 ((
515 noCollision[pre] and
516 MixedNALCConnectedII[pre]
517) implies progress[pre, post]
518)
519 iff
520 // ... iff MixedNALCAlternativeConnectedII also results in progress
521 ((
522 noCollision[pre] and
523 MixedNALCAlternativeConnectedII[pre]
524) implies progress[pre, post]
525)
526 }
527 check ACIIbehavesLikeCIIProgress for 4 but 2 Car, 2 Time
528 // True
529
530 /* ===================== Scenario: Naiive Connected III ===================== */
531 // Naiive version without additional rule about checking for adjacent car
532
533 pred ConnectedIIIPolicyNaiive [c : Car, t : Time] {
534 c.possibleNext.t =
535 ForeDiagOrStop[c, t] &
536 AvoidConnectedPossibleNextExceptSelf[c, t] &
537 AvoidOccupiedExceptSelf[c, t]
538 c in Connected
539 }
540
541 pred AllConnectedIIINaiive [t : Time] {
542 all c : Car | ConnectedIIIPolicyNaiive[c, t]
543 }
544
545 assert ACIIINnoCollision {
546 all pre, post : Time |
547 (
548 exactlyPrecedes[pre, post] and
549 noCollision[pre] and
550 AllConnectedIIINaiive[pre]
551)
552 implies noCollision[post]
553 }
554 check ACIIINnoCollision for 7
555
556 assert ACIIINnoCrossing {
557 all pre, post : Time |
558 (
559 exactlyPrecedes[pre, post] and
560 noCollision[pre] and
561 AllConnectedIIINaiive[pre]
562)
563 implies noCrossing[pre, post]
564 }
565 check ACIIINnoCrossing for 4 but 2 Car, 2 Time
566
567
568 /* ====================== Scenario: All Connected III ======================= */
569 pred AllConnectedIII [t : Time] {
570 all c : Car | ConnectedIIIPolicy[c, t]
571 }
572

72

573 assert ACIIIpossibleNextNotEmpty {
574 all t : Time |
575 (
576 noCollision[t] and
577 AllConnectedIII[t]
578)
579 implies possibleNextNotEmpty[t]
580 }
581 check ACIIIpossibleNextNotEmpty for 5 but 1 Time
582 // True
583
584 assert ACIIInoCollision {
585 all pre, post : Time |
586 (
587 exactlyPrecedes[pre, post] and
588 noCollision[pre] and
589 AllConnectedIII[pre]
590)
591 implies noCollision[post]
592 }
593 check ACIIInoCollision for 5 but 2 Time
594 // True
595
596 assert ACIIInoCrossing {
597 all pre, post : Time |
598 (
599 exactlyPrecedes[pre, post] and
600 noCollision[pre] and
601 AllConnectedIII[pre]
602)
603 implies noCrossing[pre, post]
604 }
605 check ACIIInoCrossing for 4 but 2 Car, 2 Time
606 // True
607
608 assert ACIIInoDeadlock {
609 all t : Time |
610 (
611 noCollision[t] and
612 AllConnectedIII[t] and
613 someEmptyForeOrDiag[t]
614)
615 implies noDeadlock[t]
616 }
617 check ACIIInoDeadlock for 5 but 1 Time
618 // True
619
620 assert ACIIIprogress {
621 all pre, post : Time |
622 (
623 exactlyPrecedes[pre, post] and
624 AllConnectedIII[pre] and
625 noDeadlock[pre]
626)
627 implies progress[pre, post]
628 }
629 check ACIIIprogress for 5 but 2 Time
630 // False. No incentive to progress
631
632 /* ============= Scenario: Mixed Normal Avoid or Connected III ============== */
633 pred MixedNormalAvoidConnectedIII [t : Time] {
634 all c : Car | NormalAvoidPolicy[c, t] or ConnectedIIIPolicy[c, t]
635 }
636

73

637 assert MNACIIInoCollision {
638 all pre, post : Time |
639 (
640 exactlyPrecedes[pre, post] and
641 noCollision[pre] and
642 MixedNormalAvoidConnectedIII[pre]
643)
644 implies noCollision[post]
645 }
646 check MNACIIInoCollision for 5 but 2 Time
647 // True
648
649 assert MNACIIInoCrossing {
650 all pre, post : Time |
651 (
652 exactlyPrecedes[pre, post] and
653 noCollision[pre] and
654 MixedNormalAvoidConnectedIII[pre]
655)
656 implies noCrossing[pre, post]
657 }
658 check MNACIIInoCrossing for 4 but 2 Car, 2 Time
659 // True
660
661 /* =========== Scenario: Mixed NALC or Alternative Connected III ============ */
662 // What if Connected III used AvoidDiagonalIfNormalAdjacentElseCrossing instead
663 // of the AvoidDiagonalIfAdjacentOccupied? Would it behave the same?
664
665 pred AlternativeConnectedIIIPolicy [c : Car, t : Time] {
666 c.possibleNext.t =
667 ForeDiagOrStop[c, t] &
668 AvoidConnectedPossibleNextExceptSelf[c, t] &
669 AvoidNormalOccupiedExceptSelf[c, t] &
670 AvoidDiagonalIfAdjacentOccupied[c, t]
671 c in Connected
672 }
673
674 pred MixedNALCAlternativeConnectedIII [t : Time] {
675 all c : Car |
676 NormalAvoidLaneChangePolicy[c, t] or
677 AlternativeConnectedIIIPolicy[c, t]
678 }
679
680 assert ACIIIbehavesLikeCIIInoCollision {
681 all t : Time |
682 (
683 // The only time they behave differently is crossing
684 MixedNALCConnectedIII[t]
685 iff
686 MixedNALCAlternativeConnectedIII[t]
687) or
688 !noCollision[t]
689 }
690 check ACIIIbehavesLikeCIIInoCollision for 4 but 2 Car, 1 Time
691 // False
692
693 assert ACIIIbehavesLikeCIIIProgress {
694 all pre, post : Time |
695 // ... iff MixedNALCAlternativeConnectedIII also results in progress
696 ((
697 exactlyPrecedes[pre, post] and
698 MixedNALCAlternativeConnectedIII[pre]
699) implies progress[pre, post]
700)

74

701 iff
702 // MixedNALCConnectedIII results in progress...
703 ((
704 exactlyPrecedes[pre, post] and
705 MixedNALCConnectedIII[pre]
706) implies progress[pre, post]
707)
708 }
709 check ACIIIbehavesLikeCIIIProgress for 4 but 2 Car, 2 Time
710 // False!
711
712 /* ================= Scenario: Mixed NALC or Connected III ================== */
713 pred MixedNALCConnectedIII [t : Time] {
714 all c : Car |
715 NormalAvoidLaneChangePolicy[c, t] or
716 ConnectedIIIPolicy[c, t]
717 }
718
719 assert MNALCCIIInoCollision {
720 all pre, post : Time |
721 (
722 exactlyPrecedes[pre, post] and
723 noCollision[pre] and
724 MixedNALCConnectedIII[pre]
725)
726 implies noCollision[post]
727 }
728 check MNALCCIIInoCollision for 5 but 2 Time
729 // True
730
731 assert MNALCCIIInoCrossing {
732 all pre, post : Time |
733 (
734 exactlyPrecedes[pre, post] and
735 noCollision[pre] and
736 MixedNALCConnectedIII[pre]
737)
738 implies noCrossing[pre, post]
739 }
740 check MNALCCIIInoCrossing for 4 but 2 Car, 2 Time
741 // True
742
743
744 /* ======================= Scenario: All Connected IV ======================= */
745 pred AllConnectedIV [t : Time] {
746 all c : Car | ConnectedIVPolicy[c, t]
747 }
748
749 assert ACIVpossibleNextNotEmpty {
750 all t : Time |
751 (
752 noCollision[t] and
753 AllConnectedIV[t]
754)
755 implies possibleNextNotEmpty[t]
756 }
757 check ACIVpossibleNextNotEmpty for 5 but 1 Time
758 // True
759
760 assert ACIVnoCollision {
761 all pre, post : Time |
762 (
763 exactlyPrecedes[pre, post] and
764 noCollision[pre] and

75

765 AllConnectedIV[pre]
766)
767 implies noCollision[post]
768 }
769 check ACIVnoCollision for 5 but 2 Time
770 // True
771
772 assert ACIVnoCrossing {
773 all pre, post : Time |
774 (
775 exactlyPrecedes[pre, post] and
776 noCollision[pre] and
777 AllConnectedIV[pre]
778)
779 implies noCrossing[pre, post]
780 }
781 check ACIVnoCrossing for 4 but 2 Car, 2 Time
782 // True
783
784 assert ACIVnoDeadlock {
785 all t : Time |
786 (
787 noCollision[t] and
788 AllConnectedIV[t] and
789 someEmptyForeOrDiag[t]
790)
791 implies noDeadlock[t]
792 }
793 check ACIVnoDeadlock for 5 but 1 Time
794 // True
795
796 assert ACIVprogress {
797 all pre, post : Time |
798 (
799 exactlyPrecedes[pre, post] and
800 AllConnectedIV[pre] and
801 noDeadlock[pre]
802)
803 implies progress[pre, post]
804 }
805 check ACIVprogress for 5 but 2 Time
806 // True
807
808 /* ======================= Scenario: Mixed Connected ======================== */
809 pred MixedConnected [t : Time] {
810 all c : Car |
811 ConnectedIPolicy[c, t] or
812 ConnectedIIPolicy[c, t] or
813 ConnectedIIIPolicy[c, t] or
814 ConnectedIVPolicy[c, t]
815 }
816
817 assert MCnoCollision {
818 all pre, post : Time |
819 (
820 exactlyPrecedes[pre, post] and
821 noCollision[pre] and
822 MixedConnected[pre]
823)
824 implies noCollision[post]
825 }
826 check MCnoCollision for 5 but 2 Time
827 // True
828

76

829 assert MCnoCrossing {
830 all pre, post : Time |
831 (
832 exactlyPrecedes[pre, post] and
833 noCollision[pre] and
834 MixedConnected[pre]
835)
836 implies noCrossing[pre, post]
837 }
838 check MCnoCrossing for 4 but 2 Car, 2 Time
839 // True
840
841 /* ============== Scenario: Mixed Normal Avoid or Connected IV ============== */
842 pred MixedNormalAvoidConnectedIV [t : Time] {
843 all c : Car | NormalAvoidPolicy[c, t] or ConnectedIVPolicy[c, t]
844 }
845
846 assert MNACIVnoCollision {
847 all pre, post : Time |
848 (
849 exactlyPrecedes[pre, post] and
850 noCollision[pre] and
851 MixedNormalAvoidConnectedIV[pre]
852)
853 implies noCollision[post]
854 }
855 check MNACIVnoCollision for 5 but 2 Time
856 // True
857
858 assert MNACIVnoCrossing {
859 all pre, post : Time |
860 (
861 exactlyPrecedes[pre, post] and
862 noCollision[pre] and
863 MixedNormalAvoidConnectedIV[pre]
864)
865 implies noCrossing[pre, post]
866 }
867 check MNACIVnoCrossing for 4 but 2 Car, 2 Time
868 // True
869
870 /* ================== Scenario: Mixed NALC or Connected IV ================== */
871 pred MixedNALCConnectedIV [t : Time] {
872 all c : Car | NormalAvoidLaneChangePolicy[c, t] or ConnectedIVPolicy[c, t]
873 }
874
875 assert MNALCCIVnoCollision {
876 all pre, post : Time |
877 (
878 exactlyPrecedes[pre, post] and
879 noCollision[pre] and
880 MixedNALCConnectedIV[pre]
881)
882 implies noCollision[post]
883 }
884 check MNALCCIVnoCollision for 5 but 2 Time
885 // True
886
887 assert MNALCCIVnoCrossing {
888 all pre, post : Time |
889 (
890 exactlyPrecedes[pre, post] and
891 noCollision[pre] and
892 MixedNALCConnectedIV[pre]

77

893)
894 implies noCrossing[pre, post]
895 }
896 check MNALCCIVnoCrossing for 4 but 2 Car, 2 Time
897 // True

78

Bibliography
[1] H. Oh, C. Yae, D. Ahn, and H. Cho, �5.8 GHz DSRC packet communication system

for ITS services,� in Gateway to 21st Century Communications Village. VTC 1999-
Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No. 99CH36324), vol. 4,
pp. 2223�2227, IEEE, 1999.

[2] R. Miucic, A. Sheikh, Z. Medenica, and R. Kunde, �V2X applications using collaborative
perception,� in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pp. 1�6,
IEEE, 2018.

[3] S. Moridpour, M. Sarvi, and G. Rose, �Lane changing models: A critical review,� Trans-
portation letters, vol. 2, no. 3, pp. 157�173, 2010.

[4] M. Atagoziyev, K. W. Schmidt, and E. G. Schmidt, �Lane change scheduling for au-
tonomous vehicles,� IFAC-PapersOnLine, vol. 49, no. 3, pp. 61�66, 2016.

[5] Y. Luo, G. Yang, M. Xu, Z. Qin, and K. Li, �Cooperative lane-change maneuver for
multiple automated vehicles on a highway,� Automotive Innovation, pp. 1�12, 2019.

[6] J. Erdmann, �Lane-changing model in SUMO,� Proceedings of the SUMO2014 modeling
mobility with open data, vol. 24, pp. 77�88, 2014.

[7] Y. Zhou, H. Zhu, M. Guo, and J. Zhou, �Impact of CACC vehicles' cooperative driving
strategy on mixed four-lane highway tra�c �ow,� Physica A: Statistical Mechanics and
its Applications, p. 122721, 2019.

[8] U. P. Mudalige, �Platoon Vehicle Management,� United States Patent 8,352,111 B2,
Jan. 8, 2013.

[9] J. Kuhr, N. R. Juri, C. R. Bhat, J. Archer, J. C. Duthie, E. Varela, M. Zalawadia,
T. Bamonte, A. Mirzaei, H. Zheng, et al., �Travel modeling in an era of connected and
automated transportation systems: An investigation in the Dallas-Fort Worth area.,�
tech. rep., University of Texas at Austin. Data-Supported Transportation Operations
. . . , 2017.

[10] S. Eilers, J. Mårtensson, H. Pettersson, M. Pillado, D. Gallegos, M. Tobar, K. H.
Johansson, X. Ma, T. Friedrichs, S. S. Borojeni, and M. Adolfson, �COMPANION �
towards co-operative platoon management of heavy-duty vehicles,� in 2015 IEEE 18th
International Conference on Intelligent Transportation Systems, pp. 1267�1273, Sept.
2015.

[11] J. Ploeg and R. de Haan, �Cooperative automated driving: From platooning to ma-
neuvering,� Proceedings of the 5th International Conference on Vehicle Technology and
Intelligent Transport Systems, 2019.

79

[12] M. Amoozadeh, Towards Robust and Secure Collaborative Driving and Interactive Traf-
�c Intersections. University of California, Davis, 2018.

[13] H. Schweppe and Y. Roudier, �Security and privacy for in-vehicle networks,� in 2012
IEEE 1st International Workshop on Vehicular Communications, Sensing, and Com-
puting (VCSC), (Seoul, Korea (South)), pp. 12�17, IEEE, June 2012.

[14] M. Khajeh Hosseini, A. Talebpour, and S. Shakkottai, �Privacy risk of connected vehicles
in relation to vehicle tracking when transmitting basic safety message type 1 data,�
Transportation Research Record, p. 0361198119875433, 2019.

[15] Y. Sun, L. Wu, S. Wu, S. Li, T. Zhang, L. Zhang, J. Xu, and Y. Xiong, �Security and
Privacy in the Internet of Vehicles,� in 2015 International Conference on Identi�cation,
Information, and Knowledge in the Internet of Things (IIKI), pp. 116�121, IEEE, 2015.

[16] B. K. Chaurasia, S. Verma, and G. Tomar, �Attacks on anonymity in VANET,� in 2011
International Conference on Computational Intelligence and Communication Networks,
pp. 217�221, IEEE, 2011.

[17] L. Frank, D. Garcia, E. Hurley, A. Kiernan, N. Nahas, R. Walsh, and B. A. Hamilton,
�Security credentials management system (SCMS) design and analysis for the connected
vehicle system: Draft.,� Tech. Rep. FHWA-JPO-, U.S. Department of Transportation,
2013.

[18] A. Fuchs, S. Gürgens, L. Apvrille, and G. Pedroza, �On-board architecture and protocols
veri�cation,� EVITA Project, Tech. Rep. Deliverable D3. 4.3, 2010.

[19] A. Aijaz, B. Bochow, F. Dötzer, A. Festag, M. Gerlach, R. Kroh, and T. Leinmüller,
�Attacks on inter vehicle communication systems-an analysis,� Proc. WIT, pp. 189�194,
2006.

[20] Keen Security Lab, �Experimental Security Assessment of BMW Cars: A Summary
Report,� tech. rep., Keen Security Lab, 2018.

[21] Tencent Keen Security Lab, �Experimental Security Research of Tesla Autopilot,� tech.
rep., Keen Security Lab, Mar. 2019.

[22] M. Cesana, L. Fratta, M. Gerla, E. Giordano, and G. Pau, �C-VeT the UCLA cam-
pus vehicular testbed: Integration of VANET and Mesh networks,� in 2010 European
Wireless Conference (EW), pp. 689�695, IEEE, 2010.

[23] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, and T. Kohno, �Comprehensive Experimental Analyses of Au-
tomotive Attack Surfaces,� in USENIX Security, p. 16, 2011.

[24] C. Miller and C. Valasek, �A Survey of Remote Automotive Attack Surfaces,� tech. rep.,
IOActive, 2014.

80

[25] Y. Park, J. H. Yang, and S. Lim, �Development of complexity index and predictions
of accident risks for mixed autonomous driving levels,� in 2018 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 1181�1188, IEEE, 2018.

[26] W. Zhang and W. Wang, �Learning V2V interactive driving patterns at signalized inter-
sections,� Transportation Research Part C: Emerging Technologies, vol. 108, pp. 151�
166, 2019.

[27] F. Tanshi, K. D. Nobari, J. Wang, and D. Sö�ker, �Design of Conditional Driving
Automation Variables to Improve Takeover Performance,� IFAC-PapersOnLine, vol. 52,
no. 8, pp. 170�175, 2019.

[28] T. Stoll, J. Imbsweiler, B. Deml, and M. Baumann, �Three Years CoInCar: What Co-
operatively Interacting Cars Might Learn from Human Drivers,� IFAC-PapersOnLine,
vol. 52, no. 8, pp. 105�110, 2019.

[29] K. Gao, D. Yan, F. Yang, J. Xie, L. Liu, R. Du, and N. Xiong, �Conditional arti�cial po-
tential �eld-based autonomous vehicle safety control with interference of lane changing
in mixed tra�c scenario,� Sensors, vol. 19, no. 19, p. 4199, 2019.

[30] Z. Wang, X. Zhao, Z. Xu, X. Li, and X. Qu, �Modeling and �eld experiments on lane
changing of an autonomous vehicle in mixed tra�c,� Computer-aided Civil and Infras-
tructure Engineering, 2019.

[31] S. E. Shladover, D. Su, and X.-Y. Lu, �Impacts of cooperative adaptive cruise control
on freeway tra�c �ow,� Transportation Research Record, vol. 2324, no. 1, pp. 63�70,
2012.

[32] F. Navas and V. Milanés, �Mixing V2V-and non-V2V-equipped vehicles in car following,�
Transportation Research Part C: Emerging Technologies, vol. 108, pp. 167�181, 2019.

[33] B. Vieira, R. Severino, E. V. Filho, A. Koubaa, and E. Tovar, �COPADRIVe - a realistic
simulation framework for cooperative autonomous driving applications,� in 2019 IEEE
International Conference on Connected Vehicles and Expo (ICCVE), pp. 1�6, Nov. 2019.

[34] The Coq Development Team, �The Coq Proof Assistant, version 8.11.0,� Jan. 2020.

[35] S. Owre, N. Shankar, and J. Rushby, �Prototype Veri�cation System (PVS).� SRI In-
ternational, 1992.

[36] University of Cambridge and Technische Universität München, �Isabelle,� 1986.

[37] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta, �The nuxmv symbolic model checker,� in CAV (A. Biere and
R. Bloem, eds.), vol. 8559 of Lecture Notes in Computer Science, pp. 334�342, Springer,
2014.

[38] M. Völker, M. Kloock, L. Rabanus, B. Alrifaee, and S. Kowalewski, �Veri�cation of Co-
operative Vehicle Behavior using Temporal Logic,� IFAC-PapersOnLine, vol. 52, no. 8,
pp. 99�104, 2019.

81

[39] G. J. Holzmann, �The model checker SPIN,� IEEE Transactions on software engineer-
ing, vol. 23, no. 5, pp. 279�295, 1997.

[40] K. Havelund and T. Pressburger, �Model checking java programs using java path�nder,�
International Journal on Software Tools for Technology Transfer, vol. 2, no. 4, pp. 366�
381, 2000.

[41] L. Lamport, Specifying systems: the TLA+ language and tools for hardware and software
engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

[42] R. Beers, �Pre-rtl formal veri�cation: An intel experience,� in Proceedings of the
45th Annual Design Automation Conference, DAC â��08, (New York, NY, USA),
p. 806â��811, Association for Computing Machinery, 2008.

[43] D. Jackson, �Software abstractions-logic, language, and analysis, revised edition,� The
MIT Press, 2012.

[44] D. Jackson, �Alloy: a language and tool for exploring software designs,� Communications
of the ACM, vol. 62, no. 9, pp. 66�76, 2019.

[45] P. Zave, �Lightweight Modeling of Network Protocols in Alloy,� ACM CoNEXT, 2010.

[46] A. Svendsen, B. Møller-Pedersen, Ø. Haugen, J. Endresen, and E. Carlson, �Formalizing
train control language: Automating analysis of train stations,� in Comprail, pp. 245�
256, 2010.

[47] B. Alpern and F. B. Schneider, �Recognizing safety and liveness,� Distributed computing,
vol. 2, no. 3, pp. 117�126, 1987.

[48] D. Jackson, �Alloy: A Language and Tool for Exploring Software Designs,� Communi-
cations of the ACM, 2019.

[49] A. Cunha, �Bounded model checking of temporal formulas with Alloy,� in International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, pp. 303�308,
Springer, 2014.

82

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Background
	Cooperative autonomous driving
	Mixed traffic

	Formal methods for verification of design
	Alloy

	Approach
	Alloy signatures, relations, and facts
	Alloy functions
	Alloy predicates
	Driving Policy: Oblivious

	Alloy assertions
	The noCollision property

	Analysis of the Oblivious and Paranoid policies
	Driving Policy: Paranoid
	The noDeadlock assertion

	Analysis of mixed traffic

	Results
	Normal driving policies
	The possibleNextNotEmpty property
	Driving Policy: NormalAvoid
	Driving Policy: NormalAvoidLaneChange
	The noCrossing assertion

	Development of Connected policies
	Driving Policy: ConnectedI
	Driving Policy: ConnectedII
	Driving Policy: ConnectedIII
	The AvoidDiagonalIfNormalAdjacentElseCrossing filter
	The progress assertion
	Driving Policy: ConnectedIV

	Summary of analysis
	Modeling insights

	Discussion
	Future work
	Conclusion

	Appendices
	Physical specification
	Safety properties
	Driving policies
	Analysis of Oblivious and Paranoid driving policies
	Analysis of Normal and Connected driving policies

	Bibliography

