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Abstract   

Driving under the influence is one of the largest risk factors leading to accidents. 

Intoxication manifests in the drinker’s voice. This paper explores deep learning architectures and 

hand extracted features to classify voice samples as either intoxicated of sober. Our method 

classifies intoxicated speech with an unweighted average recall of 59.2%.  
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Chapter 1. Introduction  

In the United States, 30 people die every day from motor-vehicle crashes due to alcohol 

intoxication [1].  This is an unacceptable loss of life that amounts to more than $44 billion of 

annual cost for alcohol-related crashes [3]. Intoxication tests such as breathalyzers for evaluating 

safe motor vehicle driving, heavy equipment operation and machine tool use require active user 

involvement, and must be purchased and carried whenever drinking, which reduces compliance 

[1]. 

  There is a clear need for more reliable, passive ways to detect intoxication. One approach 

is to use passive detection of intoxication from voice which has important applications to high-

risk situations, such as driving and steering and there is limited research available on this specific 

speaker state. 

 

1.1 The Impact of Alcohol Intoxication 

Alcohol is known to affect human behavior and can be dangerous when consumed in large 

amounts [2]. Blood alcohol concentrations between 0.05% and 0.08% are known to impair 

judgment, while higher concentrations may cause nausea, slurred speech, and loss of   

coordination. Blood alcohol concentrations above 0.15% can leave a person unconscious and 

may even result in death. Due to alcohol's effects on human judgment and coordination, driving 

while intoxicated poses a great safety risk to other drivers and passengers on the road [3]. In 

fact, 10,497 people in the United States died in alcohol-impaired driving accidents in 2016, 

accounting for 28% of all driving-related deaths in the United States. Thus, it is important to 

research and develop techniques for passive detection of intoxication to alert drivers of their 

state before they start driving.   

  In addition to affecting coordination, alcohol also affects a person's speech, making it to 

become slower, and increase the number of pauses, stutters, and speech errors [4]. The pitch and 

fundamental frequency of a person's voice may also increase, but this effect is not consistent 

across genders. 
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1.2 Voice Analytics 

One can use voice analytics to investigate the changes in speech patterns of intoxicated 

people in comparison those who are sober to facilitate detection of intoxication from voice. 

Voice analytics is a branch of audio processing research that analyzes spoken conversation and 

audio patterns using machine learning or deep learning models to extract and analyze 

information, including speech speaker state by analyzing patterns in human speech [43].  

Speech analytics is related to voice analytics but instead focuses on analyzing the phonetics 

and focus on the speech content such as syllables and keywords [53]. Voice analytics, however, 

focuses on vocal elements including speed, pitch, tone and emphasis on certain syllables. When 

features are extracted from raw audio signals, they can be compared to known features that 

present emotions, depression or alcohol intoxication. Important advantages of voice analytics 

over speech analytics are it is language agnostic and it can extract mental health and 

psychological state information such as depression, which cannot be extracted from speech 

content unless the speaker specifically states they are depressed [53]. Thus, this MQP focuses 

on voice analytics. 

Challenges: Analyzing audio data presents several challenges including the fact that voice 

samples are affected by gender, age, emotions, room acoustics and proximity to the user affects 

the voice sample [43]. 

There are two main approaches for voice analytics and speech processing: using classic 

machine learning techniques and deep learning models. Machine learning performs 

classification taking hand extracted features as inputs and deep learning performs additional 

feature extraction as well classification. Prior work has used machine learning algorithms such 

as HMM, GMM and SVM and has utilized deep learning models such as CNN and RNN [80], 

[7], [8], [73], [5]. All these techniques are explained in more detail in section 1.4 and section 

1.5. This report focuses on using a CNN model in addition to using hand extracted features for 

improving feature extraction and similar to some previous work uses an RNN-based network for 

classification. [5]. Our method classifies intoxicated speech with an unweighted average recall 

of 59.2%. 

Chapter 2 of this report provides a review of existing literature in intoxication detection and 

chapter 3 provides an overview of our proposed methods and algorithms. In chapter 4, we discuss 
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our experiments and finally our results in chapters 5 and 6. Chapter 7 includes our conclusions 

and future work.   

 

1.3 MQP Problem Statement 

  Majority of previous passive intoxication detection methods from voice use classic machine 

learning approaches or utilize deep learning to classify an audio signal as intoxicated or sober 

[5], [7], [8]. In this project we explore deep learning architectures to perform feature extraction 

in addition to hand extracted features and ultimately improve intoxication detection. 

 

1.4 Machine Learning in Voice Analytics 

 Machine Learning algorithms are able to take complex data and find patterns in the data 

[64]. These algorithms can put the data into different categories and make the data meaningful. 

The algorithms can then make highly educated guesses about inputs that are similar to the 

original data and thus put them into the corresponding category.  

 In order to classify voice, we first extract the acoustic features and utterance 

characteristics of the audio signal [65]. A machine learning algorithm can then categorize the 

data into the two classes of sober and intoxicated and make predictions for similar inputs.  

Three main algorithms used in automatic speech recognition are GMMs, HMMs and 

SVMs [6], [7], [8]. These models are statistical models that try to characterize the properties of 

an audio signal [65].  

  

1.4.1 Hidden Markov Models (HMMs) 

  In the 1970s two students at Carnegie Mellon implemented HMM for speech recognition 

for the first time [66]. Since then HMM has been the foundation of future research in speech 

processing. HMMs have been used for speech recognition and specifically vocabulary detection 

and intoxication detection [79], [80]. HMM is suitable model for time varying spectral 

sequences. HMM is based on a Markov chain, which is a model that utilizes the probabilities of 

transitioning between random variables which are called states [45]. These states correspond to 

the acoustic phonemes in speech processing. 

Figure 1 illustrates an example of a Markov chain. This figure has three states and the 

transition probability of going from the snow state to sunshine is 0.4 or 40%. 
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Figure 1: Markov Chain 

The graph of a Markov chain and the transition probabilities between its states [45] 

 

These transition probabilities can be represented in matrix form. In this case matrix q 

represents the transition probability [45]: 

  

 

 

 

 

In this example the weather can be guessed by measuring the temperature inside the house 

(hot or cold) but in this case the weather outside is unknown [45]. The hot and cold parameters 

observables while the hidden states of snow, rain or sunshine are internal states. 

  

 

 

 

In this case, the HMM can be used to determine the probability that it is cold for two 

consecutive days [45] as: 
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In speech processing, the observables are the acoustic features in each frame and the states 

correspond to the acoustic phonemes. The probability of going to one phoneme to another can 

give us information about a specific emotion or intoxication. HMM takes the acoustic features 

and performs classification on the data which in our case corresponds to sober and intoxicated. 

 

1.4.2 Gaussian Mixture Models (GMMs) 

GMM is another statistical model that was initially proposed for parametrizing the spectrum 

of speech and ever since has been commonly used for speech recognition and processing [67]. 

GMMs are used for speaker dependent speech recognition [69], emotion detection [68] and 

intoxication detection [6], [7]. GMM models the feature distribution of speech [65]. Gaussian 

Mixture Models are probabilistic models that find clusters of data points (subpopulation) in a 

dataset (overall population) that share some common characteristics [44]. These data points 

correspond to the smallest segments of sound called phone in speech processing. Since the 

subpopulation assignment is not known, this model constitutes a form of unsupervised learning 

[44]. Figures 2 and 3 illustrate the clustering process of the GMM model.  

 

 

 



 
 

6 

 

 

 

 

 

 

 

 

A Gaussian Mixture consists of multiple Gaussians. Each Gaussian represents a cluster and 

includes the following parameters: Mean 𝜇 (center), covariance ∑ (width) and mixing 

probability π (the size of the Gaussian function) [44]. Figure 4 illustrates these parameters. 

 

 

 

 

                         

Figure 4: Gussian Parameters 

Graphical representation of each cluster and its parameters [44] 

 

Figure 3: Clustered Data Using GMM  

A GMM model finds 

subpopulations/clusters [44] 

Figure 2: Unclustered Data 

Overall population/dataset [44] 
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1.4.3 Support Vector Machine (SVM) 

SVM is a phenome classifier that has been particularly used for emotion and depression 

detection from voice [70], [71]. Due to their success for classification on acoustic features, 

SVMs have also been widely used for intoxication detection [6], [7], [8]. SVM is a machine 

learning algorithm that finds a hyperplane within an N dimensional space that separately 

classifies the datapoints that share common features (classes) [49]. In this algorithm N refers to 

the number of features. The best hyperplane has the largest distance from the datapoints as that 

represents confidence. This hyperplane classifies the dataset and can be used for two or more 

classes [49]. Figure 5 and 6 illustrate how SVM works and illustrates its hyperplane.  

 

 

 

     

Figure 5: SVM Possible Hyperplanes   

Possible hyperplanes to classify the dataset into classes [49] 

 

 

 

 

 

 

 

Figure 6: SVM Optimal Hyperplane 

Optimal hyperplane that has the 

maximum margin from the classes 
showing confidence in the 

classification [49] 
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1.4.4 Log Mel Spectrogram 

Hand extracted features are characteristics that can be extracted from an audio signal in 

small regions also known as frames or longer segmented regions [44], [45]. These features 

represent the different characteristics of a signal such as its loudness, sharpness and energy. 

Hand extracted features are explained in more detail in section 2.4.  

One of the main types of hand extracted features used in speech processing is log Mel 

spectrogram. The Mel scale is generated by taking the entire frequency of an audio signal and 

dividing it into bins of pitches that sound the same to the human ear [47]. Figure 7 illustrates the 

Mel Scale.  

 

 

Figure 7: Mel Scale 

The Mel scale of a sample audio [47] 

 

A spectrogram is the Fourier Transform of sound, which takes the signal in the time domain 

as its input and returns the decomposition of the signal in frequencies [47]. Log Mel spectrogram 

is the spectrogram of signal in the Mel scale. Figure 8 provides an example of a log Mel 

spectrogram taken from a sound sample. 
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Figure 8: Log Mel Spectrogram 

Spectrogram of a sample audio in the Mel Scale [47] 

 

 

1.5 Deep Learning in Voice Analytics 

Deep learning has had demonstrated success in a variety of other speech processing tasks as 

well including emotion detection, speaker recognition, and audio event detection [12], [13], [10]. 

Deep Learning is an enhanced version of Machine Learning that uses hierarchal neural networks 

that find and amplify even the smallest patterns in the data [64]. While machine learning models 

only perform classification, deep learning models perform additional feature extraction which then 

improves the classification accuracy [5]. These deep models learn high-level features on top of the 

Low-Level Descriptors (LLDs) and frequently outperform standard machine-learning approaches. 

Two of the main algorithms in voice analytics and classification include CNNs and RNNs.  

 

1.5.1 Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is a deep learning algorithm that is utilized for a 

wide range of imaging and computer vision tasks including object recognition, speech detection 

and DNA sequencing [72], [73], [74]. CNNs take images as its input and can also be utilized for 

non-imaging tasks if the inputs can be converted to images. Voice analytics methods often 

convert inputs to spectrograms (an image) that are then analyzed using CNNs. 
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CNNs are able to detect unique features of each image by looking for the low-level features 

of the image such as corners, curves and constructing a more abstract concept through the 

convolutional layers [46]. Each convolutional layer is similar to a feature detector. By 

determining these features, CNN is able to differentiate an image from another one and detect 

the object in the image. In addition to convolutional layers, a CNN has pooling layers which 

decrease the spatial size of the features and extracts the dominant features. CNN has a set of 

fully connected layers that take an input volume an N dimensional vector where the dimensions 

correspond to the classes or categories the image can belong to [46]. This is the final step that 

classifies an image. Figure 9 illustrates the architecture of a CNN. 

 

 

 

 

 

 

 

 

  

Figure 9: CNN Architecture 

The architecture of a convolutional neural network (CNN) [46] 
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1.5.2 Recurrent Neural Network (RNN) 

The Recurrent Neural Network (RNN) is a neural network architecture that remembers the 

past and makes the future decisions based on the knowledge it has, so the output of each step is 

passed to the next step [51]. In each time step, the same function computes the input, but it also 

uses the output of the last time step. As a result, steps are not independent of each and all the steps 

are related. RNNs have this functionality due to its hidden layer which takes the output of the 

previous time step. RNN uses its internal state to remember information and process a sequence 

of data. Consequently, it is useful for speech recognition where in order to predict a word of a 

sentence, it is necessary to remember the previous words of that sentence. 

A bidirectional RNN is basically two regular RNN networks that are combined in opposite 

directions [51]. The input enters the two networks and moves in the forward and backward 

directions. In each step the output of the two layers are combined through various methods. 

Information the from past and future is preserved in two hidden states in each step. Figure 10 

shows the architecture of an RNN. 

 

 

 

 

Figure 10: RNN Architecture 

Representation of a Recurrent Neural Network (RNN) [51] 

 

 

 



 
 

12 

 

 

1.5.3 Long Short-Term Memory (LSTM) 

One issue with many neural nets is that they suffer from a short memory [52]. This implies 

that in cases where a sequence is long, LSTMs are unable to carry all the information from the 

earlier time steps to the later time steps and this can miss some important information. LSTMs 

have gates that allow only the relevant information in the long chain of the sequence for 

classification. These gates are located in cell states that act as the memory of the architecture 

and decide which data to pass along during the training process. It can also forget information 

that is not relevant to the prediction [52]. 

Gated Recurrent Units (GRUs) are an upgraded version of LSTM where the cell state is 

removed and information is transferred in the hidden state [52]. It also has an additional reset 

gate that determines how much of the past information needs to be forgotten and thrown away.  

Bi-LSTMs are bi-directional neural networks meaning that they remember the inputs from 

past to future and future to past and preserve the information from future data as well [52]. 

Figure 11 illustrates the architecture of a Bi-LSTM. 

 

 

 

Figure 11: LSTM Architecture 

The architecture of LSTM [58] 
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1.6 Contribution of this MQP 

To improve upon previous work which uses classic machine learning techniques and only 

learns from hand-extracted features, we implemented a deep learning architecture for high level 

feature extraction and classification. The work in this MQP makes the following contributions:  

1. This project explores a CNN-based architecture for intoxication detection from 

voice using log Mel spectrograms as input. We experiment with the VGGish and 

ResNext50 architectures for feature extraction and use different combinations of 

dense layers and pooling techniques for classification. VGGish and ResNext50 

are CNN-based architectures that are explained in more detail in Section 3 along 

with the different attention and pooling layers.  

2. We also experiment with using VGGish pre-trained on Google AudioSet data as 

a feature extractor with global and attention-based pooling for classification. 

These CNN-based architectures require little feature engineering compared to 

previous methods and are easy to train on different domains and datasets.  

3. To help counteract the sober and intoxicated class imbalance in our dataset, we 

also experiment with different data augmentation techniques that previous 

methods have not explored, including adding noise, shifting pitch, and stretching 

the audio.  

4. Our results indicate that the ResNext50 network was able to successfully adapt 

to our data. We hypothesized that with further hyperparameter tuning and dataset 

adaption, the model could produce competitive results for intoxication detection 

on the ALC dataset. We mainly use unweighted average recall (UAR) as our 

metric of evaluation. Recall is the Number of correctly classified positive 

examples divided by the total number of positive examples. UAR is the mean of 

recall values for all the classes.  

5. On our data, the model achieves an unweighted average recall (UAR) of 59.2%. 

Our work lays important groundwork for future research into CNN-based 

architectures for intoxication detection. With future experimentation and 

adaption to the ALC dataset, the CNN architecture can be used to classify 

intoxicated speech with a higher UAR. 
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Chapter 2. Literature Review 

 

2.1 INTERSPEECH 2011 Challenge:  Intoxication Detection Sub-challenge 

Previous work into intoxication detection were primarily entries to the 2011 

INTERSPEECH Challenge. The Challenge focused on intoxication detection and sleepiness 

detection from voice data, two speaker states that were less researched at the time. Passive 

sleepiness and intoxication detection from voice data have applications in the security and 

medical domains, especially in situations such as driving, steering, and controlling [37]. The 

Intoxication Detection sub-task of the Challenge was a supervised binary classification task 

using the Alcohol Language Corpus (ALC) Dataset, which is described in the next section. 

 

2.2 Alcohol Language Corpus (ALC) Dataset 

We use the Alcohol Language Corpus (ALC) from the Bavarian Archive for Speech Signals 

for binary classification of sober and intoxicated speech. ALC dataset used in the 

INTERSPEECH Intoxication Detection Challenge consists of sober and intoxicated German 

speech recordings of 162 males and females in an automotive environment. Unlike previous 

work in alcoholized speech, which has been primarily composed o 

n male subjects in a lab setting with estimated speaker blood alcohol concentrations, the 

recorded speech in the ALC dataset features a variety of prompt styles and speakers of different 

genders, ages, and speaking styles. The dataset also includes metadata about each speaker as 

well as metadata about each recording, including blood alcohol concentration (BAC) of the 

recorded speaker and the environment of the recording.  

Each speaker is recorded in a sober state and in an intoxicated state with BAC between 

0.030% and 0.175% g/dL. The prompt sets for the sober and alcoholized tests contain read 

speech, such as tongue twisters and spellings, and spontaneous speech, including free response 

and command speech. All recordings are between 0.5s and 60s. There are 60 prompts in the 

sober test and 30 prompts in the alcoholized test, resulting in an unbalanced dataset in which 

only 1/3 of all recordings consist of intoxicated speech [41]. All audio samples were recorded 

in an automotive environment, at a sampling rate of 44.1 kHz. This sampling rate was kept 

constant for our experiments. 
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In our experiments, speakers with BAC of less than 0.08% are labeled as Sober and speakers 

with BAC 0.08% and above are labeled as Intoxicated. The following section outlines the 

techniques we use for data pre-processing and augmentation, as well as the model architectures 

we use in our experiments. Table 1 shows the different categories the data was gathered from.  

 

2.2.1 Data Collection Procedures 

Digit strings refer to credit card, phone and license plate numbers. Tongue Twisters were 

testing for articulation errors. Read commands were from the voice control application of a car. 

Address refers to home addresses that are more complicated to either pronounce or are long. The 

picture description dialogue was 60 seconds and speakers do not have to be talking for the entire 

60 seconds hence pauses were taken into account. Spontaneous command was from the same 

car application used for read command. 

 

 

In the Intoxication Detection sub-task of the Challenge, speech recordings were labeled 

according to the Blood Alcohol Content (BAC) of the speaker, and they had to be classified as 

either alcoholized for BAC exceeding 0.5 per mill or sober for BAC equal to or below 0.5 per 

millilitres. The challenge contestants were given training and test sets and reported model 

performance using Unweighted Average Recall (UAR) [37]. 

 

Table 1 

ALC Data Collection: ALC recording types and their respective numbers in set A and N [41] 
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2.3 Data Balancing 

Many real-world datasets are unbalanced and may not have an equal number of instances 

of each class. This is common issue in machine learning because class imbalance negatively 

affects model performance as it causes models to learn the class distribution without properly 

classifying the data itself. Applying data balancing data augmentation techniques to training 

data improves model performance significantly, for both machine learning and deep learning 

models [15] [16]. Fukuda et al. [17] define data augmentation as artificially creating additional 

training samples to increase the diversity in training data. In Tang et al. [15], re-sampling 

techniques with and without replacement are used for data balancing and data augmentation is 

performed by changing the speed ratio of the raw audio. In Biadsy et al. [16], they maintain a 

balanced representation of all classes in train, validation, and test sets by performing stratified 

random sampling. Data augmentation using various signal and data processing techniques 

avoids model overfitting and improves the robustness of the model. Fukuda et al. [17] propose 

voice transformation (modification of glottal source and vocal tract parameters), noise addition, 

and speed modification as techniques for data augmentation that helps in recognition of foreign 

accented speech.  

The Alcohol Language Corpus (ALC) dataset is unbalanced, with about 80% of samples 

labeled as sober and 20% labeled as intoxicated. To help model learning, we apply different 

audio augmentation techniques which are explained in Section 4.2. 

 

 

2.4 Low-Level Descriptors (LLD) 

Interspeech’s official audio feature set consisted of 4368 Low-Level Descriptors (LLDs) 

extracted using openSMILE and known to be useful for intoxication detection [72]. Low-Level 

Descriptors are features that can be extracted from an audio signal in small regions also known 

as frames or longer segmented regions.  OpenSMILE is a library that performs automatic feature 

extraction from audio signals for music and speech machine learning classification [72]. It is 

widely used in the area of emotion detection and its features can be used for intoxication 

detection. Contestants could also extract additional low-level and hierarchical features for audio 

classification. Hierarchical features can be extracted through learning in different layers of a 

deep learning model. 
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Low-Level Descriptors fall into a number of categories. Four main categories of audio 

descriptors include temporal, spectral, cepstral and perceptual [54], [55].  

1. Temporal audio descriptors: are features related to time or features that can be 

extracted from a signal over a time interval.  

2. Spectral audio descriptors: are features related to the shape and structure of the 

audio signal such as the amplitude of a sinusoidal.  

3. Cepstral audio descriptors: are features related to the cepstrum analysis of a signal 

which is a nonlinear signal processing technique used for speech and speaker 

recognition. Cepstrum is the inverse Fourier transforms (IFT) of a log of a signal 

spectrum which extracts components such as excitation and vocal tract system from 

a signal [54] [55]. Figure 12 is a simple representation of cepstrum.  

 

 

 

 

Figure 12: Cepstrum 

The steps of calculating the ceptrum which is the inverse Fourier transform of log of a signal [56]. 
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Finally, Perceptual audio descriptors are features related to the texture of the sound such as 

loudness and sharpness. Table 2 represents some of the common Low-Level Descriptors [48]. 

 

  

Low-Level 

Descriptor 

Type 

Low-Level Descriptor Description 

Temporal 

Energy envelope 

descriptor 

Root mean square of the mean energy of an audio signal 

used for silence detection 

Zero crossing rate 

descriptor 

The number of times the signal amplitude experiences a 

change of sign which is useful for differentiating music 

from speech 

Autocorrelation 

coefficient descriptor 

The spectral distribution of an audio signal over time. 

Autocorrelation compares a signal to itself with lag time. 

This descriptor can be used to differentiate different 

musical instruments 

Spectral 

Spectral moments 

descriptor 

Features of the spectral shape such as spectral flatness, 

symmetry, width and centroid. This descriptor can be 

used to determine sound brightness and mood 

Formant descriptor 
The peaks of the sound spectrum of voice in a signal. This 

descriptor is useful for vowel and phoneme detection. 

Cepstral 

mel-frequency cepstral 

coefficient (MFCC) 

descriptor 

The inverse discrete cosine transform of the energy of an 

audio signal in the Mel-scale frequency bands. This 

descriptor is useful for  

Perceptual 

loudness descriptor The intensity of the sound  

Sharpness descriptor 
Weighted centroid of specific loudness or the spectral 

centroid 

Table 2 

Low-Level Descriptors 
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Our work uses the ALC dataset used in the Intoxication Detection sub-challenge for 

supervised binary classification of speech segments as either sober or intoxicated. We use the 

ALC dataset to create our own splits for train, validation, and test sets and log Mel spectrogram 

features as input. We use UAR to evaluate our models to maintain uniformity in comparing 

results obtained from the original challenge. 

 

2.5 Machine Learning Architectures for Audio Intoxication Detection 

The machine learning architectures presented at the INTERSPEECH 2011 Challenge 

provide a solid baseline for audio classification on the ALC dataset. These models are typically 

composed of Hidden Markov Models (HMMs) or Gaussian Mixture Models (GMMs) that 

learned on low-level descriptors (LLDs) hand-extracted from speech in the Alcohol Language 

Corpus (ALC). After speech is analyzed using HMMs or GMMs, it is classified as either sober 

or intoxicated with Support Vector Machines (SVMs) or Gaussian-based classifiers [37]. The 

work is guided by previous studies that indicate low-level acoustic and prosodic features, such 

as fundamental frequency and rhythm, are affected by alcoholic intoxication [2]. Table 3 outlines 

the architectures, feature types, and performance results for previous work on the ALC dataset. 
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2.5.1 WEKA 

The baseline architecture in the Challenge used the WEKA data mining toolkit [75] for 

classification. WEKA is an open source software that is used for predictive models and data 

mining. WEKA has tools and algorithms implemented for pre-processing data, machine learning 

tools for classification and regression, clustering and multiple visualization tools. 

 

2.5.2 SMOTE 

Synthetic Minority Oversampling Technique (SMOTE) was also used to balance the dataset 

in [8]. This approach is used when the classes have an unequal amount of data or specifically 

when the minority class needs to be balanced with the other classes. SMOTE picks a random 

example from the minority group and then a k number of the nearest neighbors are found. One 

of these neighbors are chosen randomly and a new example is synthesized at a point between 

the original point and the chosen neighbor [50].  

Model Description Features Used 
Accuracy 

(%) 

UAR  

(%) 

SVM classifier with linear kernel 

(baseline model) [8] 
openSMILE LLDs   65.9  66.4 

3 GMMs fused together using a 

linear SVM for classification and 

additional speaker normalization 

techniques [6] 

• openSMILE LLDs 

• Praat contour features 

• hierarchical features 

   70.47    70.54 

GMM-supervectors with linear 

SVM for classification [7] 

• openSMILE LLDs 

• prosodic 

• text-based 

   68.6    68.5 

bidirectional RNN with GRUs [5] 

FBANK (sub-signals 

corresponding to smaller 

regions of a signal 

spectrum) 

   75.9    69.2 

Table 3 

Previous work on the ALC dataset 
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2.5.3 INTERSPEECH Approaches 

The baseline model chose a Support Vector Machines (SVM) with linear Kernel and the 

WEKA toolkit for classification [8]. The baseline model used the features IS2009EC, IS2010PC, 

and ISSSC2011 feature sets that were the official sets of the Emotion, Paralinguistic, and 

Speaker State challenges. These features were extracted by the openSMILE library. The baseline 

model achieved a UAR of 66.4% on the test set. 

The winning submission, presented by Bone et al. [6] used a fusion architecture consisting 

of 3 GMMs and two feature extractors, one for extracting eight additional acoustic features using 

Praat and another for calculating hierarchical features, such as mean and standard deviation of 

the low-level features. The various prosodic and spectral features are fused and classified with 

a linear SVM, producing a UAR of 70.5% on the test set. Prosodic features include intonation 

(pitch), stress (loudness) and rhythm 

Praat is a software that can be used for speech analysis, synthesis and manipulation. Praat 

can calculate the change of F0 (fundamental frequency) contours over time (specifically in each 

utterance for speech analysis). F0 is the frequency of vibration for the same phenomenon pitch 

[57]. This report also uses speaker normalization techniques in their model. Different speakers 

can have acoustic variations for phonologically identical utterances. Speaker normalization can 

help make the model robust to acoustic variations for the same words or phenomes. 

Another approach by Bocklet et al. [7] uses score-level fusion to combine the classification 

outputs based on phonetic and word-level disfluency features, such as false starts, pauses, and 

unintelligible words, in addition to classification based on spectral and prosodic features. They 

achieved a UAR of 68.8% on the test set. Other approaches experimented with various feature 

extraction and audio normalization techniques, achieving UAR around 67%. 

Although the models presented at the INTERSPEECH Challenge provide a strong baseline 

for audio classification, they often require complex feature engineering and speaker 

normalization techniques [6] to account for variability in speakers and environments. Thus, we 

decided to use current deep learning approaches for audio classification, which are outlined in 

the following sub-section. These architectures require little feature engineering and are robust 

to different speaker styles and acoustic environments. 

 

  



 
 

22 

 

2.6 Deep Learning in Audio Classification 

 

2.6.1 RNN Networks for Speech Processing 

Berninger et. al [5] lay the foundation of using a deep neural network for the speaker 

intoxication detection task on the ALC dataset. They use a bi-directional Recurrent Neural 

Network (Bi-RNN) with 2 Gated Recurrent Unit (GRU) layers and Gaussian dropout layer for 

the binary intoxication detection task. The Bi-RNN model has a forward GRU layer and a 

backward GRU layer to capture dependencies in the speech signal in both the forward and 

backwards directions while avoiding the vanishing gradient problem. The CMU Sphinx toolkit 

is a software that utilizes state-of-the-art algorithms for speech recognition and acoustic model 

training. [5] use the CMU Sphinx speech recognition toolkit with 40-dimensional filter bank 

(FBANK) features from speech segments in the ALC dataset. The spectrogram representations 

of the audio signals are input to the network. The model achieves an accuracy of 71.30% and 

UAR of 71.03%, outperforming the winning submission of the 2011 Challenge with minimal 

feature engineering. 

Han et al. [11] show that Deep Neural Networks (DNNs) paired with an Extreme Learning 

Machine (ELM) outperforms standard HMM-SVM approaches for emotion classification. 

ELMs are feed forward neural networks that have one or more hidden layers in which the 

parameters do not need to be tuned. They use two DNNs to learn high-level short-term audio 

features at the segment-level and utterance-level before using an ELM for classifying the 

emotion of the utterance. Recurrent Neural Networks, especially LSTM and GRU cells, have 

been effective for capturing long-term context of audio segments and are robust to different 

speaker styles [12], [14]. To capture long-term dependencies in the speech signal, Lee et al.  [12] 

use a bi-directional Long Short-Term Memory (bi-LSTM) model with an ELM, achieving a 12% 

absolute improvement in UA over the DNN-based model for emotion classification. Pooling the 

output of bi-LSTM layers using local attention further improves emotion recognition on the 

same corpus [13]. The attention mechanism allows the model of Mirsamadi et al. [13] to ignore 

frames which do not contain emotionally salient information. 
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2.6.2 CNN Networks for Speech Processing 

Other deep learning techniques for speech processing use Convolutional Neural Networks 

(CNNs) in the classification pipeline. Deep CNN models are robust to different audio 

environments and speaker styles [21]. They require little feature engineering and learn high-

level feature representations as they train [10], [14].  

Hershey et al. [10] show that CNN architectures such as AlexNet, VGG, Inception, and 

ResNet, which are typically used for image classification, are also effective for large-scale 

acoustic signal processing on the Youtube-8M dataset. This dataset contains about 8 million 

videos with 500K hours of annotated content and a vocabulary of 4800 visual entities. Each 

video has at least 1000 views and is between 120 and 500 seconds [59]. The VGGish model was 

successfully used as a feature extractor in a CNN-DNN pipeline [42] for audio classification on 

the Google AudioSet dataset [40]. The Google AudioSet consists of 2,084,320 human-labeled 

10-second sound clips drawn from YouTube videos that are classified into 632 audio event 

categories/classes. The labeling of the segments is based on context such as links, metadata and 

content analysis [60]. CNNs have also been used for health-related speech processing tasks.  

Wu et al. [9] use a Convolutional Neural Network (CNN) to detect pathological voice 

disorders on the Saarbrucken dataset. This dataset is a collection of 2000 German voice 

recordings. They compute spectrogram representations of normal and pathological speech in the 

dataset and input these representations into a CNN pre-trained with a Convolutional Deep Belief 

Network (CDBN). The CNN comprises of 10 convolutional and max-pooling layers followed 

by a Dense layer for classification. The CNN-based model performs with 71% accuracy on the 

test set and achieves an F1 score of 72%. The F1 score is explained more in section 4.4. 

Moreover, CNNs can be used to successfully classify audio end-to-end from raw data, requiring 

no additional feature extraction techniques [14]. 

Previous machine learning techniques for intoxication detection rely on a set of hand-

extracted Low-Level audio Descriptors (LLDs) to learn and require careful model adaptation 

and tuning to account for speaker variability. CNNs have performed well in audio classification 

tasks and are robust to different speaker styles and acoustic environments [36]. Moreover, they 

are easy to train and perform well on weakly-labeled datasets [42] and several CNN-based pre-

trained neural network architectures exist for transfer learning. Given the imbalanced classes in 
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the Alcohol Language Corpus (ALC) and the variability in speaker gender and style in the 

corpus, we focused our research on CNN-based architectures for intoxication detection. 
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Chapter 3. Proposed Intoxication Detection 

Architecture 

Previous techniques for intoxication detection relied on classifying hand-extracted Low-

Level audio Descriptors (LLDs) and did not experiment with using CNNs in the audio 

classification pipeline. This work presents a CNN-based architecture with different pooling 

techniques for supervised binary classification of sober and alcoholized speech. We trained the 

VGGish and ResNeXt50 CNNs on the ALC dataset and applied global average pooling for 

classification. These CNNs, typically used for image classification, perform well for large-scale 

audio classification [10]. We also experiment with a VGGish model pre-trained for audio 

classification on the Google AudioSet dataset [40] and five different pooling techniques for 

classification [42]. Although the model is pre-trained on out-of-domain data, it performs well 

on audio classification in a weakly-labeled, unbalanced dataset [42] without overfitting. The 

architecture is promising for classifying speech audio in the ALC dataset, which is also 

unbalanced. To help prevent model overfitting, we employ different data augmentation 

techniques that previous pipelines have not explored. 

We use a deep Convolutional Neural Network architecture for classifying sober vs. 

intoxicated speech. We explored two different CNN architectures for audio classification, 

namely VGGish and ResNeXt50, that use pooling and fully-connected (dense) layers for audio 

classification using log Mel spectrograms as input. Log Mel spectrograms have been used in a 

variety of deep speech classification models [5], [10], and they give an acoustic time-frequency 

representation of the spectral information in audio. Mel filter banks are applied to the power 

spectrum of audio to mimic the scaling of frequencies in the cochlea [30]. An overview of our 

system architecture is shown in Figure 13. Figures 14 and 15 illustrate the architectures of 

VGGish and ResNeXt50 models, respectively. 
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Figure 13: Proposed Architecture 

Log Mel Spectrogram features are extracted for each audio segment in the ALC data. These features 

are input into either VGGish or ResNeXt50 and passed through dense and pooling layers for 

classification. Each audio segment is classified as either Sober or Intoxicated. 

 

For each model, we experimented with different combinations of dense and pooling layers 

for classification. In section 5, we refer to these model-specific pooling experiments as 

VGG_pool and ResNeXt50_pool, for the VGGish and ResNeXt50 networks, respectively.  The 

following sections describe the VGGish and ResNeXt50 models in more detail, as well as the 

model-specific classification strategies we experimented with. 

 

3.1 VGGish Model 

The VGGish model [10] is a variant of the VGG [39] architecture. It has four groups of 

alternating convolutional and max pooling layers. Small, 3x3 filters are applied in each 

convolutional layer. The blocks of convolutional layers are followed by three Dense (fully-

connected) layers followed by a softmax layer for classification. Figure 14 illustrates the VGGish 

architecture. 

VGGish-specific classification involves inputting the output of VGGish through dense 

layers without pooling. The output of VGGish is fed through 2 fully-connected layers with ReLU 

activation and a final fully-connected softmax layer for classification. 
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Figure 14: VGGish Architecture 

The input to the VGGish model is a log Mel spectrogram representation of an audio segment. The 

VGGish model has four alternating convolutional and pooling layers which capture high-level 

temporal information of the audio signal. The VGGish-specific classification mechanism uses 3 Dense 

layers: the first two layers use ReLU activation, and the last layer uses softmax activation for final 

classification. Input audio is classified as either sober or intoxicated. 

 

3.2 ResNeXt50 Model 

The ResNeXt50 model [38] consists of stacked blocks of aggregated transformations. The 

architecture combines two different strategies: repeating layers of the same shape and a split-

transform-merge technique. The technique of repeating layers is similar to the VGGish model. 

Split-transform-merge refers to dividing the input into low-dimensional embeddings, applying 

small-scale filters to each embedding, and combining all transformation outputs using 

summation or concatenation. 

To prevent overfitting, we added 3 Dropout layers that alternate with a global average 

pooling layer and two dense layers: one with ReLU and another with sigmoid activation. Figure 

15 illustrates a block of the architecture of the ResNeXt50 model, followed by the pooling and 

dense layers we employed for the ResNeXt50 network. 
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Figure 15: ResNeXt50 Architecture 

The diagram on the left outlines the full stacked-block architecture of the ResNeXt50 model with the 

model-specific layers used for classification. The diagram on the right depicts the typical structure of a 

block within the ResNeXt50 model, highlighting the split-transform-merge technique each block 

employs. Each block has 1...N transformations that are concatenated. 

3.3 Pooling Layers 

The following sub-section describes the maximum pooling, average pooling, and attention-

based pooling we experiment with. 

 

3.3.1 Maximum Pooling 

Maximum pooling functions such as the global max pooling layer in a Convolutional Neural 

Network (CNN) consists of a single Dense layer with sigmoid activation. The maximum 

prediction is used for classification. 
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3.3.2 Average Pooling 

Average pooling is similar to maximum pooling, except a segment is classified based on the 

average of individual classification predictions. 

 

3.3.3 Attention-based Pooling 

Attention-based pooling, weights are computed over the input sequence and the final 

classification prediction of the instance is based on a weighted sum over the sequence [42]. 

Mirsamadi et al. [13] effectively used a similar local attention-based pooling strategy to compute 

a weighted average over RNN outputs. We experiment with single-level attention, multi-level 

attention, and feature-level attention pooling. 

 

3.3.4 Single-level Attention Pooling 

In the single-level attention pooling technique, a single attention mechanism computes 

weights over the input audio sequences. The single-level attention mechanism consists of 2 

Dense layers. The first layer uses a sigmoid activation function, while the second applies a 

softmax activation function over the output of the first layer to compute attention weights. 

 

3.3.5 Multi-level Attention 

Multi-level attention technique consists of two attention-pooling layers and concatenates 

their outputs and applies a sigmoid activation function to compute attention weights [42]. 

 

3.3.6 Feature-level Attention 

Finally, the feature-level attention technique consists of three dense, fully-convolutional 

layers employing different activation functions, namely linear, sigmoid, and ReLU. The feature-

level attention mechanism also uses Dropout to prevent overfitting [31]. 

 

3.3.7 Decision Pooling 

For both CNN networks, we experimented with using a decision-pooling strategy which 

consists of 3 Dense layers followed by one of five decision pooling techniques [42] for binary 
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classification. In Section 4, we refer to the pooling technique of these experiments as Decision 

Pooling. An overview of the decision pooling technique is shown in Figure 16. 

 

 

 

 

Figure 16: CNN + Pooling Layer 

The diagram above illustrates the decision pooling and classification technique we experimented with 

[42]. The audio features extracted from a CNN feature extractor, either VGGish or ResNeXt50, are 

reshaped to have a shape of (10,128), or (16,128), respectively. The audio features are fed batch-wise 

into 3 fully-connected layers with ReLU activation. The outputs of the dense layers are pooled by either 

maximum pooling, average pooling, or attention-based pooling, before the audio segment is classified 

as either sober (1) or intoxicated (0). [42] 

 

We use the VGGish model shown in Figure 14 or the ResNeXt50 model shown in Figure 

15 to extract high-level bottleneck embeddings from the log Mel spectrogram representation of 

audio. The audio clips in the Alcohol Language Corpus range from 5 seconds to 60 seconds in 

length, resulting in variable-length output feature shapes. To account for variability in clip length 

and resulting feature set shape, we reshape each feature set output from VGGish to a shape of 

(10,128), zero-padding shorter clips and clipping longer segments to keep a constant shape of 

(10,128), and reshape each feature set output from ResNeXt50 to a shape of (16,128) using 

Reshape layer. 
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After post-processing the extracted features into equal-length, 128-dimensional feature 

vectors, the features are input into 3 Dense layers followed by a pooling mechanism to classify 

the input audio segment as either Sober or Intoxicated. The 3 fully connected-layers compute 

high-level embeddings from the features output from either VGGish or ResNeXt50. Pooling 

reduces the feature map of embeddings while retaining information of an activation of features 

[31]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

32 

 

Chapter 4. Experiments 

 

4.1 Hardware and Software 

Our experiments focused on how different data balancing techniques and pooling layers 

affect classification performance on the ALC dataset. Experimental setup is outlined as follows: 

• All models are implemented in Keras 2.2.4 [32], Tensorflow-GPU 1.12.0 [32], and 

Python 3.6 [76]. 

• Feature preprocessing and data augmentation techniques are implemented using NumPy 

1.16.1 libROSA 0.6.3 [29]. 

• Models are trained on NVIDIA Tesla V100 GPUs provided by the Worcester 

Polytechnic Institute (WPI) Academic Research Computing (ARC) Turing cluster [34]. 

 

4.2 Data Augmentation 

Using the NumPy 1.16.1 [77] and the libROSA 0.6.3 [29] Python libraries, we implemented 

five data augmentation techniques to the training and validation data to increase robustness and 

balance the data. These techniques include adding noise, shifting the pitch, time-stretching audio 

samples, feature normalization, feature centering, horizontal flip and zoom. 

The techniques applied to the dataset are explained in Table 4. These augmentation 

techniques attempt to make the model more robust to noisy data while increasing the number of 

intoxicated samples in the dataset. Noise, shift and stretch gave us the better results compared 

to the other augmentation methods. 
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Augmentation 

Technique 
Description 

Noise Vector of random noise added to audio sample [78] 

Shift Audio samples are shifted forward by one time step [78] 

Stretch (speed) 
Time-stretch an audio sample by speeding it up or slowing it 

down at a fixed rate using libROSA [29] 

Feature 

Centering 

Subtracting the mean of the specific feature/variable from all the 

data instances to remove bias and have the mean set to zero 

Feature 

Normalization 
Scaling the features to be in the range of 0 and 1 

Horizontal Flip Reversing the columns of random images in the dataset [63] 

Zoom 
Zooming in random images in the dataset. Keras either adds new 

pixel values around the image or interpolates the image [63] 

Table 4 

Data augmentation Techniques 
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Figures 17 shows the noise, shift and stretch augmentation techniques. The first graph 

represents the original data before augmentation. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Augmentation Techniques 

The first graph shows the original data, second graph shows added noise, third graph 
represents the data shifted backwards by 0.125 seconds, and third graph shows the audio 

at a slower speed (stretched out) [78] 
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4.3 Pilot Experiments: Hand Extracted Features 

 

4.3.1 One Dimensional Features 

We first extracted one dimensional features: MFCC, Chroma and Prosodic.  

• MFCC: has been historically useful for speech analysis tasks [35]. MFCCs are short-

term spectral features extracted from audio frames in overlapping Hamming windows. 

Cepstral features are extracted from each frame, and the Discrete Fourier Transform 

(DFT) is taken over each frame. After binning spectral information according to the Mel 

scale, a transform is applied to the information to de-correlate it and produces MFCCs. 

• Chroma: features [26] model pitches that the human ear perceives. Pitch is separated 

into tone height and chroma, where tone height indicates how high or low a pitch is and 

chroma indicates the note of the pitch. There are 12 chroma values. Chroma features 

group together all spectral information of a particular chroma value in an audio segment. 

The Chroma representation of an audio segment can be computed from the log-frequency 

spectrogram of the audio. 

• Prosodic: features are those relating to different acoustic qualities of speech, including 

tone, pitch, stress, fundamental frequency, and rhythm and are calculated over an entire 

speech segment [7]. They are useful for capturing differences between speech styles and 

languages. 

 

4.3.2 Two Dimensional Features 

The second approach was to extract two dimensional features: Scalogram and Log Mel 

Spectrogram. Log Mel Spectrogram has already been defined in section 1.4.4. Scalogram is 

computed by applying independent wavelet filters at different time scales of the audio to extract 

multiscale features. Capturing the features at different time scales makes scalograms stable to 

time-warping and thus more robust to noise. Using scalograms with CNNs has been effective 

for acoustic scene classification and outperformed the traditional approach in [27]. A summary 

of the hand extracted features is presented in Table 5.  
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Table 5  

Pilot Experiments: Audio Features 

4.4 Evaluation Metric 

We evaluated our models’ performance using the same official metrics of the 

INTERSPEECH 2011 Challenge, namely Unweighted Accuracy (UA) and Unweighted 

Average Recall (UAR) [37]. TP, FP, TN, and FN represent the raw count of class-specific True 

Positives, False Positives, True Negatives, and False Negatives identified by the model. Table 6 

provides the formula for each reported metric. 

 

 

 

 

 

 

 

 

Feature 

Type 

Feature 

Extraction 

Technique 

Description 

One 

Dimensional 

MFCC 
Mel-binned cepstral coefficients giving spectral audio 

information [7] 

Prosodic 
Features relating to tone, stress, fundamental frequency of 

speech [7] 

Chroma Model the 12 pitches perceived by the human ear [26] 

Two 

Dimensional 

Scalogram 

Combination of wavelet filters applied at different time 

scales of audio, giving a multi-level representation of audio 

[27] 

Log Mel 

Spectrogram 
Fourier Transform of signal in the Mel scale. 

TP = True Positive FP = False Positive 

TN = True Negative FN = False Negative 
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4.5 Pilot Experiments: Architecture 

We experimented with three architectures: RNN-based architecture, combination of the two 

CNN and RNN architectures and CNN-based architecture.   

 

4.5.1 Attention Layer 

Attention mechanisms have been effective for speech classification architectures [22], [42], 

[13]. The attention mechanism consists of a feedforward layer which computes a vector of 

weights over the input audio sequence at a given time step. It uses information from the RNN 

hidden state of the previous time step to compute weights over the input. The weights indicate 

which parts of the input the model should focus on at a given time step [62]. The attention 

mechanism is especially useful when training on noisy sequences, because it guides the model 

to pay more attention to relevant parts of the input audio sequences [23]. We experiment with 

computing attention weights over the audio features output from VGGish before inputting them 

Evaluation Metric Formula/Description 

Unweighted accuracy (UA) 
𝑇𝑃 + 𝐹𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=  

𝑇𝑃

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=  

𝑇𝑃

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

F1 Score 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Unweighted Average Recall (UAR) 

Mean of each class-specific recall scoreEg.  

Three classes have the recall values: R1, R2, R3  

UAR = mean (R1 , R2 , R3) 

Table 6 

Evaluation metrics used to assess model performance 
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to a bi-directional RNN, and we also experiment with computing attention over the outputs of 

the forward and backward LSTM layers before pooling them for classification.   

 

 

4.5.2 RNN-Based Architecture 

In this architecture, we combined a BiLSTM network with attention layer and different 

pooling layers. We also used different augmentation methods on the input data mentioned in 

section 4.2. Table 7 represents the different experiments and their accuracy.  

 

 

 

 

 

Augmentation 

Method 

Feature 

Extraction 

Technique 

Architecture UAR 

Noise Prosodic 
BiLSTM + attention layer + 

feature_level_attention_pooling 
0.501 

Shift Chroma 
BiLSTM + attention layer + 

decision_level_max_pooling 
0.499 

Shift MFCC 
BiLSTM + attention layer + 

decision_level_max_pooling 
0.502 

Shift MFCC 
multiBiLSTM + attention layer + 

decision_level_single_attention_pooling 
0.500 

Shift MFCC 
Attention layer + multiBiLSTM +  

feature_level_attention_pooling 
0.493 

Stretch 
Mixture 

Features 

BiLSTM + attention layer +  

decision_level_max_pooling 
0.500 

Table 7 

Pilot Experiments: RNN-based architecture 
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As shown in table 7, shift augmentation method, MFCC features and the BiLSTM 

architecture combined with attention layer and decision level max pooling gives the best UAR 

of 0.502. Figure 18 represents RNN-based architecture. 

 

 

 

Figure 18: RNN-Based Intoxication Detection Architecture 

RNN-based Architecture 

4.5.3 CNN + RNN 

In this architecture, instead of using hand extracted features only, we used CNN as an 

additional feature extractor for high-level descriptors and RNN for classification of the sober or 

intoxicated. For feature extraction we used fully connected layers (VGGish network) and 

different pooling layers. We used log Mel spectrogram features as input to the VGGish network 

as it performed better than scalogram. 

After post-processing the output of VGGish features into equal-length, 128-dimensional 

feature vectors, the features are fed into a bi-LSTM model with attention and pooling layers. 

From the experiments in section 4.3.2 we concluded that BiLSTM + attention layer + 

decision_level_max_pooling gives the best results, so we use this architecture for classification 

in the CNN+RNN experiments. We call this combination BiLSTM_ATT. Bi-directional Long 

Short Term Memory cells (bi-LSTMs) are used in speech classification tasks to learn high-level 

representations of acoustic features [5], [14]. The forward and backward layers allow the model 

to learn long-term context on top of the local acoustic information capture by a CNN [61]. Table 

8 represents the best results of pilot experiments for CNN+RNN. 
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Table 8 shows that applying the noise augmentation method on the data and passing hand 

extracted log Mel spectrogram to the VGGish network combined with the 

feature_level_attention_pooling layer and then passing the output of the feature extraction 

network to the RNN network gives us the best result. Figure 19 represents the discussed 

architecture. 

 

 

 

 

 

 

 

 

 

 

 

Augmentation 

Method + 

Hand Extracted 

Feature 

Feature Extraction Network 
Classification 

Network 
UAR 

Noise +  

Log Mel 

Spectrogram 

VGGish +  

feature_level_attention_pooling 
BiLSTM_ATT 0.557 

Shift +  

Log Mel Spectrogram 

VGGish +  

decision_level_single_attention_pooling 
BiLSTM_ATT 0.522 

Stretch +  

Log Mel Spectrogram 

VGGish +  

decision_level_average_pooling 
BiLSTM_ATT 0.534 

Table 8 

Pilot Experiments: CNN (feature extraction) + RNN (classification: Sober or Intoxicated) 
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4.5.4 CNN-based architecture 

Our third architecture used log Mel spectrogram features with a CNN-based architecture 

and different pooling methods. CNN-based architectures are efficient and effective for emotion 

detection and large-scale speech classification tasks [9], [10]. The CNN captures high-level 

temporal information from input audio sequences, requiring minimal feature engineering and 

performing well for audio classification [9]. The state-of-the-art algorithms we experimented 

with can all be found in table 9. We trained VGGish and ResNeXt50 CNN [38] on the ALC 

dataset with different data augmentation techniques such as noise, shift, and stretch. Noise and 

stretch data did not converge while training and the model was over-fitting. Figure 16 represents 

the CNN architecture with attention and pooling layers which is our chosen architecture for this 

paper. CNN-based networks had the best results out of the three approaches we experimented 

with. Section 5 discusses these results in more detail. 

  

Figure 19: CNN + RNN Intoxication Detection Architecture 

The CNN + RNN Architecture combined with pooling layers [81] 
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Chapter 5. Results 

We experimented with training on the VGGish and ResNeXt50 CNN [38] on the ALC 

dataset with different data augmentation techniques like noise, shift, and stretch. Noise and 

stretch data did not show convergence while training and the model was over-fitting. 

Table 9 highlights the results we achieved using different CNNs, data augmentation types, 

and dense and pooling layers for classification on log Mel spectrogram input. VGG_Pool and 

ResNext50_Pool pooling refers to model-specific pooling strategies discussed in Section 3. 

Decision-based pooling refers to the decision pooling discussed in Section 4, with 3 fully 

connected layers and different pooling techniques. Overall, different augmentation techniques 

and pooling techniques did not impact model performance, so notable results are highlighted 

across all experiments. 

 

 

As shown in table 9, we achieved the best result with the ResNeXt50 model, using decision 

pooling with feature-level attention. This result was achieved using additional augmentation 

techniques on the log Mel spectrogram input, namely shifting, zooming, and horizontally 

flipping. The width_shift_range was 0.5 while the zoom_range = 0.2. 

 

Neural 

Network 

Architecture 

Augmentation 

Type 
Pooling Type UA UAR 

VGGish Shift VGG_Pool 0.648 0.503 

VGGish Noise Decision_Pool, Feature_Level_Attention 0.671 0.557 

VGGish Shift Decision_Pool, Single_Level_Attention 0.656 0.522 

VGGish Stretch Decision_Pool, Average_Pooling 0.663 0.534 

ResNeXt50 Shift ResNext50_Pool 0.653 0.500 

ResNeXt50 Shift Decision_Pool, Feature_Level_Attention 0.682 0.592 

Table 9 

UA and UARs for ResNeXt50 and VGGish networks trained on ALC 
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We also used featurewise_center = True; featurewise_std_normalization = True to achieve 

centering and normalization of data. These augmentation techniques are explained in more detail 

in section 4.2. The best result was obtained at learning rate of 1e-4. Adam optimizer was used 

while training with epsilon value set to 1e-8. We chose to experiment further with ResNeXt-50 

because the results of the Pilot Experiments on pre-trained CNNs, as shown in table 11, indicate 

that the ResNeXt50 model was able to identify some alcoholized samples. It had the highest 

True Positive (TP) count (442) with respect to other networks, on the same sample size of 39808 

samples. 

The results for the Pilot Experiments described in Section 4 are shown in Tables 9 and 10. 

Table 10 shows the results of using different features, namely Chroma, MFCC, Prosodic, and a 

combination of these features, with a BiLSTM network with attention and 

decision_level_max_pooling. As indicated by the UARs ranging from 0.499 to 0.502, this 

network did not train, so we did not expand upon its details. 

 

 

 

 

 

 

 

 

 

Table 11 shows the results of using different pre-trained CNNs, including VGG16 and 

ResNeXt50, for classification. All of these received UARs around 0.50, indicating that they were 

overfitting to the training data and could not learn. The raw True Positive (TP) count, with 

respect to the Alcoholized class, is reported along with the UAR to give a clearer idea of the 

model's classification performance. Based off the results of these pilot experiments, we decided 

Feature Type Pooling Type UAR 

Chroma Decision_level_max_pooling 0.499 

MFCC Decision_level_max_pooling 0.502 

Prosodic Decision_level_max_pooling 0.502 

Mixture Features Decision_level_max_pooling 0.500 

Table 10 

UA and UARs for ResNeXt50 and VGGish networks trained on ALC with different hand 

extracted features 
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to focus our work into training CNN networks with the different pooling strategies outlined in 

section 3. BiLSTMs and Attention mechanisms were not improving our results, so we simplified 

the model and focused on data augmentation and normalization techniques to improve model 

training and help the models adapt to the ALC data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Network UAR TP 

Xception 0.503 144 

InceptionV3 0.501 58 

ResNeXt50 0.503 442 

DenseNet121 0.500 4 

MobileNetV2 0.500 0 

VGG16 0.500 0 

Table 11 

Pilot Experiments: Sample results for different pre-trained CNN 

architectures 
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Chapter 6. Discussion 

As the results in Table 9 indicate, most model configurations overfit the data. The best 

model configuration, which used the ResNeXt50 CNN with Decision Pooling and feature-level 

attention, could not achieve the classification accuracy and UAR of the baseline architecture in 

INTERSPEECH 2011. This model achieved a UAR 59.2% and an UA of 68.2%, which is lower 

than the baseline UAR of 65.9%. The ResNeXt50 model was chosen based on the results in 

Table 11. This table shows pre-trained CNN architectures, including ResNext-50, that were used 

for classification of ALC data. Many networks achieved UARs of  0.50, likely because the CNNs 

were trained on out-of-domain data and had to be tuned to classify ALC data. However, the 

ResNeXt-50 model yielded the highest count of True Positives, namely 442 samples, with 

respect to the alcoholized class, out of a sample size of 39808 samples. Thus, we chose to focus 

our experiments on training ResNeXt-50 on ALC data with different pooling strategies. The 

VGGish model was used for comparison, because it performed well on AudioSet data [42]. 

Aside from the ResNext-50 with decision pooling and feature level attention, the second-

best result highlighted in Table 9 was achieved with the VGGish model using the same decision 

pooling technique. This model achieved a UA and UAR of 0.671 and 0.557, respectively. 

Normalization and image augmentation were also applied to this model. Aside from this result, 

different data augmentation techniques and pooling layers had little effect on model performance 

and did not assist in training. Although audio augmentation techniques helped to increase the 

proportion of positive (intoxicated) samples, the dataset was still imbalanced and we attribute it 

to the fact that we performed clipping of variable length audio samples to maintain uniform 

length of 10 seconds for each audio sample. Other pooling techniques, such as global and 

average pooling, may have added distortion and discarded original information about position 

of particular values in the audio feature vectors [31]. Moreover, a different set of parameters 

may have to be used for speech classification on the ALC dataset to help the VGGish and 

ResNeXt50 models extract features that are relevant for intoxication detection. 
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Chapter 7. Conclusion 

Our work explores how CNN architectures like VGGish and ResNeXt50 can be used in the 

audio classification pipeline for the intoxication detection task. Our work establishes a solid 

baseline for further experimentation into CNN techniques for intoxication detection. Although 

many of the experiments we ran did not train, adding different augmentation and normalization 

techniques to the standalone CNN architecture helped with model training and improved UAR 

by 9.2%, compared to the worst-performing model in the table.  The best result we achieved was 

using the ResNeXt50 model, using decision pooling with feature-level attention. The model 

achieved a UAR of 59.2%. This result is 9.2% higher than the results we were getting from 

standalone VGGish and ResNeXt50 pooling, which yielded UARs of 50.3% and 50.0%, 

respectively. The VGGish model with decision pooling and feature-level attention also received 

high results, yielding a UA of 65.1% and a UAR of 55.7%. These results for VGG and 

ResNeXt50 with decision Pooling were achieved using a variety of normalization and 

augmentation techniques, which indicates that further exploration into feature extraction and 

data balancing may help the model train. 

 

7.1 Future Experiments 

In the future, we can continue experimenting with hybrid RNN-based architectures and 

CNN-based architectures. RNN-based architectures capture long-term dependencies in audio 

and perform well in audio classification tasks [5], [13], [12]. CNN architectures have also been 

successful for audio classification [14], [10]. 

Moreover, we can continue building from the Pilot experiments we ran, using BiLSTMs, 

attention, and different feature extraction techniques. We can also look into using Gramian 

Angular Summation Fields (GASF) and Markov Transition Fields (MTF) for direct input to 

ResNext50 or VGGish. These feature types encode time series into images and have been useful 

for speech processing tasks [28]. 
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Other experiments we can explore for future work are outlined below: 

1. Current approach for data augmentation modifies the audio data. Data augmentation 

could be done by adding background noise to the audio without modifying the speaker 

audio itself. 

2. Data oversampling techniques can be applied to balance the classes using SMOTE [19] 

and ADASYN [20]. 

3. To overcome the imbalance in class, auto-encoders could be tried for outlier detection of 

the alcoholized samples rather than employing data augmentation or data oversampling 

techniques. 

4. Exploring a multi-class classification task with audio samples split into multiple classes 

based on BAC values. 

5. Performing a regression task in which the model must predict speaker BAC given input 

audio. 

6. Attention mechanisms have been useful for audio classification in an RNN-based 

network [22]. We can further explore using attention over audio features with a bi-

directional RNN network. 

7. We did not change the Sampling Rate (SR) of the audio we were using, keeping it at 44.1 

kHz. Perhaps, a lower sampling rate could help the model learn by providing lower-

dimensional audio input without discarding too much important information in the audio. 

 

 

 

 

 

 

 

 

 

 

 



 
 

48 

 

Bibliography  

 

[1] ”Drunk Driving”  NHTSA.gov.  https://www.nhtsa.gov/risky-driving/drunk-driving. 

Accessed on May 3rd, 2019. 

 

[2] ”Blood alcohol concentration (BAC) and the effects of alcohol”. SAHealth.gov. https:// 

www.sahealth.sa.gov.au/wps/wcm/connect/public+content/sa+health+internet/health+topics/h

ealth+conditions+prevention+and+treatment/alcohol/blood+alcohol+concentration+bac+gener

al+information . Accessed on Feb 16th, 2019. 

 

[3] ”Impaired Driving: Get the Facts”. CDC.gov. https://www.cdc.gov/motorvehiclesafety/ 

impaired_driving/impaired-drv_factsheet.html. Accessed on Feb 16th, 2019. 

 

[4] Tisljar-Szab ´ o, Eszter, Ren ´ ata Rossu, Veronika Varga, and ´Csaba Pleh. ”The effect of 

alcohol on speech production.” ´Journal of psycholinguistic research 43, no. 6 (2014): 737-

748. 

 

[5] Berninger, Kim, Jannis Hoppe, and Benjamin Milde. ”Classification of Speaker 

Intoxication Using a Bidirectional Recurrent Neural Network.” In International Conference on 

Text, Speech, and Dialogue, pp. 435-442.Springer, Cham, 2016. 

 

[6] Bone, Daniel, Matthew P. Black, Ming Li, Angeliki Metallinou, Sungbok Lee, and 

Shrikanth Narayanan. ”Intoxicated speech detection by fusion of speaker normalized 

hierarchical features and GMM supervectors.” In Twelfth Annual Conference of the 

International Speech Communication Association. 2011. 

 

[7] Bocklet, Tobias, Korbinian Riedhammer, and Elmar Noth. ”Drink and Speak: On the 

automatic classification of alcohol intoxication by acoustic, prosodic and text-based features.” 

In Twelfth Annual Conference of the International Speech Communication Association. 2011. 

 

[8] Schuller, Bjorn, Stefan Steidl, Anton Batliner, Florian ¨Schiel, and Jarek Krajewski. ”The 

INTERSPEECH 2011 speaker state challenge.” In Twelfth Annual Conference of the 

International Speech Communication Association. 2011.  

 

[9] Wu, Huiyi, John Soraghan, Anja Lowit, and Gaetano DiCaterina. ”A deep learning method 

for pathological voice detection using convolutional deep belief networks.” In Interspeech 

2018. 2018. 

https://www.nhtsa.gov/risky-driving/drunk-driving


 
 

49 

 

[10] Hershey, Shawn, Sourish Chaudhuri, Daniel PW Ellis, Jort F. Gemmeke, Aren Jansen, R. 

Channing Moore, Manoj Plakal et al. ”CNN architectures for large-scale audio classification.” 

In 2017 ieee international conference on acoustics, speech and signal processing (icassp), pp. 

131-135. IEEE, 2017. 

 

[11] Han, Kun, Dong Yu, and Ivan Tashev. ”Speech emotion recognition using deep neural 

network and extreme learning machine.” In Fifteenth annual conference of the international 

speech communication association. 2014. 

 

[12] Lee, Jinkyu, and Ivan Tashev. ”High-level feature representation using recurrent neural 

network for speech emotion recognition.” In Sixteenth Annual Conference of the International 

Speech Communication Association. 2015. 

 

[13] Mirsamadi, Seyedmahdad, Emad Barsoum, and Cha Zhang. ”Automatic speech emotion 

recognition using recurrent neural networks with local attention.” In 2017 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2227-2231. IEEE, 

2017. 

 

[14] Trigeorgis, George, Fabien Ringeval, Raymond Brueckner, Erik Marchi, Mihalis A. 

Nicolaou, Bjorn Schuller, and Stefanos Zafeiriou. ”Adieu features? end-to-end speech emotion 

recognition using a deep convolutional recurrent network.” In 2016 IEEE international 

conference on acoustics, speech and signal processing (ICASSP), pp. 5200-5204. IEEE, 2016. 

 

[15] Tang, Dengke, Junlin Zeng, and Ming Li. ”An Endto-End Deep Learning Framework 

with Speech Emotion Recognition of Atypical Individuals.” Proc. Interspeech 2018 (2018): 

162-166. 

 

[16] Biadsy, Fadi, William Yang Wang, Andrew Rosenberg, and Julia Hirschberg. 

”Intoxication detection using phonetic, phonotactic and prosodic cues.” In Twelfth Annual 

Conference of the International Speech Communication Association. 2011. 

 

[17] Fukuda, Takashi, Raul Fernandez, Andrew Rosenberg, Samuel Thomas, Bhuvana 

Ramabhadran, Alexander Sorin, and Gakuto Kurata. ”Data Augmentation Improves 

Recognition of Foreign Accented Speech.” Proc. Interspeech 2018 (2018): 2409-2413. 

 

[18] Toman, Markus, Geoffrey S. Meltzner, and Rupal Patel. ”Data Requirements, Selection 

and Augmentation for DNN-based Speech Synthesis from Crowdsourced Data. ”Proc. 

Interspeech 2018 (2018): 2878-2882. 



 
 

50 

 

 

[19] Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 

”SMOTE: synthetic minority over-sampling technique.” Journal of artificial intelligence 

research 16 (2002): 321-357. 

 

[20] He, Haibo, Yang Bai, Edwardo A. Garcia, and Shutao Li. ”ADASYN: Adaptive synthetic 

sampling approach for imbalanced learning.” In 2008 IEEE International Joint Conference on 

Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322-1328. 

IEEE, 2008. 

 

[21] Amodei, Dario, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric 

Battenberg, Carl Case, Jared Casper et al. ”Deep speech 2: End-to-end speech recognition in 

english and mandarin.” In International conference on machine learning, pp. 173-182. 2016. 

 

[22] Pei, Wenjie, Tadas Baltrusaitis, David MJ Tax, and LouisPhilippe Morency. ”Temporal 

attention-gated model for robust sequence classification.” In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, pp. 6730-6739. 2017. 

 

[23] Lin, Min, Qiang Chen, and Shuicheng Yan. ”Network in network.” arXiv preprint  

arXiv:1312.4400 (2013). 

 

[24] Kong, Qiuqiang, Yong Xu, Wenwu Wang, and Mark D. Plumbley. ”Audio set 

classification with attention model: A probabilistic perspective.” In 2018 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 316-320. IEEE, 2018. 

 

[25] Yu, Changsong, Karim Said Barsim, Qiuqiang Kong, and Bin Yang. ”Multi-level 

attention model for weakly supervised audio classification.” arXiv preprint arXiv:1803.02353 

(2018). 

 

[26] Muller, Meinard. ”Short-Time Fourier Transform and Chroma Features.” 

 

[27] Ren, Z., Pandit, V., Qian, K., Yang, Z., Zhang, Z. and Schuller, B., 2017, December. 

Deep sequential image features on acoustic scene classification. In Proc. DCASE Workshop, 

Munich, Germany (pp. 113-117). 

 

[28] Wang, Zhiguang, and Tim Oates. ”Imaging time-series to improve classification and 

imputation.” In Twenty-Fourth International Joint Conference on Artificial Intelligence. 2015. 

 



 
 

51 

 

[29] McFee, Brian, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric 

Battenberg, and Oriol Nieto. ”librosa: Audio and music signal analysis in python.” In 

Proceedings of the 14th python in science conference, pp. 18-25. 2015. 

 

[30] Gibson, James, Maarten Van Segbroeck, and Shrikanth S. Narayanan. ”Comparing time-

frequency representations for directional derivative features.” In Fifteenth Annual Conference 

of the International Speech Communication Association. 2014. 

 

[31] Choi, Keunwoo, George Fazekas, and Mark Sandler. ”Automatic tagging using deep 

convolutional neural networks.” arXiv preprint arXiv:1606.00298 (2016). 

 

[32] Girija, Sanjay Surendranath. ”Tensorflow: Large-scale machine learning on 

heterogeneous distributed systems.” Software available from tensorflow. org (2016). 

 

[33] Chollet, Franc¸ois. ”keras. GitHub repository.” https://github. com/fchollet/keras. 

Accessed on Jan 25th, 2019. 

 

[34] ”WPI - Academic & Research Computing”. ARC.WPI.edu.  https://arc.wpi.edu/ 

computing/hpc-clusters/. Accessed on March 4th, 2019. 

 

[35] Logan, Beth. ”Mel Frequency Cepstral Coefficients for Music Modeling.” In ISMIR, vol. 

270, pp. 1-11. 2000. 

 

[36] Hannun, Awni, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, 

Ryan Prenger et al. ”Deep speech: Scaling up end-to-end speech recognition.” arXiv preprint 

arXiv:1412.5567 (2014). 

 

[37] Schuller, Bjorn, Stefan Steidl, Anton Batliner, Florian Schiel, Jarek Krajewski, Felix 

Weninger, and Florian Eyben. ”Medium-term speaker states—A review on intoxication, 

sleepiness and the first challenge.” Computer Speech Language 28, no. 2 (2014): 346-374. 

 

[38] Xie, Saining, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. ”Aggregated 

residual transformations for deep neural networks.” In Proceedings of the IEEE conference on 

computer vision and pattern recognition, pp. 1492-1500. 2017. 

 

[39] Simonyan, Karen, and Andrew Zisserman. ”Very deep convolutional networks for large-

scale image recognition.” arXiv preprint arXiv:1409.1556 (2014). 

 

https://arc.wpi.edu/computing/hpc-clusters/
https://arc.wpi.edu/computing/hpc-clusters/


 
 

52 

 

[40] Gemmeke, Jort F., Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. 

Channing Moore, Manoj Plakal, and Marvin Ritter. “Audio set: An ontology and human-

labeled dataset for audio events.” In 2017 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), pp. 776-780. IEEE, 2017. 

 

[41] Schiel, Florian, Christian Heinrich, and Sabine Barfusser. ”Alcohol language corpus: the 

first public corpus of alcoholized German speech.” Language resources and evaluation 46, no. 

3 (2012): 503-521. 

 

[42] Kong, Qiuqiang, Yong Xu, Wenwu Wang, and Mark D. Plumbley. ”Audio set 

classification with attention model: A probabilistic perspective.” In 2018 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 316-320. IEEE, 2018. 

 

[43] Giannoulis, Dimitrios, Emmanouil Benetos, Dan Stowell, Mathias Rossignol, Mathieu 

Lagrange, and Mark D. Plumbley. ”Detection and classification of acoustic scenes and events: 

An IEEE AASP challenge.” In 2013 IEEE Workshop on Applications of Signal Processing to 

Audio and Acoustics, pp. 1-4. IEEE, 2013. 

 

[44] “Gaussian Mixture Models Explained” towardsdatascience.com. https://towardsdata 

science.com/gaussian-mixture-models-explained-6986aaf5a95. Accessed on March 24th, 2020. 

 

[45] “Introduction to Hidden Markov Models” towardsdatascience.com. https://towardsdata 

science.com/introduction-to-hidden-markov-models-cd2c93e6b781. Accessed on March 24th, 

2020. 

 

[46] “A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way” towards 

datascience.com. https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way-3bd2b1164a53. Accessed on March 24th, 2020. 

 

[47] “Getting to Know the Mel Spectrogram” towardsdatascience.com. https://towardsdata 

science.com/getting-to-know-the-mel-spectrogram-31bca3e2d9d0. Accessed on March 24th. 

 

[48] “Low-Level Feature Descriptors” lesliesikos.com. https://www.lesliesikos.com/low-level-

feature-descriptors/. Accessed on March 24th, 2020. 

 

[49] “Support Vector Machine — Introduction to Machine Learning Algorithms” towardsdata 

science.com. https://towardsdatascience.com/support-vector-machine-introduction-to-machine 

-learning-algorithms-934a444fca47. Accessed on March 24th, 2020. 

https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95
https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95
https://towardsdatascience.com/introduction-to-hidden-markov-models-cd2c93e6b781
https://towardsdatascience.com/introduction-to-hidden-markov-models-cd2c93e6b781
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/getting-to-know-the-mel-spectrogram-31bca3e2d9d0
https://towardsdatascience.com/getting-to-know-the-mel-spectrogram-31bca3e2d9d0
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47


 
 

53 

 

[50] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. “SMOTE: synthetic 

minority over-sampling technique.” Journal of artificial intelligence research 16 (2002): 321-

357. 

 

[51] Cui, Zhiyong, et al. "Deep bidirectional and unidirectional LSTM recurrent neural 

network for network-wide traffic speed prediction." arXiv preprint arXiv:1801.02143 (2018). 

 

[52] “LSTM’s and GRU’s as a solution” towardsdatascience.com. https://towardsdatascience. 

com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21. Accessed 

on March 25th, 2020. 

 

[53] “Voice Analytics vs. Speech Analytics: Whats the Difference?” rankminer.com. https:// 

www.rankminer.com/post/voice-analytics-vs-speech-analytics-difference. Accessed on April 

3rd, 2020. 

 

[54] “Cepstrum Analysis” mathworks.com. https://www.mathworks.com/help/signal/ug/ 

cepstrum-analysis.html. Accessed on April 3rd, 2020. 

 

[55] “Cepstral Analysis of Speech” amrita.edu. http://vlab.amrita.edu/?sub=3&brch=164&sim 

=615&cnt=1. Accessed on April 3rd, 2020. 

 

[56] “The dummy’s guide to MFCC” medium.com. https://medium.com/prathena/the-

dummys-guide-to-mfcc-aceab2450fd. Accessed on April 3rd, 2020. 

 

[57] “The use of Praat in corpus research” fon.hum.uva.nl. http://www.fon.hum.uva.nl/paul/ 

papers/PraatForCorpora2.pdf. Accessed on April 3rd, 2020. 

 

[58] “Deep Dive into Bidirectional LSTM” i2tutorials.com. https://www.i2tutorials.com/ 

technology/deep-dive-into-bidirectional-lstm/. Accessed on April 3rd, 2020. 

 

[59] Abu-El-Haija, Sami, et al. "Youtube-8m: A large-scale video classification benchmark." 

arXiv preprint arXiv:1609.08675 (2016). 

 

[60] Gemmeke, Jort F., et al. "Audio set: An ontology and human-labeled dataset for audio 

events." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP). IEEE, 2017. 

 

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://www.rankminer.com/post/voice-analytics-vs-speech-analytics-difference
https://www.rankminer.com/post/voice-analytics-vs-speech-analytics-difference
https://www.mathworks.com/help/signal/ug/cepstrum-analysis.html
https://www.mathworks.com/help/signal/ug/cepstrum-analysis.html
http://vlab.amrita.edu/?sub=3&brch=164&sim=615&cnt=1
http://vlab.amrita.edu/?sub=3&brch=164&sim=615&cnt=1
https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd
https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd
https://www.i2tutorials.com/technology/deep-dive-into-bidirectional-lstm/
https://www.i2tutorials.com/technology/deep-dive-into-bidirectional-lstm/


 
 

54 

 

[61] Michon, Elise, Minh Quang Pham, Josep Crego, and Jean Senellart. "Neural network 

architectures for Arabic dialect identification." In Proceedings of the Fifth Workshop on NLP 

for Similar Languages, Varieties and Dialects (VarDial 2018), pp. 128-136. 2018. 

 

[62] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation 

by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014). 

 

[63] “How to Configure Image Data Augmentation in Keras” machinelearningmastery.com. 

https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-

training-deep-learning-neural-networks/. Accessed on April 3rd, 2020. 

 

[64] “What is machine learning?” technologyreview.com. https://www.technologyreview.com 

/s/612437/what-is-machine-learning-we-drew-you-another-flowchart/. Accessed on April 6th, 

2020. 

 

[65] Rabiner, Lawrence R. "A tutorial on hidden Markov models and selected applications in 

speech recognition." Proceedings of the IEEE 77.2 (1989): 257-286. 

 

[66] Gales, Mark, and Steve Young. "The application of hidden Markov models in speech 

recognition." Foundations and Trends® in Signal Processing 1.3 (2008): 195-304. 

 

[67] Stuttle, Matthew Nicholas. A Gaussian mixture model spectral representation for speech 

recognition. Diss. University of Cambridge, 2003. 

 

[68] Muthusamy, Hariharan, Kemal Polat, and Sazali Yaacob. "Improved emotion recognition 

using gaussian mixture model and extreme learning machine in speech and glottal signals." 

Mathematical Problems in Engineering 2015 (2015). 

 

[69] Vyas, Manan. "A Gaussian mixture model based speech recognition system using 

MATLAB." Signal & Image Processing 4.4 (2013): 109. 

 

[70] Sinith, M. S., et al. "Emotion recognition from audio signals using Support Vector 

Machine." 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS). IEEE, 

2015. 

 

[71] Valstar, Michel, et al. "Avec 2016: Depression, mood, and emotion recognition workshop 

and challenge." Proceedings of the 6th international workshop on audio/visual emotion 

challenge. 2016. 

https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://www.technologyreview.com/s/612437/what-is-machine-learning-we-drew-you-another-flowchart/
https://www.technologyreview.com/s/612437/what-is-machine-learning-we-drew-you-another-flowchart/


 
 

55 

 

[72] Eyben, Florian, Martin Wöllmer, and Björn Schuller. "Opensmile: the munich versatile 

and fast open-source audio feature extractor." Proceedings of the 18th ACM international 

conference on Multimedia. 2010. 

 

[73] ”Audio and Image Features used for CNN” medium.com. https://medium.com/ 

datadriveninvestor/audio-and-image-features-used-for-cnn-4f307defcc2f. Accessed on April 

6th, 2020. 

 

[74] “Simple Convolutional Neural Network for Genomic Variant Calling with TensorFlow” 

towardsdatascience.com. https://towardsdatascience.com/simple-convolution-neural-network-

for-genomic-variant-calling-with-tensorflow-c085dbc2026f. Accessed on April 6th, 2020. 

 

[75] Hall, Mark, et al. "The WEKA data mining software: an update." ACM SIGKDD 

explorations newsletter 11.1 (2009): 10-18. 

 

[76] Van Rossum, Guido, and Fred L. Drake Jr. Python tutorial. Vol. 620. Amsterdam: 

Centrum voor Wiskunde en Informatica, 1995. 

 

[77] Oliphant, Travis E. A guide to NumPy. Vol. 1. USA: Trelgol Publishing, 2006. 

 

[78] “Data Augmentation for Audio” medium.com. https://medium.com/@makcedward/data-

augmentation-for-audio-76912b01fdf6. Accessed on April 6th, 2020. 

 

[79] ”Speech Recognition — GMM, HMM” medium.com. https://medium.com/ 

@jonathan_hui/speech-recognition-gmm-hmm-8bb5eff8b196. Accessed on April 6th, 2020. 

 

[80] Gajšek, R., F. Mihelič, and S. Dobrišek. "Speaker state recognition using an HMM-based 

feature extraction method." Computer Speech & Language 27.1 (2013): 135-150. 

 

[81] “Recognizing Speech Commands Using Recurrent Neural Networks with Attention” 

towardsdatascience.com. https://towardsdatascience.com/recognizing-speech-commands-

using-recurrent-neural-networks-with-attention-c2b2ba17c837. Accessed on April 6th, 2020 

 

 

 

 

 

https://medium.com/datadriveninvestor/audio-and-image-features-used-for-cnn-4f307defcc2f
https://medium.com/datadriveninvestor/audio-and-image-features-used-for-cnn-4f307defcc2f
https://towardsdatascience.com/simple-convolution-neural-network-for-genomic-variant-calling-with-tensorflow-c085dbc2026f
https://towardsdatascience.com/simple-convolution-neural-network-for-genomic-variant-calling-with-tensorflow-c085dbc2026f
https://medium.com/@makcedward/data-augmentation-for-audio-76912b01fdf6
https://medium.com/@makcedward/data-augmentation-for-audio-76912b01fdf6
https://medium.com/@jonathan_hui/speech-recognition-gmm-hmm-8bb5eff8b196
https://medium.com/@jonathan_hui/speech-recognition-gmm-hmm-8bb5eff8b196
https://towardsdatascience.com/recognizing-speech-commands-using-recurrent-neural-networks-with-attention-c2b2ba17c837
https://towardsdatascience.com/recognizing-speech-commands-using-recurrent-neural-networks-with-attention-c2b2ba17c837


 
 

56 

 

Appendix: Additional Experiments 
Table 12 represents some of the other pilot experiments we performed using CNN as a 

feature extractor and RNN for classification. In these experiments we used a Bi-SLTM network 

and an attention layer followed by decision_level_max_pooling. However, these architectures 

did not perform very well. We called this architecture BiLSTM_ATT. However, we tested with 

different architectures for feature extraction. 

 
Augmentation 

Method + 

Hand 

Extracted 

Feature 

Feature Extraction Network 
Classification 

Network 
UAR 

Noise +  

Log Mel 

Spectrogram 

VGGish + decision_level_max_pooling BiLSTM_ATT 0.504 

VGGish + decision_level_average_pooling BiLSTM_ATT 0.507 

VGGish + 

decision_level_single_attention_pooling 
BiLSTM_ATT 0.501 

VGGish + 

decision_level_multi_attention_pooling 
BiLSTM_ATT 0.504 

Shift +  

Log Mel 

Spectrogram 

VGGish + decision_level_max_pooling BiLSTM_ATT 0.500 

VGGish + 

decision_level_single_attention_pooling 
BiLSTM_ATT 0.494 

VGGish + feature_level_attention_pooling BiLSTM_ATT 0.519 

VGGish + 

decision_level_multi_attention_pooling 
BiLSTM_ATT 0.500 

Stretch +  

Log Mel 

Spectrogram 

VGGish + 

decision_level_single_attention_pooling 
BiLSTM_ATT 0.503 

VGGish + 

decision_level_multi_attention_pooling 
BiSLTM_ATT 0.508 

VGGish + feature_level_attention BiLSTM_ATT 0.500 

Table 12 

Additional CNN + RNN Experiments 
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