Decentralized Wastewater Treatment in Southern Israel

Anna Correia, Quang Huynh, & Karistan Swan

Water Scarcity in Israel

Population growth

Consumption habits

Economy

Desalination

Reuse wastewater

New irrigation

Water management

Potential Impact

Water Reuse In Southern Israel Limited Access to Sewage Treatment Plants

Household Constructed Wetland

Constructed Wetlands

Past Research

Opportunity

- Southern Arava Waste
 - Management plan
- Industrial use
- Reuse for agriculture

- Reduce demand
- Personal water conservation
- Independence from sewage

systems

Constructed Wetland (CW) ~

Subsurface Flow Wetland

Project Goal

Evaluate a small scale constructed wetland as a reliable option for decentralized household wastewater treatment in Southern Israel.

Requirements for Success

Scale Adaptability

Successful Filtration

Simple Testing

Household Scale

Successful Filtration

Nine-day Test

• Mimic wastewater

input for a 2 person

household

• 400 L

Expectation

- Proper water flow
- Clear changes in

qualitative factors

Limitations of Study

01	Temporary Closure of The Teahouse	Minimal water was put in the system prior to the experiment
02	Spike in Usage	Changed the effectiveness of the system
03	Limited Testing	Timeframe and access limited quantitative testing

Wetland Assessment

11

Qualitative Testing Plan

Wetland Sampling

Water Clarity & Color

Day One

Day Four

Day Nine

Increase in clarity indicates the reduction of organic material. Yellow color is associated with organic matter decomposition

Suspended Solids

Day Two

Day Eight

Suspended solids were not a reliable qualitative indicator of the constructed wetlands function.

Smell

Signature "Rotten Egg" Smell

- Sulfur Bacteria
- Hydrogen Sulfide Gas
- Flush Tank (intense)
- Between Filtration Cells (average)
- Final Water (minimal)

Water Level

Cell 1

Cell 2

Next Steps

Long Term Study on CW Degradation Further Research in Southern Arava Continue Experiment in Lotan for Reliable Results

Necessary to be considered as sustainable solution

Provide literature for future users

Further evaluate the CW with maintenance and testing

Final Thoughts

Communal wetlands allow groups to reap the benefits and share the constraints

More work to be done to make constructed wetlands accessible at the household level

Acknowledgements

Alex Cicelsky Mike Kaplin Maya Galimidi Professor Isa Bar-On Professor Seth Tuler Shira Kronich Mike Nitzan Eran Shitfonot Mark Naveh Debby Dell'ariccia

Additional Information

Water Level

$A(s) = [Q(lnC_{in} - lnC_{out})] / (Kt * Depth * Porosity)$

 $Kt = K20 * (1.1)^{T-20} = 0.86 * (1.1)^{T-20}$

Wastewater Estimation

-0

Type of Wastewater	Number of Times per Day	Total Amount per Day (L)
Showering	1	50
Dish Washing	3	31.5
Clothes Washing	1/week	4
Hand Washing	10	30
Face Washing/Teeth Brushing	2	40
Making Food	3	45

Simple Testing Plan

Biochemical Oxygen Demand

Nitrogen

Total Suspended Solids

Testing of these Quantitative Factors is typically done in Labs

During our time we only found a solution for nitrogen and potential design for BOD testing.

Adaptive Procedure

DO Testing Procedure

Titrate with sodium thiosulfate to a pale straw color. Titrate by slowly dropping titrant solution from a syringe into the bottle, continually stirring

Add 2 mL of the starch solution so a blue color forms.

Continue slowly titrating until the sample turns clear.

The concentration of dissolved oxygen in the sample is equivalent to the number of milliliters of titrant used. Each mL of sodium thiosulfate added equals 1 mg/L dissolved oxygen

BOD Testing

Upon the original sampling date, take two samples.

BOD Sample should be in airtight jar

Store the duplicate samples at 20-degree Celsius for a 5 day incubation period, stirring often.

After the 5 days come back to repeat the DO test and use the following equation to calculate BOD. $DO_1 - DO_2 = BOD_5$ with mg/l as all of their units.

Land Requirement

 Household Requirement: one square foot per gallon of water used

• 300-600 square feet for the two cells

Typical Maintence

- 6 Month Inspection: remove weeds, replant, and clean out pipes
- Drain the system two to three times a year
- Minimum amount of water at all times.

