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Abstract

Catalysts are involved at some stage in the manufacture process  of virtually all commercially

produced chemical product. Among  the materials used as catalysts, metal oxides are one of the most

used due to their versatility and wide range of physical  properties. Identifying the principles of surface

to adsorbate charge transfer is key to a better understanding of metal oxide materials as both catalysts

and gas sensors. Using density functional theory (DFT), we modeled the adsorption of small molecules

over stoichiometric and reduced metal oxide surfaces of group IV metals and quantify the effect of

electron transfer upon adsorption.  We found that charge transfer only occurs during the adsorption

process of an adsorbate more electronegative than the surface. We also found a correlation between the

work function of the metal oxide, and the ionic adsorption of the oxygen molecule. 

Mixed phase rutile/anatase catalysts show increased reactivity compared with the pure phases

alone. However, the mechanism causing this effect is not fully understood. Using DFT and the +U

correction we calculated the bands offsets between the phases taking into account the effect of the

interface.  We found rutile  to  have  both  higher  conduction  and  valence  band offsets  than  anatase,

leading to an accumulation of electrons in the anatase phase accompanied by hole accumulation in the

rutile phase.   We also probed the electronic structure of our heterostructure and found a gap state

caused by electrons localized in undercoordinated Ti atoms which were present within the interfacial

region. Interfaces between bulk materials and between exposed surfaces both showed electron trapping

at undercoordinated sites. Finally, we studied the effect of the size of gold nanoparticles in the catalytic

properties  of  gold  decorated  TiO2 surfaces.  We  found  that  the  adsorption  energy  of  several

intermediates reactives in the CO oxidation and water gas shift reaction does not change with the size

of the nanoparticles. In conclusion, the factor that affects the reactivity of the system is the density of

undercoodinated gold atoms on the interface perimeter.  
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Chapter 1: Introduction

Catalysts are involved at some stage in the manufacture process  of virtually all

commercially produced chemical product. Among  the materials used as catalysts, metal

oxides  are  one of  the most   used due to  their  versatility  and wide range of  physical

properties. Some of the most interesting magnetic, optical, and  electronic properties are

found within this class of materials. Understanding the surface properties of metal oxides,

their   electronic structure,  and reactivity  with  adsorbed molecules  is  crucial  in  many

technological applications.1

The elimination of contaminants from waste effluents has become a primary issue

due  to  the  consequences  to  human  health.  Several  methods  have  been  developed  to

address this problem such as high temperature incineration, amended activated sludge

digestion, anaerobic digestion. One of the most successful of such methods have been the

supplementary and complementary use of semiconductor photocatalysts.2 These materials

use the energy of electromagnetic radiation to promote the excitation of electrons to the

conduction  band  where  they  can  diffuse  to  the  surface  and  participate  in  reduction

reactions.  These  materials  also  have  application  in  photovoltaics  for  solar  energy

conversion, for instance in photo-electrolytic cells, since the pioneer work of Fujushima

et al.3 Another important application is in gas sensor devices, where the variation of the

resistivity  of  the  metal  oxide  with  the  adsorption  of  certain  molecules  is  used  as  a

1



detection mechanism.

Among the metal oxide catalysts TiO  has become the prototype material. The₂

interest in this material  has grown over the years. The Fig. 1.1 shows the number of

publications since 1988 until 2012, when the number of publication reached more than

10000. Fig. 1.1 also shows the number of publication using TiO  in photocatalysis. ₂

Fig. 1.1 Number of publications about TiO  and ₂ photocatalysis using TiO .₂

The design of catalytic materials has been traditionally a trial and error process.

The process of design and development of heterogeneous catalysts relied on experiments.

A candidate catalyst is synthesized, characterized and tested under the best conditions,

usually followed by another characterization in situ.4 This approach leads to a lengthy

evolution. 

2

 



The design of a material  from pure theoretical methods would be a faster and

cheaper process. However, despite the advanced state of theoretical and computational

approaches  several  limitations  still  remain,  due  to  the  computational  cost  of  the

calculations. Then, to design optimal, inexpensive materials is required both experiments

and molecular models to characterize the properties of new candidate materials.5

A well  designed  catalyst  should  have  the  characteristics  of  activity,  stability,

selectivity, and regenerability. All those attributes depends on the chemical and physical

properties of the species involved in the reaction and the dynamics of their interaction.

The knowledge of the processes taking place at a microscopic level play a fundamental

role in the whole design scheme. The size, shape, and surface structure at the nanoscale,

as well as on their bulk and surface composition influence the activity and selectivity of

catalysts.6 In  addition,  surface  defects  are  highly  important  as  they  largely  determine

phenomena  such  as  corrosion,  adsorption,  and  catalytic  behavior  for  many  oxides.

Defects often lead to excess electrons within the metal oxide lattice, or reduction of the

material, and the ability of these electrons to affect surface chemistry has been the subject

of several studies.7–12

In the present work, we examine the role of the morphology and composition of

several metal oxide surfaces with emphasis on TiO  in the catalytic performance of such₂

materials  in  a  molecular  scale.  This  will  lead  to  a  better  comprehension  of  the

microscopic process taking place during catalytic reactions. We are primary interested in

the mechanisms of adsorption over stoichiometric and reduced surfaces, the reasons of

3



increased reactivity of mixed phase catalysts, the role of under coordinated metal atoms

in the catalytic process and the effect of deposited metallic nanocluster in the reactivity of

metal oxide surfaces. 

In the next section we present a review of the literature, where the systems and

processes  under  study  are  described  and  also  the  theoretical  methods  used.  Then  is

established the scope of the present work and the overall goal and principal objectives.

The chapter 2 shows the results  obtained for the ionic adsorption process over group IV

metal oxides surfaces, specifically TiO2, ZrO2 and HfO2. Chapter 3 presents our work on

the relative stability of electrons in mixed phases TiO2 catalysts, which could explain the

increased reactivity of the system. Finally, chapter 5 shows our findings in the effect of

the size of gold nanoparticles supported on TiO2 in the reactivity of such surfaces and

chapter 6 presents the conclusions of our work. 

1.1. Literature Review

This  chapter  presents  an  overview of  the  underlying  principles  governing  the

catalytic  process  on  metal  oxides.  The  study  will  be  focused  on  the  microscopic

processes, since those are the key to understand the nature of the chemical transformation

taking place in the surface of the catalyst. Initially, it is described the materials involved

in this work and the mechanism of the processes and subsequently the theory to model

them.
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1.1.1. Metal oxide surfaces

Despite  catalysts  are  often  used  in  polycrystalline  powder  form the  chemical

reactions occur in specific sites in the facets of each micro crystal. Then, to understand

the chemistry of this system we can study the reaction on the surfaces of the crystalline

materials. The geometry of those surfaces, depend on the geometry of the bulk phase and

the stability of the surfaces.13

The geometry of metal oxides can be understood used a simplified model where

the bonds are considered to be ionics. Then, the forces in the lattice are between the

positively charged metal atoms and the negative oxide O2- anions, which are unstable in

free space but are stabilized by the Madelung potential of the lattice.13 The most stable

configuration are usually with the metal cations surrounded by oxygen anions.

The configuration of metal oxide shows systematic features that are repeated in

several  different  structure  types.  The  stoichiometry  and  coordination  of  the  ions

determine the geometry of the lattice. The most common geometries of metal ions are

tetrahedral,  square  planar,  octahedral  and  cubic.  Fig.  1.2  shows  those  configuration

schematically.14

5



Fig. 1.2. Most common coordination geometries of metal atoms. The metal atoms are
represented by black filled circles and O atoms are circles.  (a) tetrahedral,  (b) square
plane, (c) octahedral, (d) cubic

Geometry of TiO  phases₂

Titanium dioxide presents three principal  stable  phases,  namely, rutile,  anatase

and brookite. Rutile is the most stable phase, however anatase is most stable for particle

size less than 11nm.15 These polymorphs have different properties and exhibit different

photocatalytic  properties.  Anatase  transforms  irreversibly  to  rutile  at  elevated

temperatures.16 The characteristic structural feature of TiO  phases is that of Ti₂ 4+ in an

octahedral field of O2− anions.17 Since Brookite is rare compared to anatase and rutile and

it has been less used as a catalyst we are going to focus on the description of rutile and

anatase.

6



Bulk rutile has a tetragonal unit cell with two atoms per cell. The Ti atoms are

located in the corners and center of the unit cell presenting a six coordinated structure, as

is shown in Fig. 1.3 (a). The structure can be visualize as a chain of TiO  octahedron₆

parallel to [001] direction(Fig. 1.3(b)). 

   (a)  (b)  

Fig. 1.3. TiO  rutile phase (a) unit cell (b) Polygon representation. Red spheres represent₂
oxygen and blue spheres represent titanium.

The most stable surfaces of rutile are the (110) and (100) being the most thermally

stable the (110).18 The (110) surface it is shown in Fig. 1.4 (a) where can be seen the

bridging oxygen atoms forming rows separated by rows of five coordinated Ti atom,

while the Ti connected by the bridging oxygen are six coordinated.

(a) (b)
 Fig. 1.4. Most stable rutile surfaces (a) (110 ) surface(b) (100) surface.
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The anatase (101) surface presents a sawtooth like structure as is shown in Fig.

1.5. Titanium atoms at the terraces have fivefold and sixfold coordination, and titanium

atoms  at  the  step  edges  are  fourfold  coordinated.  In  the  ridges  there  are  twofold

coordinated oxygen atoms.19 To compensate the strain generated by the missing bonds in

the surface the atoms relax to a new equilibrium position.

Fig. 1.5. Geometry of (101) anatase surface.

Rutile and anatase are  n-type semiconductors.  The effective electron mass has

been found to be very large, 30-100 times greater than free electron. It is thought that the

source of electronic conductivity in rutile is Ti3+ produced from the loss of oxygen.3  The

electronic  structure  calculated  for  the  surfaces  is  very  similar  from that  of  the  bulk.

However, non-stoichiometric surfaces may present surface states.19
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Electronic structure of TiO₂

Rutile TiO  is a semiconductor with a wide band gap of 3.0eV. The valence band₂

is based predominantly on O 2p orbitals, while the conduction band is Ti 3d based.20 The

ionicity (the degree of ionic bonding) of rutile TiO2 is of the order of 70%, meaning that

it  has  a  non-negligible  covalent  character. The anatase  phase presents  a  band gap of

3.2eV.

The  most  simple  electronic  models  of  metal  oxides  assume  electron  electron

repulsion as an average potential. However, in metal oxides this theory can break down

due to the localization of electrons in the ions. The electron transfer from one ion to

another  require  energy, which  depends on the  extra  electron  repulsion  present  in  the

receptor ion, this energy is know as the Hubbard U.13

Localized electrons tend to polarize the surrounding lattice. The electrons and the

concomitant  polarize  lattice  around  them are  know as  polaron.  If  the  polarization  is

strong enough the electron is unmobilized by the potential  produced by the polarized

lattice, this is know as a small polaron. The polaronic characteristic of the TiO  phases₂

could have a strong influence in the photocatalytic process due to the change in stability

and mobility of the charge carriers.14

1.1.2. Semiconductor photocatalysis

We can define photocatalysis as a photo-induced catalytic process.21 In the present
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work we are interested in such processes over solid semiconductors as heterogeneous

catalysts.  When  molecules  are  formed,  bonding  and  anti-bonding  orbitals  develop

considering  the  Pauli  exclusion  principle.  For  instance,  in  a  diatomic  molecule  each

energy level of the isolated atoms splits into two molecular orbitals belonging to the pair,

one lower in energy than the original atomic level and one higher. Usually only the less

energetic orbital is occupied. When monomers are put together the energy necessary to

photo-excite the electrons decreases. For n atomic orbitals in a molecule, n molecular

orbitals  are  produced.  As  the  number  of  molecular  orbitals  increases,  the  energy

difference between the lowest bonding and the highest antibonding orbitals increases,

while  the  space  between  each  individual  orbital  decreases.  For  a  big  number  of

monomers as in crystalline solid a band of allowed energy is formed for occupied and

unoccupied  states.  Those are  the  so  called  valence  and conduction  bands,  which  are

separated by forbidden levels of energy known as band gap Eg.21

The photocatalytic process starts with the absorption of electromagnetic radiation,

which excites an electron from the valence band to the conduction band, leaving a hole in

the  valence  band.  Fig.  1.6  shows  a  schematic  representation  of  this  process.  In  this

process energy and momentum have to be conserved. The energy is conserved if  the

photons have the same energy of the band gap. The conservation of moment imply that

the electrons must have the same momentum as the hole state plus the momentum of the

photon. Since the wave vector of optical photons are negligible small, then the electron

and holes have to have the same wave vector (k).14 However, indirect optical transitions

between two bands with different  wave-vectors  are  possible  with the participation of
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phonons, but they are weaker than direct transitions. 

The electron and holes can diffuse to the surface of the material and participate in

chemical reactions. The mobility of the carrier is a significant property of semiconductor.

The carrier in a semiconductor has an effective mass that is heavier than the free electron

mass, owing to the presence of the periodic potential in the crystal. The electrons and

holes may be trapped in the surface where react with acceptor and donor molecules.3 The

electrons and holes can also recombine there with the release of heat. 

Fig. 1.6. Schematic diagram of the photocatalytic process.
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1.1.3. Interaction of surfaces with small molecules

A catalyst increases the rate of a chemical reaction. Reactants bind to the surface 

of the catalyst, bonds are broken, and products are being formed leaving the catalyst 

unaltered. Thus a good catalyst must bind the reactants and at the same time facilitate the 

formation of products. In order for the products to desorb a good catalyst must not bind 

the products too strongly. In this thesis we focus on heterogeneous catalysis in which the 

reactants and the catalyst are in different phases. In this thesis the reactants and products 

are in the gas phase and the catalyst is in the solid phase.

When a molecule approaches catalyst surface, it starts interacting with the surface

and form a bond. If the interaction is a long range one caused by dipoles, we say that the

molecule is physisorbed on the surface. More importantly for this thesis, if the molecule

goes  even closer  to  the surface,  direct  interaction between the wave functions of the

molecule and the catalyst happens, a much stronger, so called chemisorption takes place.

The binding mechanism of molecules on the TiO  surface affects its electronic₂

structure.17 Some  factor  as  coverage,  thermal  stability  and  reactivity  and  adsorption

structure determine the pathway of the reaction on the surfaces. Adsorption over TiO  has₂

been  extensively  studied,19,22–24 especially  over  the  rutile  phase.  However, the  anatase

polymorph of TiO  is also a promising material because of its reactivity.₂ 1,25 There are

several theoretical studies on adsorption reactions and surface properties of anatase (101)

surfaces.26–29 DFT calculations also indicate that in the presence of O vacancies (Ov),
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several absorbates have higher adsorption energies over anatase as compared to rutile,

and the defects may act as nucleation sites for Au and Pt growth.30  HfO  and ZrO₂ ₂

surfaces  have  been  less  studied  than  TiO ,  particularly  using  theoretical  methods.₂

However, significant attention has been paid to the deposition of thin zirconia/ hafnia

films for microelectronics and catalysis.31–37 Theoretical studies of HfO  and ZrO  surface₂ ₂

adsorption  have  been performed,  such as  involving water  and hydrogen,38–41 Au,42 or

sulfuric acid.43 Surface defects have also been modeled,44–46 although charge transfer due

to the presence of point defects has not systematically been explored over these oxides. 

1.1.4. Molecular modeling methods

The two types of modeling methods most often used in heterogeneous catalysis

are either based on quantum mechanics or based in parameterized interaction potential

between atoms.47 The objective of both methods is to find the spacial configuration of the

atoms that minimize the total energy. Since, we are interested in the interaction between

small  molecules  and  the  solid  catalytic  surfaces  and  the  localization  and  transfer  of

charge, quantum mechanics methods are needed. The next section is a brief overview of

the theory used in the calculations involved to get the results of the present work. 
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 Electronic structure calculation

Ab initio calculations are difficult.  The trouble is  that the electrons have been

observed to obey complicated and nonintuitive quantum mechanical laws. According to

quantum theory, the electrons can only be described probabilistically. This means that the

absolute positions and velocities of the electrons cannot be known exactly; rather, the

whole  system  must  be  described  by  a  mathematical  object,  namely,  the  wave

function.48 Experiments  have  shown that  the  wave function  satisfies  the  Schrödinger

equation to a very good approximation. Unfortunately, solving this equation to find the

wave-function  is  not  generally  feasible.  One difficulty  comes  from the  nature  of  the

electrons.  They  are  fundamentally  identical.  This  has  more  than  just  philosophical

implications.  It  means  that  all  physical  quantities  must  be  left  unchanged  when  two

electrons switch places. For this to be true, the wave-function can only change at most by

an overall sign. The other complication arises from terms in the Schrödinger equation that

describe how the electrons interact and repel each other. This mutual repulsion makes the

solution grow exceedingly complex as the number of electrons increases.

The  ultimate  goal  of  most  approaches  in  solid  state  physics  and  quantum

chemistry is the solution of the time-independent, non-relativistic Schrödinger equation.49

       (1.1)

\

Where   is  the  Hamiltonian  for  a  system of  M nuclei  and N electrons  with

coordinates  respectively.  is the wavefunction and E the energy. 
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(1.2)

Here, A and B run over the M nuclei while i and j denote the N electrons in the

system. The first two terms describe the kinetic energy of the electrons and nuclei. The

other three terms represent the attractive electrostatic interaction between the nuclei and

the electrons  and repulsive potential  due to  the electron-electron and nucleus-nucleus

interactions.49

Due to their masses the nuclei move much slower than the electrons so we can

consider the electrons as moving in the field of fixed nuclei. Therefore the nuclear kinetic

energy  is  zero  and  their  potential  energy  is  merely  a  constant.  This  is  called  the

Born-Oppenheimer approximation. Thus, the electronic Hamiltonian reduces to:49

                             (1.3)

The solution of the Schrödinger equation with  is the electronic wave function 

and the electronic energy .The total energy  is then the sum of 

 and the constant nuclear repulsion term .

                                                        (1.4)

                                                        (1.5)

  

The variational principle

An important  theoretical  principle,  upon  which  many  calculations  rely, is  the
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variational principle. It tells us how to look for ground-state solutions. The exact ground

state wavefunction minimizes the expectation value of the Hamiltonian.50

                                                  (1.6)

A guessed normalized wave-function will always give a greater expectation value

for  the  total  energy.  To  make  the  problem  operable  a  normalized  trial  solution  is

expanded in the complete basis of exact solutions for a chosen Hamiltonian:

                                                    (1.7)

                                                     (1.8)

Then, the energy expectation value using the trial wave-function is:50

                                          (1.9)

  

Density Functional Theory

Density functional theory (DFT) has been the most successful and widely used

method in condensed matter physics, computational physics and quantum chemistry to

describe properties of condensed matter systems, which include not only standard bulk

materials  but  also  complex  materials  such  as  molecules,  proteins,  interfaces  and

nanoparticles. The main idea of DFT is to describe a many-body interacting system via its

particle density and not via its many-body wavefunction. Its significance is to reduce the
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3N degrees of freedom of the N-body system to only three spatial coordinates through its

particle density. 

The  basis  of  DFT is  the  well  known Hohenberg-Kohn  (HK)  theorem,  which

claims that the wave-function and all physical properties derived from it are uniquely

characterized  by  the  ground-state  electron  density  .  The  map  between  external

potential and the electron density is one to one and unique up to an arbitrary constant

shift in the potential.[38] The Hohenberg-Kohn second theorem states that it is possible

to define a universal functional for the energy E[ ] depending on the electron density

. The true ground state energy is the global minimum of the energy functional, and

the density \rho(r) which minimizes the functional is the exact ground state density.51

In 1965, Kohn and Sham (KS) introduced an orbital method for the quantitative

modeling  of  electronic  structure.52 In  order  to  evaluate  the  kinetic  energy  of  N

noninteracting particles given only their density distribution , they simply found the

corresponding potential , and used the Schrödinger equation.

                                (1.10)

where:

                                         (1.11)

It is necessary to determine the set of wave functions   that minimize the KS

energy functional  . These are given by the self-consistent solutions to the KS
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equations, which are a set of eigenvalue problems as shown in equations 1.10 and 1.11.

The effective potential   is the sum of the potential produced by the ions

,  the  Hartree  potential   represented  in  equation  1.12  and  the  exchange

correlation potential   which account for the non classical effects, which will be

described in the next section.53

                                         (1.12)

 

The exchange correlation functional

In DFT, the total energy is expressed as a functional of the density:

                     (1.13)

Where   is the kinetic energy and   is the electron electron interaction

energy. This interaction can be computed as the sum of the Hartree potential defined in

equation 1.12 and the energy for exchange correlation .53

The exchange-correlation energy has been referred to as nature’s glue because it is

responsible for keeping much of matter together by counteracting some of the Coulomb

repulsion.54 The  exchange-  correlation  contribution  reduces  the  interaction  energy

because it accounts for the tendency of electrons not to collide. The exchange-correlation

potential is defined by:
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                                                      (1.14)

Then the effective potential  in equation 1.10 can be computed as:

                            (1.15)

The equation 1.10, must be solved using a self-consistent scheme. An initial guess

for the density is made and a effective potential is constructed from it. The resulting KS

equation is solved for the KS orbitals  , and the orbitals are then used to find a new

density with equation 1.11. The new density gives a new potential and we calculate again.

This procedure is re-iterated until the density changes less than some chosen criteria.53

If the   used in the calculation is exact, the calculated density is also

exact. However, an exact exchange correlation energy is unknown. Then, we have to use

an  approximation  which  has  a  higher  computational  cost  for  increased  detail  and

accuracy.

The efficiency of an electronic structure method is often characterized by the way

a  calculation  effort  grows  with  the  number  of  electrons,  N  .  Ideally,  an  electronic

structure calculation for N electrons would be as complicated as a calculation for one

electron times N . This is called order N and is for the most part not possible yet without

a compromise in accuracy. DFT typically scales as N3 but in some cases as N.
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1.2. Problem statement 

A more fundamental understanding of the catalytic processes in the microscopic

scale is required to design better catalysts. The size, phase, interfaces and defects can

change the electronic density distribution in the lattice. It is necessary to know the effect

of  the  morphology  of  the  catalysts  in  the  electronic  structure  in  order  to  gain  some

insights in the catalytic process over metal oxides. 

Our approach is the use of first principles calculation to elucidate the microscopic

mechanism involved in the catalytic processes over group IV metal oxides. In this section

we  establish  the  objectives  and  scope  of  the  present  work.  Our  overall  goal  is  to

understand the catalytic and photocatalytic processes over TiO  from first principles.₂

Fig. 1.7 shows a schematic representation of the system modeled in the present

work. The red spheres represent oxygen atoms, pink spheres represent a metal, the blue

sphere represent a C atom and the yellow spheres represent Au atoms. It is shown the

three  aspects  of  the  problem  addressed  in  this  work.  First,  we  analyzed  the  ionic

adsorption process over group IV metal oxides. Second, we studied the relative energy of

electrons in mixed phase TiO2 catalysts in order to explain the increased reactivity of the

system.  Finally,  we  analyzed  the  influence  of  the  size  of  Au  nanoparticles  on  the

adsorption energy over different sites of several small molecules. 
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Fig. 1.7. Schematic representation of a mixed phase TiO2 rutile/anatase surface showing a
CO molecule and a gold nanoparticle over the surface. The three principal aspects of the
problem addressed in this thesis are highlighted.

1.2.1. Charge transfer processes over TiO₂

The adsorption and desorption of reactive intermediates play a fundamental role

in the definition of a pathway for any reaction. The strength of the interaction between

the adsorbate and the surface defines the final output of products. The nature of this

interaction  may  vary  according  with  the  structure  of  the  species  participating  in  the

process.

The  knowledge  of  the  details  of  the  adsorption  process  would  allow  the

identification of a  descriptor  for  the interaction process.  For  example,  correlating the
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strength of the binding with a property of the system. Identifying the principles of surface

to adsorbate charge transfer is key to a better understanding of metal oxide materials as

both  catalysts  and gas  sensors.  The extra  charge in  the adsorbate  might  stabilize the

molecules at the solid surface and also weakens the bonds promoting the dissociation or

reaction with another molecules. However, the whole mechanism of charge transfer is

poorly understood.

The mechanism responsible for gas sensing effects is not fully understood, but is

associated with electron transfer  to absorbates,  forming negatively charged anions,  or

ionosorption.  Catalytic  surface  reactions  may  also  involve  electron  transfer  from the

oxide  to  the  absorbates.  For  instance,  the  reduction  of  an  organic  molecule  over  a

catalytic surface requires the transfer of electrons from the solid to the adsorbate.

Using density functional theory, we  modeled the adsorption of small molecules

over stoichiometric and reduced metal oxide surfaces of group IV metals and quantify the

effect of electron transfer upon adsorption. Surface reduction was accomplished through

creation of oxygen vacancies, which lead to unpaired electrons within the oxide lattice,

and which may eventually transfer to absorbates. We  examined the TiO  anatase (101),₂

tetragonal HfO  (101), and tetragonal ZrO  (101) surfaces. We first focused on O  (a₂ ₂ ₂

known electron scavenger) adsorption at surface cation sites and expect to analyze the

formation  of  anionic  O  species.  Our  objective  is  to  quantify  the  nature  of  the₂

ionosorption process of small molecules on TiO2 surfaces and compare with other group

IV metal oxides.
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1.2.2. Electronic properties of mixed phase TiO  catalysts₂

TiO2 photocatalysts  consisting  of  two  phases  have  shown  increased  catalytic

activity  over  single-phase  catalysts  (rutile  or  anatase),  even  up  to  ten  times  more

activity.55–60 the reason for the increased reactivity is still in debate (see a recent review

article61) but could involve several factors, including bulk charge separation, interfacial

charge  transfer  effects  or  special  interfacial  reaction  sites.  The  electron  hole

recombination rate decreases because one or several of such factors produce a energy

barrier for the process. 

There have been a debate on the mechanism of chemical reaction on mixed phase

TiO  catalysts due to the increased observed reactivity. However, there is experimental₂

evidence that the phase junction formed between anatase and rutile in the surface of the

catalyst can enhance the photocatalytic activity for photo-catalytic reaction, for instance,

H  production.₂ 62

In this  work we modeled  using DFT the  interface  between rutile  and anatase

phases of TiO  in order to further identify the mechanism of the increased reactivity of₂

these mixed-phase catalysts. This information could lead to the design of heterostructure

with better catalytic performance. 

 

Relative stability of electrons and holes in mixed phase bulk   TiO₂ 

There have been several attempts to explain the increased activity of the mixed
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phases catalysts.61 the most accepted hypothesis is that presence of the two phases lowers

the  electron-hole  recombination  rate,  which  increases  the  number  of  surface

electron/holes,  and  therefore  the  surface  reactivity.17,25,63 The  conduction  band  (CB)

minimum  of  anatase  has  been  proposed  to  be  higher  that  the  CB  minimum  of

rutile.25,63,64 The valence band (VB) maximum,according with this hypothesis, are very

similar for both phases. Therefore, the photo-excited electrons may selectively migrate to

the rutile phase, while holes may migrate to the anatase phase, which effectively lowers

the recombination rate. However, some experimental work suggests that photo-generated

electrons  may  migrate  from  rutile  to  anatase,  due  to  trapping  sites  in  the  anatase

lattice.65 The preferred phase of the electrons (or holes) is determined by the relative

energy of the two phases' conduction bands (or valence bands). Strong interfacial regions

between  the  phases  has  been  suggested  to  facilitate  charge  transfer.66–68 Other  work

attributes  special  four-coordinated  Ti interfacial  sites  as  contributing  to  the  increased

photo reactivity.25,62,65,69

Band offsets at semiconductor heterojunctions are known fundamental parameters

which govern the transport properties of electrons, and the differences in energy of the

bands determines the direction and magnitude of the electrical current.70 The estimation

of the band offsets for semiconductor interfaces is crucial to understand the behavior of a

metal oxide mixed phase catalysts. In order to determine offsets using electronic structure

techniques it is typically necessary to simulate an interface between the two materials.71

There have been successful attempts to model interfaces.72–74 These models mostly use
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bulk properties of the different constituents. However, the detailed atomic and electronic

properties  at  the interface are  know to influence band offsets.75 The geometry of the

interface could induce the formation of trapping sites and dipoles, which could affect the

band structure. The power of electronic structure calculations is that one can determine

band offsets between two materials, and quantify the nature of the interfacial region.

The way the electrons localized in each phase in fundamental to understand the

physics of the system and build a model that emulate the real system as well as possible.

We  modeled several of the possibles equilibrium geometries of the interface between

anatase and rutile  and line up the band energies of both phases based on a common

reference  in  order  to  get  the  band  offsets.  Our  objective  is  to  determine  the

thermodynamically favorable flow direction of electrons on mixed phases TiO2, taking

into account the influence of the interface structure.

Stability of electrons in special sites on mixed phases TiO    catalysts₂

The trapping of electrons in special sites in the materials could lead to increased

reactivity due to the availability of those electrons to be transfer to absorbates.64,76 The

chemical reactivity of TiO  has been correlated to the interfacial surface area.₂ 77 Based on

this,  interfacial regions are likely locations of unique active sites for charge trapping,

transfer, and chemical reactions.64

The four coordinated Ti atoms are unstable in any bulk phase of crystalline TiO ,₂

however they could be stabilized in an interfacial  region or surface.  In the interfacial
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region the geometry is amorphous, leading to several different configuration for the Ti

atoms. Under coordinated Ti atoms and the surrounding O atoms could act as a potential

well where a localize electron sits in a small polaron like structure.

We identified undercoordinated atoms within the interfacial region of the mixed

material. We analyzed the localization of charge in those sites using the spin density and

the  projected  density  of  states  (PDOS).  The  spin  density  indicates  the  presence  of

unpaired electrons in the orbitals of the atom. Those allowed states should lie within the

band gap of the material below the energy of the Fermi level. Our specific objective is to

analyze the influence of morphology in the relative stability of electrons on mixed phases

catalysts and TiO  nanostructures. ₂

Reactivity of mixed phase TiO  surfaces₂

Most  semiconductor  photocatalytic  processes  end  in  recombination  of  the

electrons instead of producing chemical energy. Therefore, research involving titanium

dioxide focuses on making the catalyst more active and efficient in ultraviolet as well as

visible light.  By making the catalyst  more active in visible light, the process is more

practical for use in gas and water waste purification, energy renewal, and storage.

The mechanism of photocatalysis over mixed phase TiO  is still in debate. The₂

experimental  results  show  an  enhanced  reactivity  in  this  system.  Besides,  there  are

several experiment that corroborate the charge transfer process from one phase to another.
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However, there has not been a clear theoretical description of a surface. This is partially

due to the difficulty to model a big enough supercell with an interface. The supercell has

to be big because it is necessary to match two phases with different cell parameters in a

periodic supercell. Another factor is the intrinsic difficulty to build a reasonable model

for the geometry of the interfacial region between each solid phase. 

The increased catalytic activity of mixed-phase TiO  catalysts has been proposed₂

to be due to the synergistic activation of the rutile phase by anatase.65 The rutile phase

extends the photoactive range into the visible, and electron transfer from rutile to anatase

trapping sites lower charge recombination rate.

The  reactivity  is  usually  linked  with  the  strength  of  the  adsorption  of  the

intermediates  with  the  catalyst.  In  a  mixed  phase  catalyst  there  may  be  several

distinguishable  regions  presenting  different  affinity  to  each  intermediate.  The

mechanisms of adsorption and surface affinities of organic compounds has been shown to

differ  significantly  when comparing  adsorption  to  pure phase  TiO  crystalline  planes₂

versus mixed phase TiO .₂ 65 The strength as well as the nature of the intermolecular force

between the adsorbate and the surface play a role in the reactivity of the catalyst. Our

objective is to analyze the physical parameter that affect the ionic adsorption of small

molecules in mixed phase TiO  surfaces.₂
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1.2.3. Gold nanoclusters over TiO  surfaces₂

Despite  the chemically  inert  nature  of  gold the high catalytic  activity  of  gold

supported on metal oxide is well know. However, the microscopic processes taking place

in that material are not understood. For instance, it is not clear where the active sites are

and their nature. 78

The oxidation of CO on gold supported on TiO  is a example of the synergistic₂

effect of the materials. Pure TiO  adsorb CO weakly, however,it can be oxidize at room₂

temperature with gold cluster deposited on the surface. 19

It is accepted that gold must be in small particles to be active, where quantum size

effects significantly alter the electronic structure of the particle. There is evidence that the

reactivity  of  the system does  not  increase with the size of the gold nanocluster  after

certain critical size. This could be evidence of the role of the coordination in the chemical

process.

The interaction between gold clusters and the substrate has been shown to play a

significant  role,79 but  an  understanding of  this  phenomenon is  still  missing.  Electron

transfer between support and cluster might further modifies the electronic structure of the

metal. The interface between the metal particle and the support creates new reaction sites

that favor the catalytic reaction. The metal particle provides adsorption sites for at least

one of the reactants, while the support may participate as a reactant reservoir.80

We explained the role of the interaction between the gold nanocluster and the

surface. In order to accomplish this task we  performed DFT+U calculation to identify the
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activity of several possible active sites. The electron transfer and the availability of those

electrons  in  special  sites  may produce the preferential  adsorption on those sites.  Our

objective is to explain the influence of the morphology of gold nanocluster decorated

TiO  surfaces on the reactivity of the system.₂
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Chapter 2: Detailing Ionosorption over TiO2, 
ZrO2, and HfO2 from First Principles

2.1. Introduction

The study of metal oxides is an area of rich active research, because some of

the most interesting magnetic, optical, and electronic properties are found within this

class  of  materials.  Understanding  the  surface  properties  of  metal  oxides,  their

electronic  structure,  and  reactivity  with  adsorbed  molecules  is  crucial  in  many

technological applications.1 In addition, surface defects are highly important as they

largely determine phenomena such as corrosion, adsorption, and catalytic behavior for

many oxides. Defects often lead to excess electrons within the metal oxide lattice, or

reduction of the material, and the ability of these electrons to affect surface chemistry

has been the subject of several studies.7,9–12,81 

Metal oxides are often used either as catalyst supports or directly as catalysts

for  a  variety  of  applications.2 Electron  transfer  from  the  metal  oxide  plays  a

fundamental  role  in  many  catalytic  processes,  such  as  photocatalytic  oxidation  of

organic contaminants and other  reactions  over TiO2.
9 Oxygen acts  as a well-known

electron  scavenger  in  these  processes,  and  without  its  presence  the  photocatalyst

would deactivate due to negative charge accumulation.9,82,83 Detection of gases is also

a  subject  of  growing  importance  with  domestic,  environmental  and  industrial

applications.84 Metal oxides have attracted attention for gas sensing applications due
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to their sensitivity and relatively low cost. The design of better gas sensing devices

depends in part on knowledge of the sensing mechanism. The gas sensing mechanism

is associated with surface reactions of absorbed molecular and atomic ions (O 2
-
 and

O-) that have scavenged electrons and then can react with a reducing gas such as CO,

releasing  electrons.85 After  the  adsorption  of  a  molecule  on  the  surface  the

concentration of electrons in the conduction band decreases due to surface electron

transfer which leads to increased electrical resistance of the material. This process in

turn leads to a change in the conductivity of the oxide, allowing the indirect detection

of the gas.

These  gas-sensing  effects  have  been  explained  by  the  ionosorption

model.86 This is illustrated in Fig. 2.1,  which shows the initial  adsorption,  electron

transfer, and final anionic state of the adsorbate. Electrons from the conduction band

of the solid become captured by adsorbates, leading to ionization of the adsorbate, or

anion formation. The bond formed in this process thus has strong ionic character, as

the  negatively  charged  adsorbate  interacts  with  positively  charged  surface  metal

cations.  SnO2 sensors  are  the  prototype  oxide-based  gas  sensor  involving

ionosorption.  There is  however  a  great  interest  in understanding the mechanism in

other oxides in order to develop better gas-sensing devices.87–89
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Fig.  2.1.   Illustration  of  the  ionosorption  process  showing  adsorption,  then  electron
transfer to form an anionic adsorbate. M represents a metal cation site.

Defects can have a strong effect on surface processes because they can provide

electrons for charge-transfer processes, such as shown in Fig. 2.1. Defects can also

serve directly as reaction sites, such as an oxygen vacancy being filled by H 2O or O2,

but  the  current  work  does  not  address  the  direct  reactivity  at  these  reaction  sites.

Rather,  the  role  of  defects  as  electron-donating  centers  is  only  considered.  For

instance,  oxygen  vacancies  lead  to  a  reduced  surface  with  excess  electrons,  that

introduce defect states in the band gap.90 In TiO2 for each removed oxygen atom, two

electrons remain in the lattice of the Ti atoms and two Ti4+ are reduced to Ti3+. Other

defects  such  as  interstitial  Ti  atoms  or  H  atoms  also  lead  to  unpaired

electrons.7,9,81,91 The  reduction  of  the  surface  can  change  the  adsorption  energy  of

atoms and molecules10,81,92,93 and the current work concerns the transfer of unpaired

electrons to adsorbates due to the presence of surface O vacancies (O v) and  what role

these electrons play in  adsorption and chemistry over group IV metal oxide surfaces.

Adsorption over TiO2 has been extensively studied,19,22–24 especially over the

rutile  phase.  However, the anatase polymorph of TiO2 is  also a promising material

because  of  its  reactivity.1,25  There  are  several  theoretical  studies  on  adsorption
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reactions and surface properties of anatase (101) surfaces.26–29 DFT calculations also

indicate  that  in  the  presence  of  O  vacancies  (Ov)  several  adsorbates  have  higher

adsorption  energies  over  anatase  compared  to  rutile  and  the  defects  may  act  as

nucleation sites for Au and Pt growth.30 HfO2 and ZrO2 surfaces have been less studied

than TiO2, particularly using theoretical methods. However, significant attention has

been  paid  to  the  deposition  of  thin  zirconia/hafnia  films  for  micro-electronics  and

catalysis.31–37 Theoretical  studies  of  HfO2 and  ZrO2 surface  adsorption  have  been

performed, such as involving water and hydrogen,38–41 Au,42 or sulfuric acid.43 Surface

defects have also been modeled,44–46 although charge transfer due to the presence of

point defects has not systematically been explored over these oxides.

Previous  work  by  Deskins  et  al.81 examined  charge  transfer  over  the  rutile

(110) surface with density functional theory (DFT). They found a correlation between

the  number  of  excess  electrons  and the  strength  of  O2 adsorption.  The  number  of

excess electrons in the surface was moderated by the number and type of defect (O

vacancy,  surface  hydroxyl,  or  interstitial  Ti  atom).  They  also  demonstrated  that

significant  charge  transfer  occurs  only  for  species  with  large  electronegativities

greater than the electronegativity of the rutile (110) TiO2 surface. Other computational

work also showed similar electron transfer events over the rutile (110) surface.10,12

In the present work we examine charge transfer to adsorbates over reduced surfaces

of the anatase phase of TiO2, and tetragonal phases of HfO2 and ZrO2 (all group IV

metal  oxides)  using DFT. We compare  these three  metal  oxides  and determine  the

details of electron transfer for them, including what factors influence charge transfer

33



to adsorbates and on which surfaces  electron transfer has the largest effect. We first

examined O2 adsorption, then considered several other adsorbates. We provide several

new insights that may be helpful for the future design and study of gas sensors and

catalytic metal oxides.

 2.2. Methodology

The DFT computations were performed with the CP2K 94,95 package. It uses the

Gaussian  and  plane  waves  approach  (GPW)  with  periodic  boundary  conditions.

Valence electrons were described by a double-ζ basis  set,  specifically  optimized to

perform  accurate  molecular  calculations.  This  basis  set  is  well  suited  for  the

condensed phase.96 Core electrons were described by Goedecker-Teter-Hutter (GTH)

pseudopotentials.97–99 Within  the  pseudopotential  approximation  only  valence

electrons  are  represented  explicitly  in  the  calculations,  with  the  valence-core

interaction  being  represented  by  non-local  pseudopotentials.  The  gamma  point

supercell  approach was used,  necessitating the use of large supercells.  Calculations

have  been  performed  using  the  Perdew-Burke-Ernzerhof  (PBE)  functional  for  the

exchange correlation term of the electron-electron interaction,100 and all calculations

were spin polarized. 

Table 2.1 shows calculated and experimental  bulk lattice parameters  for the

studied metal oxides. These lattice parameters were found using a 3x3x3 bulk lattice

cell.  Optimized bulk lattice parameters were found to agree well with experimental
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data; the maximum deviation was 1.9% for the a parameter of ZrO2, while the other

parameters showed deviations of less than 1%. 

Table 2.1 Comparison of calculated and experimental lattice parameters for tetragonal
HfO2 and ZrO2, and anatase TiO2

TiO2 HfO2 ZrO2

a [Å] 3.76 3.62 3.57

a exp [Å] 3.79 3.64 3.64

b [Å] 9.52 5.23 5.26

b exp [Å] 9.54 5.27 5.29

Experimental Reference 101 102 103

Periodic slab models were used for all the metal oxide surfaces. Each slab size

was set to be (3 x 2) in the [0 1 1] and [0 1 0] directions respectively, and six atomic

layers thick with ~20 Å vacuum spacing between slabs. The total lateral size of each

surface slab was 11.28 Å by 20.47 Å for anatase (101), 10.71 Å by 12.71 Å for HfO 2

(101) and 10.87 Å by 12.32 Å for ZrO2 (101). Fig. 2.2 shows the slab models used.

The bottom O-M-O trilayer (three atomic layers) was kept fixed and all other atoms

were free to relax during optimization. Typically one surface O atom was removed to

create a reduced surface. 

To compare the reducibility of the surface we computed the formation energy of an

oxygen vacancy Evac according to:

Evac=E1/2O2
+ Ereduced slab−Eclean slab                                       (2.1)
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where E1/2O2 is the energy of a oxygen atom computed as one half of the energy of a

oxygen molecule, Ereduced  slab is the energy of the metal oxide surface with an oxygen

vacancy,  and  Eclean  slab  is  the  energy  of  the  stoichiometric  slab.   Positive  energies

indicate endothermic processes so that the energy of an oxygen vacancy is smaller for

a more reducible surface;. The work function, defined as the energy needed to move

an electron from the Fermi level to vacuum, was computed for each metal oxide slab.

This  was done in  order  to roughly compare the surfaces'  relative electronegativity.

The methodology used was based on the method proposed by Fall. 71 For each reduced

slab we calculated the average electrostatic potential perpendicular to the surface as a

function  of  the  z  coordinate  value.  This  was  used  to  establish  the  vacuum energy

level,  or  the flat  electrostatic  region outside  the  slab.  The work function was then

found by taking the difference between the vacuum level and Fermi level (calculated

from the eigenvalues). 

Adsorption energies Eads were calculated using the following expression: 

Eads=E surf+ adsorbate−E surf−Eadsorbate                             (2.2)

Where Eadsorbate is the energy of the isolated molecule in the vacuum, E surf is the

energy of the bare slab, and Esurf+adsorbate is the total energy of the molecule adsorbed on

the  slab.  We calculated  adsorption  energies  over  both  stoichiometric  and  reduced

surfaces.  Bader  charge  analysis  was  performed  in  order  to  analyze  the  charge

distribution.104–107 For  all  the  adsorbates  we modeled the  adsorption over  the metal

atoms, or the cationic sites, as opposed to over O atoms. Several adsorption geometry
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configurations  were  found  for  each  adsorbate  but  the  most  stable  geometries  are

analyzed herein. Previous research found that the exact physical location of the defect

relative to the adsorbate  had little  effect  on the surface chemistry,81 so we did not

consider this matter further. Adsorbates were placed sufficiently far away from an O

vacancy to preclude direct reactivity of adsorbates with the O vacancy; the O vacancy

only serves to reduce the surface. 

Fig. 2.2 Slab models used in the current work. Surfaces of (a) anatase TiO2 (101), (b)
tetragonal ZrO2 (101), and (c) tetragonal HfO2 (101). Slab thicknesses are indicated as
well as vacuum spacings. The red spheres represent oxygen,the blue spheres represent Ti,
the white spheres Hf, and the yellow spheres represent Zr. The same color scheme is used
in the remaining figures.

In  order  to  confirm  the  validity  of  our  model,  we  performed  several

convergence  tests.  We  determined  a  suitable  slab  thickness  by  calculating  the

adsorption energy of O2 (in the side-on configuration as discussed in Section 2.3.2) as

a  function  of  slab  thickness.  The  results,  as  shown  in  Fig.  2.3,  indicate  that  the
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adsorption energy is converged for six layers or larger (each layer being an O-M-O

trilayer,  or  three  atomic  layers).  We therefore  used  a  six-layer  slab  in  the current

work. 

Fig. 2.3 Convergence of the adsorption energy of O2  over  reduced surfaces of TiO2,
ZrO2 and HfO2  as a function of slab thickness. Each layer on the plot is an O-M-O
trilayer, or three atomic layers. 

The use of a single k-point may introduce errors in our calculations because of an

insufficient  k-point  mesh.   We  tested  this  possibility  by  determining  adsorption

energies for slabs with larger dimensions in the x- and y- directions. By increasing the

supercell size the distance between k-points decreases, or k-point density increases.
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Convergence is reached when increasing  the supercell  shows little or no change in

calculated properties. We calculated  the adsorption energy of O2 while changing the

surface size and the results are summarized in Table 2.2.  Our results indicate that the

use of a (3x2) surface cell gives sufficient k-point sampling.

Table 2.2. Adsorption energy of O2   [eV] over stoichiometric surfaces using different
surface cell sizes.

Metal Oxide
Surface size

3x2 3x3 4x3

TiO2 -1.37 -1.37 -1.36

ZrO2 -0.55 -0.54 -0.55

HfO2 -1.36 -1.36 -1.35

2.3. Results and discussion 

2.3.1. Nature of the reduced surfaces 

  Our  reduced  surfaces  showed  similar  properties  to  previous  research.  Our

calculated formation energy of an oxygen vacancy in the anatase (101) surface (4.87

eV) was similar to the value reported in previous DFT work (4.15eV). 108  The slight

difference in formation energy could be due to our larger slab as well as basis set or

pseudopotential  choice.   For  the  (101)  surface  of  tetragonal  ZrO2 our  formation

energy was calculated to be 7.14 eV and previous DFT work reported a value of 8.4

eV.109 This  latter  study  used  an  embedded  atom  cluster  approach.  Another

paper91 calculated the value to be 5.48 eV,  using the plane waves method , contrasted
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with the hybrid basis set method that we used. The literature thus reports O v formation

energies  using a  variety of  methods and simulation  parameters,  and our  calculated

vacancy formation energies   fit the range of reported values.

Graphs of the spin density (the difference between the spin up and spin down

densities)  for  the  ZrO2 and  HfO2 surfaces  are  shown  in  Fig.  2.4.  These  graphs

demonstrate the presence of unpaired electrons mainly localized on the 3d levels of

the neighboring Hf and Zr atoms, which coincide with previous work.110–112 The DFT

method  did not show localized electrons on the anatase surface. The GGA approach

tends to delocalize the electrons in TiO2;90,91 this  is  a known limitation that can be

avoided  with  the  DFT+U  method,  which  will  be  discussed  later.  Our  results  in

modeling  reduced  surfaces  indicate  that  our  simulation  approach  is  in  adequate

agreement  with  previous  DFT  work,  and  that  our  approach  is  therefore  to  be

reasonable.

Fig. 2.4  Spin density plots in the region near the oxygen vacancies of the surfaces (a)
t−ZrO2 (101) and (b) t−HfO2 (101). The location of an oxygen vacancy is indicated by an
X.
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2.3.2. Adsorption of O2 

We used molecular  oxygen as  a  prototype  molecule  for  our  initial  analysis.

Oxygen  is  nearly  ubiquitous  in  gas-sensing  and  catalytic  environments,  and  is  a

known  electron  scavenger.  Oxygen  can  adsorb  on  the  surfaces  in  several

configurations.  It  can be adsorbed with one end of the molecule on the surface,  or

laying on its side on the surface. These configurations can be observed for TiO 2 in

Fig.2.5. 

Fig. 2.5 Stable configurations for oxygen adsorbed over the stoichiometric (101) surface
of TiO2 anatase. (a) side view of end-on surface configuration. (b) top view of end-on
surface configuration.  (c)  side view of side-on surface configuration.  (d) top view of
side-on surface configuration.
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We checked several configurations and the most stable configuration over all

the metal oxides studied was with O2 laying nearly flat on the surface (the side-on

configuration in Fig. 2.5c). This is true on both the stoichiometric and the reduced

surfaces. We report adsorption energies for O2 over both stoichiometric and reduced

surfaces in Table 2.3. ΔE in the table is defined as the difference in adsorption energy

between the reduced and stoichiometric  surfaces. In previous work110 the adsorption

energy  of  oxygen  on  a  stoichiometric  anatase  (101)  surface  in  the  side-on

configuration was calculated to be -0.90eV and in the end-on configuration -0.58eV,

while we calculated these values to be -1.37 eV and -0.23 eV, respectively. Despite the

difference between this previous work and our results  the trends coincide with a more

stable molecule in the side-on configuration. The differences in numerical results could

be possibly due to   the methodologies used,  as the calculations  reported by Zeng et.

al.110 were  performed  with  relativistic  SBJK  pseudopotentials  and  basis  set,  and  the

B3LYP  exchange  correlation  functional.  However  Aschauer  et.  al.111 calculated  the

side-on configuration adsorption energy for a stoichiometric surface to be -1.5eV which

is close to our value of -1.37 eV. In another work113  the adsorption energies were

calculated using DFT methods in the generalized gradient corrected  approximation

(GGA) with the PBE exchange and correlation functional, the results were -2.37eV

for   the  side-on  configuration  over  a  reduced  surface   and  -0.34eV  for  oxygen

molecule in the end-on configuration over a stoichiometric surface, which match the

trend  of our calculations.
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Table 2.3. Adsorption energies (eV) and O-O bond lengths (Å) of molecular oxygen
over  stoichiometric  and  reduced  surfaces.  ΔE  is  defined  as  the  difference  in
adsorption energy between the reduced and stoichiometric surfaces.

Side-on configuration End-on configuration

Stoichiometric
Surface

Reduced Surface
Stoichiometric

Surface
Reduced
Surface

Metal
Oxide

Ads.
Energy

Bond
Length

Ads.
Energy

Bond
Length

ΔE
Ads.

Energy
Bond

Length
Ads.

Energy
Bond

Length
ΔE

TiO2 -1.37 1.24 -3.15 1.44 -1.78 -0.23 1.23 -0.24 1.23 -0.01

ZrO2 -0.55 1.24 -3.94 1.48 -3.39 -0.18 1.22 -0.18 1.23 0

HfO2 -1.36 1.23 -5.28 1.5 -3.91 -0.2 1.23 -0.2 1.22 0

We  observed  that  adsorption  is  significantly  enhanced  over  the  reduced

surfaces compared to stoichiometric surfaces, as shown by the large negative values

of ΔE for the side-on configuration of O2.  ΔE is the difference in adsorption energies

over  reduced  and  stoichiometric  surfaces.  Negative  values  for  ΔE  indicate  that

adsorption is preferred over reduced surfaces. Because we considered O 2 binding to

cationic metal sites, charge transfer from the surface to adsorbate (giving negatively

charged ionic O2)  leads to  stronger binding between cationic metal and anionic O 2

(see Fig. 2.1). The electrons available for transfer to O 2 directly result from the Ov

defects, so binding is enhanced over the reduced surfaces. As we discuss below, this

charge-transfer process will become more evident. 

Likely the side-on configuration is  most  stable  because it  produces  stronger

ionic  bonding  between the  surface  and  O2,  since  each  O atom can  interact  with  a
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surface  metal  cation  (see  Fig.  2.5d).  We also  observed  that  the  adsorption  energy

differences  between  the  reduced  and  stoichiometric  surfaces  follow  the  trend     |

ΔETiO2| < | ΔEZrO2 | < | ΔEHfO2 |. More will be said of this in later sections. We examined

the nature of O2 adsorption  by looking at the O-O bond lengths, which are given in

Table  2.3.   The  observed  bond  lengthening  over  the  reduced  surfaces  suggests  a

weakening  of  the  O-O  bond,  which  is  indicative  of  charge  transfer  taking  place

between O2 and the surface. Gas-phase O2 has a calculated bond length of 1.22 Å,

while superoxide species O2
- has a typical bond length of 1.23 Å and peroxide species

O2
2- has  a  typical  bond  length  of  1.48  Å.111 The  adsorbed  O2 bond  lengths  over

reduced  surfaces  match  the  O2
2- bond  lengths  well,  while  O2 bond  lengths  over

stoichiometric surfaces match gas phase O2 bond lengths Again, the reduced surfaces

have  unpaired  electrons  available  for  transfer  to  the  O 2,  while  the  stoichiometric

surfaces have no such unpaired electrons.

For comparison, we also analyzed the end-on adsorption configuration,  with

the molecule pointed away from the surface (and slightly bent) as is shown in Fig.

2.5. This was the second most stable configuration over all the metal oxides. The O 2

bond length over all surfaces (reduced and stoichiometric) for end-on adsorption was

always  similar  to  the  bond  length  of  gas-phase  oxygen  molecule  (~1.2  Å).  This

suggests that large charge transfer is not occurring with the end-on configuration and

weaker  ionic  interactions  occur  between  O2 in  this  geometry  and the  surface.  The

difference  in  adsorption  energies  over  stoichiometric  and  reduced  surfaces  are  all

nearly  zero  for  the  end-on  configuration,  again  suggesting  little  electron  transfer
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whether over reduced or stoichiometric surfaces.  To first order the adsorption energy

can be written as:

Eads≈E electrontransfer+ Eelectrostatic interactions                                        (2.3)

The transfer of electrons to O2 involves a certain positive energy cost (Eelectron

transfer) that is compensated by the favorable electrostatic interactions (E electrostatic interactions)

between  the  newly  formed  anion  and  surface  cation.  Thus  E ads is  exothermic,  or

negative, when Eelectrostatic interactions  is more negative than the positive Eelectron transfer value.

In the end-on configuration only one O atom interacts with a surface metal cation, and

thus any compensating electrostatic interactions between negatively charged O 2 and

cation are minimized. Electron transfer does not occur for end-on geometry because

the anionic O2 would not be stabilized enough on the surface to overcome energetic

barriers  for  electron  transfer,  or  Eelectrostatic  interactions  is  smaller  than  Eelectron  transfer In

contrast,  a  much  larger  ionic  character  can  be  assigned  to  O 2 in  the  side-on

configuration  (which  has  very  favorable  electrostatic  interactions  between  both  O

atoms and  a  surface  cation  or  large  Eelectrostatic  interactions),  and  this  is  reflected  by  the

stronger adsorption energies and bond distances of this configuration. 

To  confirm  the  charge  transfer  process,  we  also  performed  Bader  charge

analysis.  Table  2.4  shows  the  charges  of  the  oxygen  molecule  adsorbed  over  the

stoichiometric  and  reduced  surfaces.  In  all  the  cases  the  oxygen  molecule  over  a

reduced surface has a more negative charge in the side-on configuration, indicating

that electrons are transferred from the surface to the O2 molecule. The charge value
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near -2 is evidence of peroxide O2
2- species formation . For the end-on configuration

there is negligible charge transfer. We note that defining a Bader volume to calculate

Bader charges is not without difficulty and obtaining O2 charges to be exactly -2 is

problematic and some charges are slightly lower than -2. Nonetheless the charges do

show that  greater  charge  transfer  occurs  over  reduced  surfaces.  We also  note  that

some charge transfer  occurs over  stoichiometric  surfaces,  but these electrons  come

from  filled  electronic  states  in  the  metal  oxides,  and  are  much  less  energetically

transferable than unpaired electrons in reduced surfaces.  Eelectron transfer is very high over

stoichiometric  surfaces,  which  is  why the  adsorption  energy is  lower  compared  to

reduced surfaces which have lower Eelectron transfer.

Our results show that stronger binding occurs when O 2 becomes an anion, or

when ionosorption takes place,  and that this adsorption process occurs over all  the

group  IV metal  oxides  studied.  The  configuration  of  the  O2  during  the  adsorption

process determines directly whether the ionosorption process can take place or not.

This geometry-dependence may have great influence on  on the surface chemistry of

the  metal  oxide  surfaces,  especially  when  considering  co-adsorption  of  other

molecules  or  higher  surface  adsorption  coverages.  These  latter  two  effects  may

influence  stable  adsorption  geometries,  and  hence  the   electron  transfer  process.

Further research  is needed to clarify the influence of coverage and co-adsorbates on

ionosorption over metal oxides. We next endeavor to explain the different behavior of

the metal oxides considered in this study. 
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Table 2.4. Bader charges (e-) of oxygen adsorbed over the stoichiometric and reduced
surfaces.

Metal Oxide Stoichiometric Reduced

TiO2

side-on -0.58 -2.12

end-on 0.01 0.01

ZrO2

side-on -1.16 -2.01

end-on 0.02 -0.01

HfO2

side-on -0.04 -1.17

end-on 0.01 0.01

2.3.3. Comparison of O2 adsorption on the different metal oxides

Understanding  the  charge  transfer  processes  over  the  various  metal  oxides

involves several complexities, but we provide some analysis comparing the different

surfaces. In order to discover any trends we computed the O v formation energy over

each surface. These results are shown in Table 2.5. The most reducible of the studied

surfaces  is  anatase and the reducibility  decreases  with  tetragonal  ZrO 2 being  more

reducible than HfO2 (101) surfaces. The reducibility is roughly a measure of the M-O

bonding strength in the surface. 

Covalent systems would tend to have smaller vacancy formation energies. In

contrast,  strongly  ionic  systems  would  tend  to  have  larger  vacancy  formation

energies. The differences in electronegativity between O and metal atom for atomic

Ti, Zr, and Hf are -1.90, -2.11 and -2.14,112 indicating a rough order of ionic character

for the metal oxides. Thus, oxides of TiO2 are to be the least ionic, while oxides in

HfO2 are  the  most  ionic  in  character.  This  trend  is  reflected  in  the  O V formation
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energies and O2 adsorption energies. The most ionic system (HfO2) has the strongest

O2 surface binding (-5.28 eV) due to the largest anion-cation interactions (E electrostatic

interactions in  Equation 2.3).  Conversely the least  ionic  system (TiO2)  has  the weakest

adsorption  energy  (-3.15eV)  due  to  the  weakest  ionic  interactions  between  the  O2

anion and Ti cation. 

Table 2.5. Formation energy of an oxygen vacancy on the surface of the studied metal
oxides

Metal Oxide Energy [eV]

TiO2 4.87

ZrO2 7.14

HfO2 7.47

The  work  function  is  also  another  parameter  for  comparison.  The  work

function represents the energy required to remove an electron from the material (or

Eelectron  transfer in  Equation  2.3), and  it  is  expected  that  materials  with  lower  work

functions  will  lead  to  easier/more  facile  electron  transfer.  Table  2.6  shows  our

calculated  work  functions  for  the  studied  metal  oxides;  the  work  function  trends

match the trends of O2 adsorption over reduced surfaces very well. For example, TiO 2

has  the  largest  work  function  value,  so  removal  of  electrons  from TiO 2 is  hardest

(largest  Eelectron  transfer),  which  in  turn  leads  to  the  O2 adsorption  energy  being  the

weakest.  HfO2 has  the  smallest  work  function  and  has  the  strongest  (most  stable)

adsorption  energy, indicating  charge  transfer  is  easiest  for  this  oxide.  The relative

electronegativities of the surface and adsorbate have been used as key parameters to

understand  charge  transfer  between  surface  and  adsorbate  as  in  previous
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work.81 Electrons  flow  from  less  electronegative  species  to  more  electronegative

species.  Thus,  the  difference  between  the  electronegativity  of  the  surface  and  the

adsorbate is indicative of the degree or possibility of electron transfer. The absolute

electronegativity  can be taken approximately to be equal to the work function. We see

that  metal  oxides  with  higher  electronegativities  (as  approximated  by  the  work

function) lead to less stable ionosorption. Referring to Equation 2.3, raising  E electron

transfer lowers the adsorption energy, or makes the process more endothermic.

Table 2.6. Calculated work functions (eV) for the studied metal oxide surfaces

Metal Oxide Work function 

TiO2 6.91

ZrO2 6.31

HfO2 6.15

We have  provided  two correlations  that  explain  the  trends  in  O 2  adsorption

energy  over  these  reduced  metal  oxide  surfaces.  The  oxygen  vacancy  formation

energy is largest for HfO2 which indicates a strongly ionic oxide, and the adsorption

energy  of  O2 over  HfO2 is  also  most  exothermic,  particularly  due  to  strong  ionic

bonding.  HfO2 also has the lowest work function,  so removal of an electron from

HfO2 is easiest, and thus charge transfer proceeds most readily over HfO 2. These two

properties  of  a  metal  oxide  may be  useful  to  predict  charge  transfer  behavior  and

trends in other metal oxides. 
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2.3.4. DFT + U analysis of the surfaces 

We  next  tested  the  effect  of  DFT+U  on  ionosorption.  The  prediction  of

delocalized defect states in anatase is not consistent with experimental data. 114,115The

need for self-interaction corrections in order to describe the polaronic nature of excess

electrons in TiO2 has been discussed by several authors.90,91 Corrected computations

were carried out within the DFT method modified with on-site Coulomb correction

terms, or DFT + U . We applied a U value to all the metal atoms (Ti, Zr, Hf) . Fig. 2.6

shows the electron localized in the 3d orbitals of the Ti atoms neighboring the oxygen

vacancy  after  applying  DFT+U  in  anatase  TiO2.  The  oxygen  vacancy  gave  two

unpaired  electrons  in  the  oxide,  and  in  our  solution  they  are  both  localized  on

different Ti atoms with opposite spins. 

Fig.  2.6 Electron  spin  density  localized  in  the  3d  orbitals  of  Ti  atoms  in  anatase
neighboring  an  oxygen  vacancy  using  DFT+U  with  U  =  5  eV. The  white  surface
represents the spin up density and the blue surface the spin down density. Two unit cells
are represented in the [0 1 0] direction in order to see the oxygen vacancies. 
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The adsorption energies of oxygen over the reduced metal oxide surfaces using

DFT+U and a  range of U values  are shown in Fig.  2.7.  Our results  indicate little

change  in adsorption energies for U = 5 eV, but the adsorption energies increase for

U = 8 eV. This trend is consistent with previous work. 81 At sufficiently large U values

the transfer of electrons to the O2 molecule becomes hindered (Eelectron  transfer becomes

larger)  because  the  larger  U  values  stabilize  the  electrons  in  the  oxide  lattice.

Increasing the U value lowers the defect state energy location within the band gap;

small U values give defect states near the conduction band, while large U values give

defect states near the valence band. U values in between give defect states in the band

gap. The U value becomes a way to control the unpaired electrons' stability within the

lattice,  and  influence  ionosorption.  Lastly,  DFT+U has  the  largest  effect  on  TiO 2.

Standard DFT gives solutions with delocalized electrons in TiO2, while solutions of

ZrO2 and HfO2 have localized states(see section 2.3.1). DFT+U has the largest effect

on TiO2 since it induces electron localization and considerably modifies the electronic

nature  of  the  unpaired  electrons,  much  more  so  than  in  ZrO 2 and  HfO2.  This

modification  of  TiO2 due  to  DFT+U  is  clearly  indicated  by  the  large  change  in

adsorption energy at increasing U values.
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Fig. 2.7 Adsorption energies (eV) of molecular oxygen over the reduced metal oxide
surfaces using the DFT + U method.

2.4. Adsorption of Other Molecules 

Previous work by one of the authors examined a variety of molecules adsorbed

over the rutile (110) surface.81 It was shown that significant electron transfer did not

occur  for  species  with  low electronegativity  (e.g.  H2O).  The main  criteria  for  this

analysis was how the adsorption energy changed over the stoichiometric compared to

over  the  reduced  surface.  Significant  change  in  adsorption  energy  would  indicate

electron  transfer  from the  reduced surface  to  the  adsorbate,  or  ionosorption  taking

place. We also modeled adsorption of several species over the anatase TiO 2, ZrO2, and

HfO2 surfaces in order to assess how the electronegativity of the adsorbate influences

52



the strength of adsorption. 

Fig.  2.8  shows the  differences  between the  energy of  adsorption  of  various

species on  the  stoichiometric and the reduced  surface for the (101) surface of the

anatase  phase of  TiO2.  Fig.  2.9 and 10 contain  similar  results  for  ZrO2 and HfO2,

respectively. As before, the difference in energy of adsorption is defined as ΔE ads  =

Es-Er , where Es is the energy of adsorption on the stoichiometric surface and E r the

energy of adsorption on the reduced surface, similar to ΔE in Section 2.3.2. Again,

adsorption over cationic metal sites only was considered, since this type of binding

will be most affected by electron transfer. Electronegativity values were taken from

Pearson.116

Fig. 2.8 Differences in adsorption energies over clean and reduced surfaces (∆Eads ) as a
function of adsorbate electronegativity for the TiO2 anatase (101) surface. 

We observed  large  negative  values  of  ΔEads   for  several  species,  which  is

indicative of  a  strong effect  due to  the  presence of  excess  electrons  and enhanced
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charge  transfer  over  the  reduced  surfaces.  Several  species  with  low  values  of

electronegativities  were  not  affected  by  the  reduction  of  the  surface.  A transition

region (such as shown in Fig. 2.8) indicates when ΔEads  starts to become non-zero. In

essence,  when  the  electronegativity  of  the  adsorbate  is  roughly  lower  than  the

electronegativity of the surface, the transfer of charge is not a favorable process and

the reduced surface behaves as a stoichiometric surface. Ionosorption does not occur

and  covalent  bonding  is  dominant.  We note  that  the  ΔEads values  are  stronger  for

anatase compared to rutile TiO2
81 (for example ΔEads  is -0.6 eV over rutile for atomic

O, while -4.5eV over anatase). At this point, it is very likely that the specific surface

structure (e.g.  coordination numbers or orbital  levels)  will  influence the adsorption

energies; generally anatase is more reactive than rutile.25 We observed similar effects

over ZrO2 and HfO2 (see Fig. 2.9 and Fig. 2.10), in that the electronegativity value of

the adsorbate is a large indicator of whether increased binding over reduced surfaces

will occur.
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Fig. 2.9 Differences in adsorption energies over clean and reduced surfaces (∆E ) as a
function of adsorbate electronegativity for the ZrO2 (101) surface. 

Fig. 2.10 Differences in adsorption energies over clean and reduced surfaces (∆E ) as a
function of adsorbate electronegativity for the HfO2 (101) surface. 

In   previous  work81 the  electronegativity  of  the  rutile  (110)  surface  was

approximated as the work function of the surface. We find that our calculated work
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function values (see Table 2.6) do not exactly match the transition region, which we

attribute to the limitations of calculating the work function as well as breakdown of

the assumption that work function and electronegativity are equivalent. However, we

have  observed  that  the  work  functions  and  transition  regions  are  relatively  close,

which supports the idea that adsorbates with electronegativies less than the surface

electronegativities will not ionoadsorb. 

Ionosorption  has  now been  observed  with  four  metal  oxide  surfaces:  rutile

TiO2 (110),81 anatase TiO2 (101), tetragonal ZrO2 (101), and tetragonal HfO2 (101).

We expect this to be a very general phenomena with ionic transition metal oxides, but

further work needs to be performed in order to confirm how widespread this occurs.

We have only considered O vacancy defects, but other electron-donating defects (such

as  interstitial  atoms)  likely  also  lead  to  ionosorption,  as  previously  observed 81 .

Clearly  defects  may  strongly  affect  surface  adsorption  and  surface  chemistry  in

several  different  ways,  and thus  any theoretical  modeling  of  these  surfaces  should

take  into  account  the  possibility  of  ionosorption.  For  example,  simply  using  a

stoichiometric slab may lead to wrong results with electronic structure calculations.

Furthermore there is also much experimental work focusing on understanding defects

and their  role  in  oxide surface chemistry,and certainly future research will  provide

more details on metal oxide ionosorption.
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2.5. Conclusions

We have presented  evidence  that  suggests   ionosorption  should occur   over

group  IV  metal  oxides  (TiO2,  ZrO2,  and  HfO2)  with  electron-donating  defects.

Increased  binding  of  O2 is  observed  when  the  surface  is  reduced  and  unpaired

electrons are present in the surface slab. These electrons transfer to O 2 forming an

anion that may favorably interact with surface metal cations.  This electron transfer

process is dependent on the adsorption geometry, as we observed that not all stable O 2

adsorption  modes  lead  to  electron  transfer.  We have  examined  the  details  of  the

ionosorption over the different metal oxides,  and two parameters correlate with the

adsorption  energies  of  O2:  surface  vacancy  formation  energy  and  surface  work

function. HfO2 has the largest O vacancy formation energy of the studied oxides, but

also has the most exothermic O2 adsorption energy, which is explained by the larger

ionic nature of HfO2. Larger ionic character will lead to stronger binding between the

cationic metal sites and anionic adsorbates. HfO2 also has the lowest work function

which indicates that electron transfer from HfO2 is easiest. Correspondingly, anatase

TiO2 has the lowest O vacancy formation energy, the largest work function, and the

least exothermic O2 adsorption energy. Increased binding is also observed for several

other adsorbates, but only when the adsorbate electronegativity is significantly large,

which indicates that the electronegativity of the adsorbate should be larger than the

electronegativity of the surface. Certainly our results reinforce the idea that electrons

and charge transfer are important when surface chemistry over early transition metal
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oxides is studied, and future work may examine this concept over other metal oxides.
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Chapter 3. The Nature of Interfaces and 
Charge Trapping Sites in Photocatalytic 
Mixed-Phase TiO2 from First Principles 
Modeling

3.1. Introduction

The physical and chemical properties of TiO2 have been extensively studied, due

to its wide range of applications. It is used as a photocatalyst, a gas sensor, in medical

implantations,  in  hydrophobic  glass,  and  corrosion  protection.1 It  has  become  the

prototypical  material  for  photocatalytic  processes,  and  its  rutile  (110)  surface  is  a

prototype for surface science studies of metal oxides. TiO2 photocatalysts consisting of

two intimately  connected phases  have been demonstrated to  show increased catalytic

activity over single-phase catalysts (whether they be rutile or anatase), in some cases,

with even up to ten times more activity.55–57,59,60,117 The reason for the increased reactivity

is however still under debate (see for example a recent review article61), but could involve

several factors, including bulk charge separation, interfacial charge transfer effects,  or

special  interfacial  reaction  sites,  such  as  low  coordinated  Ti.  While  EPR studies  of

rutile-anatase  systems  have  indicated  that  low coordinated  Ti  sites  are  likely  to  trap

electrons,118 the details of the interface are extremely difficult to obtain from experiments

and hence, first principles simulations can be invaluable in this regard. In this chapter we
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modeled using density functional theory (DFT) the interface between rutile and anatase

phases of TiO2 in order to further explain the mechanism of the increased reactivity of

these mixed-phase catalysts. 

The process of heterogeneous photocatalysis over semiconductors starts with the

generation of electron-hole pairs due to photoexcitation of an electron to the conduction

band, creating a hole in the valence band. These electrons and holes may then diffuse to

the  surface,  and  transfer  to  adsorbed  species  initiating  surface  reduction/oxidation

reactions.92 Alternatively,  the  electron-hole  pair  may  recombine  with  a  concomitant

release of energy. This competitive recombination pathway is undesired since it lowers

the concentration of active electrons and holes. Much research on TiO2 photocatalysis has

focused  on  either  increasing  the  production  of  more  electron-hole  pairs  through  for

instance band-gap engineering,119 or attempting to reduce the recombination rates.25,120,121

Mixed phase photocatalysts  appear to be a superior material  over single phase

TiO2 and there have been several attempts to explain the increased activity of the mixed

phase catalysts.61 The most accepted hypothesis is that presence of the two phases lowers

the electron-hole recombination rate (through preferential charge migration to the various

phases,  or  increased  charge  separation),  which  increases  the  number  of  surface

electrons/holes,  and therefore the surface reactivity.63,122,123 The preferred phase of the

electrons (or holes) is determined by the relative energy of the two phases' conduction

bands (or valence bands).The alignments  of the conduction band (CB) minimum and

valence  band  maximum  of  rutile  and  anatase  have  been  under  intense  debate,  with

different studies indicating contradictory results.63,66,122 Most recent results suggest that
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the rutile VB and CB lie  higher than the anatase VB and CB.124,125 Therefore,  this  is

consistent with experiments suggesting that photo-generated electrons may migrate from

rutile to anatase, due in part to trapping sites in the anatase lattice.57 A recent combined

experimental and theoretical work126 also confirms the higher energy level of the rutile

phase conduction and valence bands. Strong interfacial regions between the phases have

been  suggested  to  facilitate  charge  transfer.62,67,68 Other  work  attributes  special

four-coordinated  Ti  interfacial  sites  as  contributing  to  the  increased  photo

reactivity.63,65,69,118

Band offsets at semiconductor heterojunctions are known fundamental parameters

which govern the transport properties of electrons, and the differences in energy of the

bands determines the direction and magnitude of the electrical current.70 The estimation

of the band offsets for semiconductor interfaces is crucial to understand the behavior of a

metal oxide mixed phase catalysts. In order to determine offsets using electronic structure

techniques  it  is  typically  necessary  to  simulate  an  interface  between  the  two

materials.71 However, in practice,  this is rarely done, in part due to the difficulty and

complexity of modeling an interface between two different crystal phases (in contrast to,

e.g. interfaces in III-V layered materials with the same phase72–74). There have been some

attempts to determine offsets, primarily using the bulk energy levels (suitably referenced)

of the different constituents.124,127 However, the detailed atomic and electronic properties

at  the  interface  are  known  to  influence  the  band  offsets36 and   key  photocatalytic

properties. A recent paper predicted the band offsets of rutile and anatase modeling an

interface  with  the  QM/MM  approach,  but  did  not  give  details  on  the  interfacial

61



region.125 The geometry of the interface could induce the formation of trapping sites and

dipoles,  which  could  affect  the  band  structure.  While  these  are  difficult  to  probe

experimentally and are not treated in simple bulk band alignment studies,  the power of

modern electronic structure calculations is that one can determine band offsets between

two materials in an explicit interface model, and quantify the nature of the interfacial

region. 

We  present  electronic  structure  calculations  (DFT)  of  realistic  rutile-anatase

interfaces.  We calculated  the  relative  stability  of  electrons  in  each phase,  taking into

account the presence of the interface.  The electronic structure of the interface is  also

studied and the nature of under-coordinated Ti sites is shown. The bulk of the analysis is

performed on interfaces formed by bringing two surfaces together so that no exposed

surface regions exist (bulk interface), but an interfacial structure with exposed surfaces is

also  used.  Our  analysis  of  the  interfacial  region  for  all  interfaces  provides  key

information on the interface and its role during photocatalysis.

3.2 Methodology

In this work, we modeled interfaces formed by bringing together surfaces of rutile

and anatase TiO2. Interfacial simulations involving periodic boundary conditions require

finding common lattice vectors between the two materials in the two directions parallel to

the surfaces being combined. Generally this means compressing or expanding the surface

lattice parameters of one of the materials to match the surface lattice parameters of the
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other  material.  This  can  lead  to  excessive  strain  if  the  mismatch  between  the  two

materials  is  great  due  to  a  large  distortion  of  one  of  the  materials.  One  method  to

overcome  such  strain  is  near-coincidence-site  lattice  (NCSL)128 theory.  Rather  than

combining  single  surface  cells  together  to  form  the  interface,  in  NCSL  theory  the

interface is constructed by combining surfaces composed of multiple cells. For instance,

an  interface  can  be  formed  between  the  (001)  rutile  and  (100)  anatase  surfaces  that

consists of 18.2 Å x 22.7 Å and 18.0 Å x 22.3 Å surface cell sizes for rutile and anatase,

respectively. This large interface minimizes the misfit between the two surfaces, giving

misfit percentage values (a measure of the strain created by putting the two surfaces in a

common periodic cell)  of 3.47% and -0.92% in the x- and y-directions33. The difficulty

therefore of modeling such interfaces is predominantly the large system size, requiring

robust computational resources. 

In  order  to  facilitate  computational  difficulties,  geometries  of  the  interfaces

between bulk rutile and anatase were taken from the work of Deskins et al.129 wherein

slabs  were  modeled  through  molecular  dynamics  simulations  with  an  empirical

forcefield. Using empirical forcefields allows for a large sampling of the geometry space

in tractable simulation time. The interfaces in this previous work were constructed by

bringing together surfaces with thousands of atoms in size together and then subjecting

them  to  an  annealing  procedure  in  order  to  better  obtain  realistic  structures.  The

interfaces were simulated at 1300 K, and then slowly annealed to low temperature. Such

simulations are beyond the capabilities of current DFT methods given the large size of

the system.  For an interface between the rutile (001) and anatase (100) surfaces, the
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supercell had 2472 atoms and the total size of the slab was 18.2 Å by 60.2 Å in the x- and

y-directions respectively. The slab was 22.7 Å in the z direction with a ~20 Å vacuum

spacing  between  slabs.  Fig.  3.1  shows the  supercell  slab  model  used.  An alternative

interface that was used in this work was formed between the rutile (110) and anatase(101)

surfaces and had  1136 atoms. There are other interfaces between various surfaces that

could have been used, but these contained larger number of atoms129, and therefore more

difficult to model.

Fig. 3.1 Slab model of the interface between bulk materials used in the current work
formed by bringing together the rutile (001) and anatase (100) surfaces. The thickness of
each phase is indicated. The red spheres represent oxygen, the grey spheres represent Ti.
The same color scheme is used in the remaining figures.

We also modeled interfaces between rutile  and anatase with exposed surfaces,

where for instance surface chemistry may occur (see Fig. 3.7). This structure was not

used to calculate band offsets, but to identify the properties of the interfacial region. The
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structure of this interface was created using a molecular dynamics. approach  Interatomic

interactions were represented by the Buckingham potential with the parameters from the

work of Matsui and Akaogi.130 The calculations were performed with the DL_POLY131

code. A cutoff distance of 9.0 Å was used for the short-range interactions. We performed

all calculations in the NPT ensemble. We started our molecular dynamic simulation at

800K for 400 ps using a timestep of 0.001 ps. Then, the temperature was lowered in 100

K increments for 200 ps at each temperature until  0 K was reached. Then, we optimized

the structure a 0 K for 200 ps.  The final structure was simulated at the DFT level. This

surface interface had 1056 atoms and the simulation box had dimensions of  14.86  Å,

55.20 Å, 30.00 Å in the x-, Y-  and y-directions respectively. The vacuum space between

surfaces was 20 Å.

Due  to  the  large  size  of  the  systems  and  computational  limitations,  we  only

calculated single-point energies and wavefunctions of the slab at the DFT level. Even

such  single-point  calculations  were  difficult,  and  typically  took  several  days on  a

256-processor  cluster. The majority  of  calculations were performed with code CP2K,

which implements the Gaussian and plane waves (GPW) method.94,95 Valence electrons

are  described  by  a  double-ζ  basis  set.96 Core  electrons  were  described  by

Goedecker-Teter-Hutter  (GTH)  pseudopotentials97 with  12  and  6  valence  electrons

respectively for Ti and O. The gamma point supercell approach was used. Calculations

were  performed  using  the  Perdew-Burke-Ernzerhof  exchange  correlation  (PBE)

functional98,99 and  were  all  spin-polarized.  The  auxiliary  planewave  basis  set  was

expanded up to an energy cutoff of 300 Ry. 
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A few calculations  on the interface  were performed with VASP.5.2132–135 using

three dimensional periodic boundary conditions with a plane wave basis set and a cut off

energy of  400 eV. Projector  augmented wave potentials136,137 are  used to  describe the

core-valence interaction, with 4 and 6 valence electrons and Ti and O, respectively. The

PBE exchange-correlation functional100,138 was used. 

One  potential  problem  with  DFT  simulations  is  that  generalized  gradient

approximation  (GGA)  exchange  correlation  functionals  incorrectly  describe  the  band

gaps of semiconductors and often do not account for electron localisation, arising from

the well known self-interaction error (SIE).90,91 SIE can lead to incorrect electronic levels

(e.g.  band  gaps)  and  electronic  delocalisation,  and  to  overcome  this  issue  with

approximate DFT we used the so-called +U correction  to DFT (DFT+U) on the 3d states

of  the  Ti  atoms.139,140 DFT+U  has  been  used  successfully  to  model  several  TiO2

systems.78,141–144 An alternative approach is to use hybrid exchange correlation functionals

but  such calculations  are  very time-consuming,  often an order  of  magnitude or more

slower than GGA-based DFT. Furthermore, previous work shows that DFT+U and hybrid

methods  give  similar  results.145,146 The  little  additional  computational  time  of  the  +U

correction justifies its use in the current simulations.

The  strength  of  the  U  correction  may  influence  the  calculated  valence  band

minimum and thus calculated band gaps.147  Appropriate U value choice may also depend

on simulation parameters such as basis set, pseudopotential, k-point mesh, etc. The nature

of our system makes the selection of a suitable U value difficult due to the presence of

two phases.  We tested several  U values,  including assigning different  U values  to  Ti

66



atoms in the two phases. We found that choice of U value did not change our overall

conclusions as summarized in Table 3.1, where it was found that the electronic bands of

anatase are always higher than those of rutile. We therefore used different U values for

each phase to reproduce the experimental band gaps for bulk calculations. This results in

a U value of 8.4 eV for rutile and 6.3 eV for anatase. For atoms in the interfacial region

(defined within 2 Å of interface divide) we assigned an average U value to these Ti atoms

(7.4  eV).  U  values  for  Ti  atoms  in  oxides  in  the  range  of  2  to  8  eV  have  been

reported148 for different oxides, oxidation states and exchange correlation functionals. A

recent paper149 used an iterative procedure to determine a Hubbard U value of 7.5 eV

which is very close to our average U value 7.4 eV. 

 

Table 3.1.   Electronic bands offsets as calculated using the method in Section III.B as a
function  of  U parameter  for  a  rutile(001)/anatase(100)  interface.  Valence  band offset
(VBO) and conduction band offset (CBO), and band gaps for the anatase-rutile interface
using CP2K are given. In all cases the rutile valence and conduction bands lie higher than
the anatase bands.

U [eV] Band gap [eV]

Anatase Rutile VBO [eV] CBO [eV] Anatase Rutile

0.0 0.0 0.81 0.46 2.11 1.77

4.0 4.0 1.05 0.54 2.84 2.34

8.0 8.0 1.21 0.66 3.47 2.92

10.0 10.0 1.31 0.70 3.89 3.28

6.3 8.4 0.41 0.21 3.20 3.00
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3.3 Results and Discussion

3.3.1 Nature of the Interface

Our procedure  to  produce  the  interface  does  not  simply  rely  on bringing two

surfaces together to form a heterostructure and then allowing optimization (a common

approach). Rather, rearrangement and relaxation of the interfacial region is accomplished

through the simulated annealing approach discussed in the methodology section. While

time-consuming, such an approach gives interfaces that are more likely representative of

those present between real TiO2 nanoparticles. During synthesis and reaction conditions

the interfacial atoms between particles are likely to overcome any energetic barriers for

rearrangement and find more stable configurations. A standard optimization procedure is

unlikely to find any such configurations. The final relaxed interfacial region exists as a

transition  between  the  two  phases  since  rutile  is  more  stable  than  anatase,  and  is

disordered (see Fig. 3.1). These interface regions have been observed experimentally and

are  suggested  to  be  crucial  for  the  anatase-to-rutile  phase  transition.150–152 The  local

surface structure of the two materials, e.g. (001), (100), etc., is largely removed as surface

atoms lose their ordered structure and rearrange to form bonds with the corresponding

counter surface. 

The interfacial  region has a distribution of four-,  five-,  and six-coordinated Ti

atoms. Ti atoms in bulk TiO2 are six-coordinated. There is no unambiguous way to define

coordination, but we assigned coordination numbers based on a simple rule of counting a

neighboring atom closer than less than sixty percent of the sum of the van der Waal radii
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of each pair of atoms (2.0 Å for Ti, 1.3  Å for O), or 1.98  Å. For instance in the rutile

(001)/anatase (100) interface (Fig. 3.1) the distribution of coordination on the interfacial

Ti atoms (defined as XYZ) was found to be as follows: 72.2 % Ti6c, 22.2 % Ti5c, and 5.6

% Ti4c, where the subscript designates the coordination. Four-coordinated Ti atoms have

been implicated as contributing to increased photo-reactivity153–155 and we discuss their

role in future sections of this thesis. The distribution  of  four-coordinated Ti atoms seems

to be random for all the interfaces that we studied; that is no discernible trend for position

of under-coordinated Ti atoms was found. 

We note that recent papers have modeled interfaces between rutile and anatase

using  density  functional  theory.  The  first  such  papers  by  Xia  et  al.156 addressed  the

thermal properties of the rutile-anatase interface in order to further clarify the anatase to

rutile  transition.  Kullgren  et  al.157 calculated  the  electronic  offset  between  rutile  and

anatase and found that rutile does indeed have a higher valence and conduction band

offsets than anatase. They found that mobile electrons will be accumulate in anatase and

mobile holes in rutile, and this is reinforced by the inherent self-trapping mechanisms for

electrons in rutile and holes in anatase Li et. al.158 studied mixed phase TiO2 composite

slabs using DFT. They concluded that the HOMO and LUMO states are separated in

different phases, which could be the key to improved photoactivity.The current work is

unique  in  that  the  interfacial  region  is  examined  in  detail  including  the  electronic

structure which is crucial for these mixed-phase catalysts. None of the previous papers

have  identified  interfacial  electronic  trapping  sites  (discussed  further  below)  that  are

predicted to exist experimentally.  The current work also utilizes a large bulk interface,
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for instance of the size  18.2 Å by 22.7 Å, containing 2472 atoms.  The problem with

smaller  interfaces  is  that  they  introduce  excess  strain  as  lattices  are  compressed  or

stretched to fit together. Relaxation may also be hindered if the interface is too small

since the atoms do not have the configurational freedom to fully move and reach more

stable  configurations.  The  limited  number  of  unique  atoms  and  periodic  boundary

conditions may prevent the realization of realistically optimized structures. Thus, bigger

interfaces are likely to give results more comparable to experimental results.

3.3.2. Electronic Offsets between the Phases

The key to aligning energy levels of two materials is to find a common reference

level.  Such an  absolute  reference  can only  be present  when the  energies  in  the bulk

semiconductor can be referenced to the vacuum level or some other common level. Since

typical  bulk  calculations  are  carried  out  for  an  infinite  crystal,  no  such  reference  is

available; the calculated energy bands are referred to an average electrostatic potential

within the solid, which is only defined with respect to an arbitrary constant.159,160 In order

to align the energy levels of the two phases, we used the macroscopic average of the

electrostatic  potential  in  the  supercell  as  proposed by Baldereschi  et  al.72 and Fall  et

al.71 This method  filters the  microscopic periodic oscillations and gives the  macroscopic

electrostatic properties. 

The valence band offset, ΔEVBO,  is defined as the difference between the valence

band  maximum  (VBM)  of  the  two  phases,  and  was  calculated  using  the  following
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expression: 

(3.1)

where  is the difference between the two bulk band edges as calculated by the DFT

program.  In this case the eigenvalues are measured with respect to the average of the

electrostatic  potential  of  each  individual  bulk  material.  The  second  term  ΔV  is  the

difference  in  the  bulk  electrostatic  potential  as  calculated  through  the  electronic

distribution and  charge on the ion cores. This term accounts for the different reference

levels of the two materials and also may contain interfacial effects. ΔV was calculated as

follows.

To compute the electrostatic potential along the z-direction of the interfacial slab,

electrostatic  data  generated  by  CP2K was  processed  in  order  to  compute  the  planar

electrostatic potential average   V with the following expression:

. V ( z)=S−1∫
S

V ( r⃗ )dxdy (3.2)

In equation (3.2), S is the area of the plane perpendicular to the z  direction, and

x , y  are contained in that plane. After computing the planar electrostatic average, V ,

it was required to determine the macroscopic average of the electrostatic potential in the

slab. To achieve this goal we used a local averaging scheme. This was performed taking

an arithmetic average of the nearest neighbors of the point. The result of such procedure

is  shown  in  Fig.  3.2. Once  the  electrostatic  potential  average  was  computed,  the

difference was taken from the electrostatic values in the bulk-like region of each phase,

where the potential was virtually constant (~15 Å and ~50 Å in Fig. 3.2) to give ΔV. We
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also performed separate bulk calculations for each phase and computed the difference

between the energy of HOMO (valence band maximum) and the average electrostatic

potential (which is aligned to the interface average electrostatic potential). In this manner

we have the energy of the valence band  maxima referenced to the average potential for

each phase.

Fig. 3.2. Average electrostatic potential variation along the z axis of the mixed phase
rutile (001) / anatase (100) slab using CP2K and U values of 8.4/6.3 eV for rutile/anatase.
The black line represents the average potential in planes perpendicular to the z axis (

V ) and the red line a smoothed average. The difference between the two smoothed
averages in the middle of the slabs gives ΔV. 

A sample result  showing the calculated bulk offsets  is  shown in Fig.  3.3.  We
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calculated rutile to have a higher conduction band offset than anatase by 0.21 eV, and a

higher  valence  band  offset  of  0.41  eV  for  U  values  of  8.4/6.3  eV  respectively  for

rutile/anatase. This alignment would produce an accumulation of bulk migrating electrons

in the anatase phase accompanied by hole accumulation in the rutile phase, suggesting

that charge separation does indeed occur for a TiO2 heterostructure. Table 3.1 summarizes

results using various U values, and we found that the direction of offset (rutile higher

than anatase) does not change based on the U value choice, only the magnitude of the

offset.  Thus,  the  DFT+U  results  are  all  consistent  with  the  picture  in  Fig.  3.  3  for

electronic band offsets.  The results for the other studied interface, an interface between

the rutile (110) and anatase(101) surfaces,  present the same trend with a CBO of 0.18 eV.

Fig. 3.3. Schematic representation of the band alignment between rutile and anatase as
calculated by DFT+U (U = 8.4/6.3 eV for rutile/anatase)  and the  rutile (001)/anatase
(100) interface.

In contrast, previous experimental work15 argued that the anatase CB was higher

than the CB of rutile. However, this previous work did not actually measure the offset

between the two materials, but  inferred the offset based on other measured properties,

73

3.2eV

3.0eV

0.21eV

0.41eV

Anatase

Rutile



such as x-ray diffraction data. 

Theoretical work generally agrees with our current work. The exception appears

to be the work of Kang et. al.161 who computed through DFT a different band alignment

than our work, and suggested that anatase has a higher VB and CB. They used the LDA

exchange correlation functional (no U correction) and modeled particles, rather than bulk

TiO2 which could explain the disagreement  with our  work.  On the other  hand,  other

recent theoretical results agree with our conclusions. Using the branching point energy or

charge neutrality level as a common reference70,162 Deak et al.124 found  the rutile CB to be

higher  than  the  anatase  CB by 0.3  to  0.4  eV. This  work  is  based  on a  more  crude

alignment procedure (no common cell between rutile and anatase was modeled) but the

agreement with our work is encouraging. Later work by this group157 also found the rutile

CB to be higher than the anatase CB by modeling rutile/anatase interfaces utilizing an

alignment scheme similar to the current work. Our values are also reasonably consistent

with those from embedded cluster hybrid DFT results.125  In previous DFT work Deskins

et al.163 also predicted the same trends in phase preference of the charges based on the

thermodynamics  of  electron/hole  transfer  to  the  two  phases.  Furthermore  Li  et

al.164  developed a  theoretical  model  where the  electrons  in  TiO2 have small  polaron

character in the rutile phase. Their model also predicted  that the rutile CB lies higher

than  the  anatase  CB.  We conclude  that  the  alignment  scheme  from  theory  is  fairly

consistent,  but that more work may be needed to reconcile experimental observations

and theoretical predictions.

In order to further examine the effect of the interface we performed an analysis of
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the projected density of states (PDOS) for the slab, with the density of states calculated

for different regions of the interface model. Fig. 3.4 shows the PDOS around the VB and

CB of the slab. The PDOS for each atom type was found, then the PDOS were added

together to get the DOS of the rutile, anatase, and interface regions. The bulk rutile and

anatase PDOS were taken ~10 Å away the interface, or in the middle of the anatase and

rutile regions of the slab (representative of the bulk phases), while the interfacial PDOS

included atoms within 2 Å of the interfacial divider. The results from the PDOS agree

with our previous offset results (Fig. 3.3) in that the bulk CB and VB of rutile are both

higher than of anatase.  We also observed a interfacial gap state (discussed in the next

section) just below 0 eV. 

Fig. 3.4. Projected density of states (PDOS) plot for the anatase phase, rutile phase and
the interface region using U = 8.4/6.3 eV for the rutile (001)/anatase (100) interface using
the CP2K code. 0 eV corresponds to the Fermi level.
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3.3.3. Charge Trapping at Four-Coordinated Ti

As mentioned above, a gap state is observed in the PDOS, as shown in Fig. 3.4,

which represents the localization of electrons within the interfacial region. In our model

slab the interfacial region has a disordered structure due to the transition from one phase

to the other, and the Ti atoms have a variety of coordination numbers.129 We identified

five Ti atoms that were four-coordinated (Ti4c) for the rutile (001)/anatase (100) interface

and several electrons localized at some of these sites, as shown in Fig. 3.5. Large electron

spin density  is  found in d orbitals  on Ti4c atoms.  The gap state  observed in Fig.  3.4

corresponds to the localization of electrons at these Ti4c sites. There are some electrons

localized on other interfacial Ti atoms besides the two Ti4c atoms, but there is much less

electron density on these atoms.  We did not observe unpaired electrons away from the

interface (bulk rutile and anatase) region of the slab.

Not all Ti4c atoms in the interface had localized excess electrons and in fact  we

observed no localized electrons for the rutile (110)/anatase (101) interface which only had

two Ti4c in the interface. These results show that merely the presence of Ti4c does not

guarantee electron localization and formation of gap states; such processes are structure

dependent. The greater number of Ti4c in the rutile (001)/anatase (100) interface however

leads to a greater chance of electron localization which is why electron localization is

observed for this interface while no localization occurs for the rutile (110)/anatase (101)

interface. 
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Fig. 3.5  (a) Electron spin density plot (isovalue = 0.017e/Å3) of electrons localized in the
3d orbitals of four coordinated Ti atoms in the interfacial region for a neutral slab. The
results  are  from  a  rutile  (001)/anatase  (100)  interface  with  U  =  8.4/6.3  eV  for
rutile/anatase.  (b) An electron spin density plot (isovalue = 0.03e/Å3) for a slab having a
net  -1  charge.  No +U correction  was applied  to  these calculations.  The blue spheres
represent four coordinated Ti atoms while red spheres are their  nearby O atoms. The
yellow contours represent the spin up density. 

One issue arising from these calculations is the nature of the hole states. Since

unpaired  electrons localized at specific Ti4c sites, forming Ti3+ cations, hole states on O

atoms must also have formed in the slab due to electron deficiency. We found these hole
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states to be delocalized across several O atoms rather than confined to specific atoms.

This delocalization of the holes could possibly be mitigated by applying DFT+U to the O

orbitals,165 but should not change the conclusions on electron localization.In  order  to

further remove the issue of hole states and address the stability of photoexcited electrons

at  or  near  the interfacial  region,  we simulated a  slab that  had a  net  charge of -1,  in

contrast to previous results thus far which involved neutral slabs. A similar approach was

used  to  model  polaron  formation  in  bulk  TiO2.165 Electron  spin  density  plots  of  the

interfacial region using a charged slab are shown in Fig. 3.6(b). In agreement with our

previous results on neutral slabs, excess electronic charge occurs at several Ti4c sites. In

fact, the extra electron even localizes at Ti4c sites even when no U correction is applied (U

= 0  eV or  standard  GGA-based DFT)  indicating  the  strong tendency of  electrons  to

localize at Ti4c sites and become trapped. A Ti4+ atom in bulk TiO2 is surrounded by six

O2- atoms in a stable octahedral environment. Ti4c atoms are deficient in coordination, and

therefore deficient in surrounding negative charge and filled bonding. Apparently this

deficiency leads to a destabilization such that addition of an excess electron stabilizes the

Ti4c. Such behavior is also seen with surface atoms which have unsaturated bonds, where

electron trapping may occur.166 Previous DFT results have shown that Ti4c can exist on

nanoparticle  surfaces  and  can  act  as  sites  to  trap  electrons.154 The  importance  of

undercoordinated  Ti  atoms  as  electron  traps  has  also  been  discussed  from

experiments.118,153

Undercoordinated Ti have been shown by modeling results to be very reactive for

catalysis.167 At the interface between anatase particles undercoordinated Ti also have been

78



shown to form trapping states154 (a similar finding to our current work except that we

considered both rutile and anatase phases).  Our results thus show that excited electrons

could  migrate  to  the  interfacial  region  and  become  trapped  at  Ti4c sites.  Generally

trapping sites are proposed to increase hole/electron recombination but it is still unclear

whether these interfacial  sites have a inhibitory or beneficial  effect on photocatalysis.

These unpaired electrons may potentially be available to participate in chemical reactions

at exposed areas of the interface, and could be photocatalytic “hot spots”.153  These Ti4c

sites have been shown experimentally118 to exist in the transition region between rutile

and anatase, and have been postulated as increasing the reactivity of mixed-phase TiO2.

We note that distorted tetrahedral shapes were also observed for four-coordinated Ti on

anatase  particle  surfaces154.  Our  results  do  indeed  confirm  the  special  nature  of  the

interface and the existence of Ti4c,  as well as their trapping nature.  Synthesis of TiO2

materials with increased interfacial Ti4c atoms may be an avenue to develop more active

photocatalysts and more experimental and theoretical work is needed to further clarify the

nature of under-coordinated atoms for photocatalysis.

3.3.4.   Exposed Surfaces of Mixed Phase TiO2

Our  studies  on  the  increased  reactivity  of  mixed  phase  surfaces  have  been

explained  so  far  by  modeling  bulk  materials.  In  this  section  we  discuss  results  on

modeling a surface of  a  mixed phase anatase/rutile  material,  or  a  three-phase system

(anatase, rutile, vacuum). Such interfaces would be present for instance at the intersection
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of two nanoparticles (rutile and anatase). This approach requires a large supercell in order

to  accommodate  the  two  pure  phases  plus  the  interfacial  region.   The  amorphous

character of the interface between the phases adds an additional complication for the

molecular model of the surfaces.

We modeled a  slab with two different  interfaces  running parallel  to  the [010]

direction.  The exposed surfaces are the (110) surface for rutile and (101) for anatase,

which are shown in  Fig. 3.6. Those are the most stable surfaces for each phase. The slab

has  two  interfaces  due  to  the  present  periodic  boundary  conditions  in  the  x  and  y

directions. There is a vacuum  space in the z-direction of   ~20 Å between slabs. This

geometry was built using molecular dynamics and the cooling approach described in the

methodology section.

Fig. 3.6. Slab model of the mixed phase exposed surface.
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Localization of charge was observed in this system in the interface. This can be

visualized with a spin density plot, as shown in Fig. 3.7. From this figure it is clear that

the unpaired electrons are more stable within the interfacial region than in the pure phases

alone. Electrons seem to be trapped in this disordered region. It is important to highlight

that  there  are  no  unpaired  electrons  in  the  regions  of  pure  rutile  or  pure  anatase.

Therefore,  the  interfacial  regions  are  potentially  more  reactive,  since  those  electrons

could be transferred to adsorbates on the surface near the interfaces.

Fig. 3.7 Spin up and down density plot showing the whole slab (isovalue = 0.017e/Å3).
The yellow contours represent the spin up density and the white surfaces represent the
spin down density. The grey lines represent the bonds between atoms.

To further clarify the interfacial region Fig. 3.8 shows only the Ti atoms in the

interfacial  region and the spin density  isosurfaces  for  the electrons  with  spin  up and

down.  The majority of the atoms in this interface model are five- and four-coordinated,

the purple and green spheres in Fig. 3.8, but even six  and three-coordinated atoms are

found. The electrons can be seen localized mostly on the five and four coordinated Ti

atoms. There are also unpaired electrons in one of the two three coordinated Ti Atom and
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in one of the two six coordinated Ti atoms in this region.   In general the distortion of the

lattice seems to favor the stability of unpaired electrons on undercoordinated Ti atoms.

The results of a slab with exposed surfaces gives very similar results to bulk interfaces,

which confirms  the electron trapping character of the interfacial region. We also modeled

a charge with -1 charge,  which would be representative of a  photo-excited slab,  and

found the same electronic structure.

Fig. 3.8  Electron spin density plot (isovalue = 0.017e/Å3)  of the interfacial region for a
slab with vacuum-exposed surfaces.  The results  are  from a  rutile  (001)/anatase (100)
interface  with  U  =  8.4/6.3  eV  for  rutile/anatase.  The  blue  spheres  represent  six
coordinated Ti atoms, the purple spheres represent five coordinated Ti atoms, the green
spheres  represent  four  coordinated  Ti  atoms  and  the  black  spheres  represent  three
coordinated Ti atoms. The yellow contours represent the spin up density and the white
surfaces represent the spin down density. 
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3.4. Conclusions

We have simulated the interface between the anatase and rutile phases of TiO2

using  DFT+U  in  order  to  better  characterize  the  nature  of  mixed-phase  TiO2

photocatalysts. We modeled realistic structures that contained thousands of atoms, rather

than smaller, possibly irrelevant interfaces. Our results show that the rutile conduction

and valence bands are higher than the anatase bands. This has important implications for

TiO2 photocatalysis, indicating the preferred direction of electron/hole flow (electrons to

anatase,  holes  to  rutile).  Such  preferred  migration  could  lower  the  electron/hole

recombination  rate,  which  would  increase  photo-reactivity.   Our  results  are  also

particularly novel  in that we show how electron trapping can occur in  the interfacial

region in bulk and exposed slabs at  undercoordinated Ti sites.   Such sites have been

experimentally  predicted,  but  theoretical  work now confirms their  existence.  Trapped

electrons produce a gap state, which may influence photoexcitation, and these trapping

sites may also strongly influence electron/hole recombination and/or reactivity. Finally,

we acknowledge that we have modeled interfaces formed from stoichiometric surfaces.

We cannot exclude the possibility that defects (such as O vacancies or Ti interstitials)

may  affect  the  electronic  properties  of  mixed-phase  interfaces,  and future  work  may

examine interfaces with such structures.
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Chapter 4: Size Effects of TiO2 supported 
Gold Nanocatalysts

4.1. Introduction

Dispersed  metal  nanoclusters  supported  on  different  materials  have  unique

properties  as  catalysts  for  several  chemical  reactions.168 Gold is  an inert  metal  at  the

macroscopic level, however it becomes reactive at the nanoscale.169–172 Hence this metal

has been of much interest to the scientific community.  Gold dispersed on metal oxides

have been used as novel catalysts for several commercially important chemical reactions.

A lot of work has been performed on nanosized Au dispersion. However, a complete

understanding of these catalysts has not been reached. 

When gold is  dispersed on certain metal  oxides   the  chemistry  of  the  system

changes depending on the support material and Au particle size.79 For instance, when the

gold particles present sizes of about 3nm the turnover frequencies for certain reaction as

the oxidation of CO are very high.173This work addresses the effect of the size of the gold

particle and its performance as a catalyst using density functional theory.

As mentioned, an example of the synergistic effect of the dispersion of gold on

metal oxides  is the CO oxidation reaction.  CO oxidation on gold supported over metal

oxides has been studied as a model reaction for its simplicity and technological relevance.

During the last several decades, there has been a significant increase in the research on
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fuel cells since it can offer a cleaner alternative for conventional internal combustion

engines.  The  hydrogen  rich  gas  mixture  obtained  by  the  partial  oxidation  or  steam

reforming of a hydrocarbon fuel usually contains byproducts, mainly carbon monoxide.

Among the many approaches to reduce CO concentration in the reformed gas mixture,

selective catalytic oxidation of CO to CO2 has been found to be the most effective way to

remove the trace amount of CO from hydrogen.174 Bulk gold alone is not active for CO

oxidation  and TiO2 is  not  active  either  for  thermal  CO oxidation.  Nevertheless,  gold

supported on  TiO2 is an active catalyst for CO oxidation at room temperature.175 Higher

activities have been found by oxide-supported small gold particles less than about 5 nm

size,  with  the  highest  rates  being  shown at  sizes  of  about  2  to  3  nm.176  Molecular

modeling has been a useful tool in testing the feasibility of the proposed active sites and

reaction mechanisms.6 

 Another model reaction example is the water gas shift reaction (WGSR) which

has been carried out  commercially over catalysts based on Ni or Cu at 900 K and 600 K

respectively.  Supported gold nanoclusters catalysts operate at temperatures as low as 473

K.175 DFT calculations predict a very high barrier for the dissociation of H2O on Au(111)

or isolated Au nanoparticles.178 In the metal-oxide supported gold system the adsorption

and  dissociation  of  water  takes  place  on  the  oxide  and  CO  adsorbs  on  the  gold

nanoparticles. Experimental evidence indicates that gold-oxide interfaces  catalyze the

reaction of OH with CO to yield HCOO or CO3 intermediates and then H2 and CO2.178

Williams et. al.179 proposed a model were the active sites are the Au atoms in corner sites.

This model successfully fit  experimental data.  Gold nanoparticles supported on metal
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oxides  has  found several  other  applications  beyond the  mentioned CO oxidation  and

WGSR. It is also well know for  its ability of oxidize alcohols and effect other complex

organic  transformations.33 Moreover,  The  application  of  gold  catalysis  in  organic

synthesis  is  promising  but  still  in  early  stages  of  development,  and  further  work  is

expected in this area. 

One  of  the  important  aspects  of  Au  catalysis  is  the  role  of  the  support.  The

periphery  between  the  Au  cluster  and  the  support  is  potentially  very

active.19 Experimental studies on CO oxidation suggest that inert supports, such as SiO2,

Al2O3,  MgO, are  less  active  than  reducible  transition  metal  oxides.180 Such reducible

supports  also  are  more  sensitive  to  variations  in  the  size  of  the  gold  particles.  This

difference in  activity  could  be attributed  to  the  size  of  the Au-oxide interface  which

changes with Au particle size. For instance, in CO oxidation  molecular oxygen could

adsorb  on  the  reducible  metal  oxides  as  a  superoxide.  Then,  dissociation  of  the

molecularly adsorbed oxygen  could take place at  the metal  support  interface.  These

oxygen atoms could become a reservoir in the vicinity of the gold clusters where the CO

molecules could adsorb, and participate in the CO oxidation reaction.180

Chen et. al.181, unlike the aforementioned authors, suggests that the role of the

support is crucial as a promoter of Au nucleation,  but it is not directly involved in the

bonding of O2 and CO.  The interaction of the gold nanocluster with Ti3+ defects sites in

TiO2 could yield  Auδ- which  could  be crucial  for  O2 activation.  Since,  those  Ti sites

promote the nucleation of gold particles they populate the perimeter of the gold atoms.
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However, DFT calculations have identified an active role of the support. The positively

charged  Ti  at  the  interface  enhances  electron  transfer  from the  supported  Au  to  the

adsorbed O2.182 A more recent work183 using DFT supports this theory claiming that the

periphery of the supported Au clusters on TiO2 surfaces will be oxidized with O atoms at

all  Ti  atoms  underneath  the  Au  cluster.  Those  oxygen  atoms  are   stabilized  in  the

substrate by charge transfer from the adsorbed Au cluster. Another work also claims that

CO absorbs along the [1 0] direction of the rutile (110) surface while the [001] direction

remain  inactive184 The  work  by  Remediakis  et  al.185 also  suggests  that  charge  can

accumulate between the Au atoms at the bottom of the clusters and Ti atoms from the

support. Those electrons trapped in the O deficient substrate  supply the bonds at the

interface.

Another characteristic of Au nanoparticles that may affect their catalytic ability  is

the  presence  of  highly  active  surface,  edge,  or  corner  sites.  The  effect  of

undercoordination of gold atoms has been investigated previously. Lopez et. al.186 have

discovered a number of details on the catalytic activity of gold dispersed on metal oxides.

They found that  the  main effect  of  decreasing  the  size  of  the gold nanocluster  is  to

increase the total number of undercoordinated gold atoms. This is proposed to be the

principal effect on the activity of the catalyst. The support have a smallest effect on the

reactivity. Mavrikakis et. al.187 also found the density of undercoordinated gold atoms to

give the increased reactivity of the system. As mentioned, one way to increase the density

of corner and edges,  is to decrease the size of the gold clusters. Those corner and edges

have been found to be very catalytically active.169  Other work has shown that a change in
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the  coordination  of   Au  atoms  produces  a  modified  electronic  structure.  The

undercoordinated Au atoms have high lying metal d states, which can interact better with

the adsorbate valence state than the low lying states of the higher coordinated atoms of

the close packed surface.171

The  number  of  undercoordinated  Au  atoms  depends  on  the  shape  of  the

nanoparticle, and the interaction between the gold and the metal oxide support determines

the size and  shape of the gold nanoparticles.188 Supports with different interfacial binding

energies between the Au particles and metal oxide produce different sizes and shapes and

therefore different activities.  Defects on the oxide surfaces, such as oxygen vacancies,

have  a  key  role  in  the  adsorption,  nucleation,  and  growth  of  gold  particles.  High

resolution STM and DFT calculations confirmed that bridging oxygen vacancies are the

active nucleation centers for the growth of Au nanoclusters on TiO2.172 Therefore, the size

of the particle depends on the density of oxygen vacancy defects on the surface.189 The

Au particles nucleate in vacancies and them diffuse trough the surface until they coalesce

with other particles generating multiple attaching sites to the surfaces, which stabilize the

particle.  Besides the anchoring of gold particles promoted by oxygen vacancies, defect

sites  might play an important role in charge transfer to gold particles. Electron transfer

from the metal oxide produces negatively charged gold particles which present enhanced

catalytic activity for CO oxidation.170  Charged particles in general can play a role in the

activation of intermediates  in several chemical reactions.

One particular  work has shown contrasting results  with regards  to  the role  of
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oxygen vacancies. Matthey et.  al.190 claim that oxygen vacancies do not stabilize  Au

nanoparticles  under  real  reaction  conditions  at  usually  high  oxygen  pressures.  They

suggest that the Au particles are stabilized via Au–O–Metal bonds. They propose that Au

nanoparticles dispersed on reducible oxides are better catalysts than those supported on

nonreducible oxides, because reducible oxides are more capable of forming oxygen rich

surfaces.  DFT calculations evidence high Au-oxide support adhesion on oxidized TiO2

surfaces but  not on reduced or stoichiometric TiO2 surfaces. The Au clusters become

cationic and is capable of binding  molecular and atomic oxygen at perimeter sites next to

the support and CO further away from the support. 

Even  though  it  is  usually  assumed  that  CO  absorbs  on  the  gold

nanoparticles,191 experimental evidence indicates that O-O bond scission is activated by

the formation of a CO-O2 complex at dual Ti-Au sites at the Au/TiO2 interface.  DFT

calculation  confirms  this  model  and  the  activation  energy.  The   Au-Ti4+ site  at  the

Au/TiO2 interface has been found to be crucial  in activating O2 because it  allows for

electron transfer from Au to Ti and subsequent electron transfer to O2, promoting O-O

bond  activation.192 Another  recent  DFT  work193 has  confirmed  that  O2 is  strongly

adsorbed and activated on the Ti5c (five coordinate) site next to the perimeter of the Au

nanoparticle and also in the sites away from the perimeter.

 There is  experimental evidence that suggests that the effect of supporting Au

nanoparticles on a TiO2 support is the same that supporting TiO2 nanoparticles on bulk

gold.194 Then, the electronic interactions are likely the key aspect of the catalytic activity

90



in Au–TiO2.  The Au nanoparticle can donate electrons to the O2   molecule making it

more reactive. This effect also left a positive charge in the gold atoms increasing the

stability of the absorbate. A switch in the polarity of the metal oxidation state (cationic →

anionic) during cluster reaction has been identified experimentally.195

As discussed above, there are various theories as to why Au nanoparticles behave

so actively as catalysts.  To reiterate,  the following are some of  the important  points.

Undercoordinated  Au  atoms  may  have  unique  electronic  levels  that  enable  surface

reactions.  The interaction between the Au and support metal  oxide is  crucial  since it

determines the shape and stability of Au nanoparticles. Sites at the interface between Au

and metal oxide may also be especially reactive.  In the current work we use DFT to

model  Au  nanoparticles  on  TiO2 surfaces  in  order  to  understand  the  nature  of  such

catalytic systems. We focus on the role of undercoordinated sites and how size affects

their catalytic ability.

 4.2. Methodology

The DFT computations were performed with the CP2K95,196  package. CP2K uses

the  Gaussian  and plane  waves  approach (GPW)95 with  periodic  boundary  conditions.

Valence electrons were described by a double-ζ basis set, specifically  well suited for the

condensed phase.96 Core electrons were  described by Goedecker−Teter−Hutter (GTH)

pseudopotentials.97–99 The gamma point supercell approach was used.. Calculations have

been performed using the Perdew−Burke−Ernzerhof (PBE) functional for the exchange

91



correlation term of the electron−electron interaction,100  and all calculations were spin

polarized.

Transmission electron microscopy studies have shown that deposited Au particles

morphology can be described by a truncated cubo-octahedron.179 We modeled the three

smallest possible truncated cubo-octahedro gold particles. The model TiO2 rutile (110)

surface was made large enough to allow a separation between the periodic images of the

gold clusters of at least 3 Å. All the calculation were performed at the DFT level.  A four

tri-layer slab of the rutile TiO2 (110) surface was used for the calculations. The size of the

TiO2 surfaces was 7x4 for the small and medium size Au nanoparticles and 10x5 for the

biggest nanoparticle. The simulation boxes were 20.9Å by 26.2Å by 30.0Å and 29.8Å by

32.7Å by 40.0Å respectively. The two top tri-layers were allowed to relax and the two

bottom tri-layer were kept fixed.

The typical size of the gold particles in relevant systems is  between 1 nm and 5

nm. However, a typical size used in many previous DFT reports to model gold particles

dispersed  in  metal  oxides  is  usually  less  than  1nm.184,186,193,197–203 We used  the  three

smallest possible truncated cubo octahedra gold particles, with 25, 119 and 331 atoms,

which have 0.9 nm,  1.8  nm, 2.7 nm diameters respectively. Fig. 4.1 shows the gold

nanoparticles with the  corner sites highlighted

Adsorption energies  were calculated using the following expression:

                                     (4.1)
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In the above equation   is the energy of the isolated molecule in the

vacuum,  is the energy of the bare slab, and  is the total energy of

the molecule adsorbed on the slab. For a better visualization of some results we  defined

the binding energy as  . Several  adsorption geometry configurations

were found for each adsorbate, but the most stable geometries are analyzed herein.

4.3. Results and discussions

Since the interaction between the gold nanoparticle and the oxide surface seems to

play a key role in the reactivity, it is very important to obtain a stable configuration for

this system. We chose a truncated cubo-octahedral shape, because this is a known stable

configuration  for  gold  supported  particles.  This  particle  has  been  identified  using

transmission  electron  microscopy  (TEM)  as  a  good  representation  of  the  average

particle.179 

Fig. 4.1  Truncated cubo-octahedral  Au nanoparticles (a) 25 atoms, (b) 119 atoms, (c) 
331 atoms. Yellow spheres represent gold atoms and the gray spheres represent gold 
atoms in corner sites
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4.3.1. Supported nanoparticles

We modeled the gold nanoparticles supported on the TiO2 rutile (110) surface.

This  is  the  most  stable  and  studied  surface  of  TiO2.  The  stability  of  the  supported

nanoparticles influences the possible reaction sites on the support, metal particle, and the

interface perimeter.  In order to obtain a reasonable Au/TiO2 system we optimized the

geometry of the model nanoparticle on the TiO2 surface using several different initial

configurations. 

We obtained  several  stable  configurations  with  different  angles  between  the

perimeter  atoms of  the  Au nanoparticles  and the  [1 0]  direction.  Fig.  4.2 shows the

adsorption energies of the 119 Au atoms nanoparticle on the rutile TiO2 (110) surface for

different  stable  configuration  of  the  cluster. The  most  stable  configurations  have  the

perimeter atoms aligned along the [1 0] direction. The nanoparticles stabilize with the

perimeter close to the line of bridging O atoms on the TiO2 surface.  We used this stable

geometry for the rest of the simulations. We used the same procedure with the 25 Au

atoms nanoparticle. However, we did not use this procedure for the biggest nanoparticles

because of limitations in computational time. We used a initial geometry for the 331 Au

atoms where  the perimeter atoms were aligned along the [1 0] direction.

Fig. 4.3 shows the most stable configuration of the Au nanoparticles with 25, 119

and 331 atoms. The smallest particle stabilizes with a more spherical shape (see Fig. 4.3

(a)). It is important to mention that the configuration shown for the smallest particle is not
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the most stable. The most stable configuration was a bilayer of gold atoms. However, we

wanted to compare particles  with approximately the same shape and different  size in

order to understand geometric and electronic effects. In contrast the bigger nanoparticles

are stable in the truncated cubo octahedral shape (see Fig. 4.3 (b) and (c)).

Fig. 4.2 Adsorption energies of the 119 Au atoms nanoparticle on the rutile TiO2 (110)
surface at different angles with respect the [001] direction.
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(a) (b) (c)
Fig.4.3 Gold nanoparticles on TiO2 (110) surface. (a) 25 atoms, (b) 119 atoms, (c) 331 
atoms.

4.3.2. Size dependence of H2 adsorption

The influence of the size of the Au nanoparticle on reactivity has been extensively

studied using experimental methods. However, at the atomic scale  the effect of  changing

the size of the Au cluster is not completely clear. The computational cost needed to model

realistic systems has typically hindered the simulation at the DFT level. In the present

work  we  used  particles  with  sizes  close  to  the  size  of  experimentally  observed  Au

nanoparticles supported on metal oxides. In order to make the simulations possible we

used up to 1000 computer processors for each system. Even with these computational

resources, some simulations took more than 12 days of computation. 

We modeled  H2 adsorption  over  the  three  Au/TiO2 systems.  The  adsorption

configurations of H2 on three different sites on the 25 gold atoms nanoparticle are shown

in  Fig. 4.4. The adsorption sites are a corner Au atom in the interface between the Au

nanoparticle and the TiO2 surface, a corner atom in the Au particle and one site on the

(111)-like  surface of the Au nanoparticle. Fig. 4.5 shows the binding energies of H2 on
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three different sites over the 25-atom Au nanoparticle. The least stable adsorption site

occurs along the particle face, the (111)-like facet, while corner and corner-interface sites

are more stable. 

(a) (b) (c)
Fig. 4.4 Hydrogen molecule adsorption configuration on the 25 Au atoms particle (a)
Adsorption at a corner interface site, (b) adsorption at a corner site, and (c) adsorption on
the gold surface face.

Fig. 4.5 Binding energies of hydrogen molecule in three different sizes of the 25 atom
gold nanoparticle. 
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The  adsorption  configurations  of  H2  on  four  different  sites  on  the  119  atoms

nanoparticle are shown in  Fig. 4.6. The adsorption sites include the interface along the

edge of the nanoparticle, a corner Au site at the interface between the Au nanoparticle and

TiO2 surface, a corner atom on the Au particle, and one site on the (111) face of the Au

nanoparticle. The binding energies of H2 on the 119 Au atoms  system are shown in Fig.

4.7. The most stable  configuration is the molecule absorbed on the edge interface site,

followed  by  the  corner  interface  site,  corner,  and  lastly  surface.  For  the  119  atoms

nanocluster, the edge site has two corner site as neighbors, which could influence the

stability of the molecule. Fig. 4.8 shows the optimized geometry of H2 absorbed on a

corner interface site on the 331 atoms nanoparticle. We did not model adsorption of H2 at

other sites on these nanoparticles due to the computational cost of the calculations. 

(a) (b) (c) (d)
Fig.  4.6  Hydrogen  molecule  adsorption  configuration  on  the  119  atom  particle  (a)
adsorption at an edge interface site (b) adsorption at a corner interface site, (c) adsorption
at a corner site, (d) adsorption on gold surface.
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Fig. 4.7 Binding energy of hydrogen molecule at four different sites of the 119 atoms
gold nanoparticle.

Fig. 4.8 Hydrogen atom adsorption configuration on 311 Au atom nanoparticle over rutile
TiO2  (110) surface system. Shown is a corner interface site.
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Figure  4.9  shows  a  comparison  of  the  different  adsorption  energies  over  the

various Au particles. The adsorption energies at the same site over different particles are

nearly the same. E.g. corner interface adsorption energies are nearly the same over all Au

particles. We conclude that the size of the Au nanoparticle does not have a noticeable

effect in the stability of absorbates. However, the choice of adsorption site within the Au

nanoparticle does affect the stability of the absorbate. The difference between different

particles can be attributed largely to the density of active sites. The smaller particles have

a higher concentration of active corner sites,  which leads to their  greater activity per

particle mass.  These results suggest that the catalytic activity of the Au/TiO2 system is

determined largely by the density of special sites.

Fig. 4.9 Binding energies of a hydrogen molecule in three different sites of the various
gold nanoparticle.
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4.3.3 Adsorption of CO oxidation reaction intermediates 

The adsorption energies of CO on four different sites on the 119 atom nanoparticle

are shown in Fig. 4.10. We limit the analysis to this system because it is computationally

tractable and it has a realistic size. The most stable configurations are the edge and corner

interface perimeter sites just like the H2 adsorption configuration. It is noteworthy that the

CO molecule is more stable than H2 in the surface of the gold particle.

 Fig. 4.10 Binding energy of CO molecule in three different sizes of the 119 atoms gold
nanoparticle.

In order to show a possible application of our model we analyze the energetics of

the CO oxidation reaction. The CO oxidation is assumed to take place via the following

reaction steps: 180,185
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R1:                  CO + * ↔ CO* 

R2:                   O2 + * ↔ O2 * 

R3:                 O2 * + * ↔ 2O* 

R4:             CO* + O* ↔ CO2 + 2* 

R5:        CO* + O 2 * ↔ CO 2 + O* + * 

The reaction mechanism presents two possible routes for formation of CO2 . In the

first route the oxidation of CO happens after O2 is dissociated, whereas the second route

to  CO  oxidation  takes  place  via  associative  oxidation  by  O2 .  Fig.  4.11  shows  the

potential energy surface for the two routes on a 119  atom cluster. The dissociated state of

oxygen in the system is more stable. Then, is more likely to occur in the perimeter. CO

was adsorbed in the corner sites and oxygen in the periphery of the nanoparticle.  This

results show that the reaction energies are all exothermic for CO oxidation, indicating

that these special interface sites are indeed very active for catalysis. 

We used the CO oxidation reaction as an example of the possible application of

our  model.  We did  not  find  significant  differences  in  the  adsorption  energies  of  the

intermediates of the CO oxidation with different Au nanoparticles. This support our main

point on the independence of reactivity and particle size. The geometry of the 119 atom

particle  was  a  realistic  model  choice  because  the  edge  atoms  are  likely  sites  in  the

reactivity. Our results suggest that the reaction is viable at this special sites. 
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Fig.4.11 Potential reaction energy for CO oxidation on a 119 atoms Au cluster dispersed
on TiO2.

4.4 Conclusions

We  have  studied  the  adsorption  of  small  molecules  over  different  Au

nanoparticles. We can conclude that the corner sites of supported Au nanoparticles lead to

the most stable configuration of adsorption for small molecules. Thus, the reactivity of

the whole system depends mostly in the number of those corner sites per unit area of

catalyst. The corner sites  at the interface between the support and the Au nanoparticle

produce the strongest binding energies. The edges sites in the periphery of the Au clusters

also were found to strongly bind the molecules. However, further research is required to

assess the reactivity of this sites over a variety of reactions. We showed for a sample

reaction, CO oxidation, that these non-terrace sites are very reactive.
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We analyzed  the  influence  of  the  size  of  the  particle  on  the  activity  of  the

adsorption sites. We did not find a significant difference in the binding energy of the

molecules on the same adsorption sites  for nanoparticles  of  different  sizes.  Thus,  we

expect reaction sites on different particles to behave similarly, but that the density of

active sites on smaller nanoparticles is higher. This explains the increased reactivity of

systems with smaller Au nanoparticles.

Acknowledgments

Computational  resources  were  provided  by  the  Molecular  Science  Computing

Facility  at  the  Environmental  Molecular  Science  Laboratory  of  Pacific  Northwest

National Laboratory. Battelle operates Pacific Northwest National Laboratory for the

U.S. Department of Energy.

104



Chapter 5: Conclusions

In this  work we used molecular  modeling (density  functional  theory)  to  study

several  key  features  of  TiO2 catalysts.  First,  we  have  examined  the  details  of  the

localization and transfer  of charge in  several  TiO2 configurations.  We have presented

evidence  that  suggests  ionosorption  should  occur  over  group  IV  metal  oxides  with

electron-donating defects. Increased binding of absorbates is observed when the surface

is reduced and unpaired electrons are present in the surface slab. These electrons transfer

to absorbates forming an anion that may favorably interact with surface metal cations. 

We have found that the charge transfer process from the surface to the surface

depends on the difference of the electro-negativity of the surface and the adsorbate. We

also found a correlation between the work function of the metal oxide,  and the ionic

adsorption  of  the oxygen molecule;  surfaces  with smaller  work function values  have

larger  adsorption  energies  for  O2.  The  ionic  character  of  a  surface,  as  measured  by

vacancy formation energy, also correlates well with the O2 adsorption energy. Thus, if the

work function or vacancy formation energy of a metal oxide surface is known, it may be

possible to predict when electron transfer occurs and to what degree during adsorption.

We have simulated the interface between the anatase and rutile phases of TiO2

using  DFT+U  in  order  to  better  characterize  the  nature  of  mixed-phase  TiO2

photocatalysts. We modeled realistic structures that contained thousands of atoms, rather

than smaller, possibly irrelevant interfaces.  Our results show the preferred direction of

electron/hole flow (electrons to anatase, holes to rutile). Such preferred migration could
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lower the electron/hole recombination rate, which would increase photo-reactivity.  We

also probed the electronic structure of our heterostructure and found a gap state caused by

electrons  localized  in  undercoordinated  Ti  atoms  which  were  present  within  the

interfacial region. Interfaces between bulk materials and between exposed surfaces both

showed electron trapping at  undercoordinated sites.  These undercoordinated (typically

four)  atoms  present  localized  electrons  that  could  enable  reduction  reactions  in  the

interfacial  region,  and  could  explain  the  increased  reactivity  of  mixed-phase  TiO2

photocatalyst materials.  Such sites have been experimentally predicted, but theoretical

work now confirms their existence. We cannot exclude the possibility that defects (such

as O vacancies or Ti interstitials) may affect the electronic properties of mixed-phase

interfaces, and future work may examine interfaces with such structures.

We examined the reactivity of gold nanoparticles dispersed on TiO2 surfaces. Our

results show that  different possible adsorption sites have different stabilities, but that

according to our calculations the presence of low-coordinated Au sites seem to be crucial

for the adsorption process. Low-coordinated corner Au sites are most active for binding

adsorbates. This is in agreement with previous experimental results.   We found that the

binding energies of small molecules to the gold nanoparticles do not change significantly

with the size of the nanoparticle. That is, adsorption energies at corner sites (or corner

interface  sites)  are  all  nearly  the  same  on  all  three  Au  nanoparticles.  The  effect  of

changing Au particle size thus appears to be changing the number and density of reactive

corner (or corner-interface) sites. Larger particles will have less active sites per mass of

particle, and thus will appear less reactive when normalized by amount of catalyst. We
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expect that these insights will be of great help in understanding the catalytic activity of

gold dispersed over titania.

To summarize  we  have  studied  the  role  of  metal  oxides  during  catalytic  and

photocatalytic processes. We have detailed  three particular systems, namely, the anatase

surface of TiO2 and other group IV metal oxides, mixed phase TiO2 surfaces, and gold

decorated rutile TiO2 surfaces. The electronic nature of TiO2 plays a key role in all the

processes examined. TiO2 is an active photocatalyst and catalyst support.

My  work  may  lead  to  several  new  avenues  of  research.  The  concept  of

ionosorption could be explored on other metal oxides to address how general this process

is  and  what  may  be  further  governing  principles.  We  recommend  to  continue

investigating on the influence of the work function and the energy of formation of an

oxygen vacancy of a material on the ionic adsorption process. 

To gain further understanding of metal oxides as catalysts we recommend that

future  work  investigate  the  stability  of  relevant  intermediates  for  reactions  in  the

interfacial region of mixed phase catalyst. The calculation of the work function for each

phase could determine the  potential activity of different parts of the mixed surface. 

Finally, the challenging task in the development of supported gold nanoparticle

catalysts is to understand how to stabilize undercoordinated Au sites. Future work may

examine other particle shapes and address size effects, as well as the effect of different

metal oxide supports.  Further  research is also needed to stablish the influence of the

oxygen vacancies and other defects on the activity of the Au nanoparticles.
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