
Error Detection Techniques Against Strong
Adversaries

by
Kahraman Daglar Akdemir

A Dissertation
Submitted to the Faculty

of the

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the
Degree of Doctor of Philosophy

in
Computer Engineering

November, 2010

Approved:

Prof. Berk Sunar
ECE Department
Dissertation Advisor

Prof. Xinming Huang
ECE Department

Dr. Gunnar Gaubatz
Intel Corporation

Prof. Fred J. Looft
ECE Department Head

For my wife.

Abstract

“Side channel” attacks (SCA) pose a serious threat on many cryptographic devices and

are shown to be effective on many existing security algorithms which are in the black box

model considered to be secure. These attacks are based on the key idea of recovering secret

information using implementation specific side-channels. Especially active fault injection

attacks are very effective in terms of breaking otherwise impervious cryptographic schemes.

Various countermeasures have been proposed to provide security against these attacks.

Double-Data-Rate (DDR) computation, dual-rail encoding, and simple concurrent error

detection (CED) are the most popular of these solutions. Even though these security

schemes provide sufficient security against weak adversaries, they can be broken relatively

easily by a more advanced attacker. In this dissertation, we propose various error detection

techniques that target strong adversaries with advanced fault injection capabilities.

We first describe the “advanced attacker” in detail and provide its characteristics. As

part of this definition, we provide a generic metric to measure the strength of an adversary.

Next, we discuss various techniques for protecting finite state machines (FSMs) of cryp-

tographic devices against active fault attacks. These techniques mainly depend on nonlinear

robust codes and physically unclonable functions (PUFs). We show that due to the nonuni-

form behavior of FSM variables, securing FSMs using nonlinear codes is an important and

difficult problem. As a solution to this problem, we propose error detection techniques based

on nonlinear codes with different randomization methods. We also show how PUFs can be

utilized to protect a class of FSMs. This solution provides security on the physical level

as well as the logical level. In addition, for each technique, we provide possible hardware

realizations and discuss area/security performance.

Furthermore, we provide an error detection technique for protecting elliptic curve point

addition and doubling operations against active fault attacks. This technique is based on

nonlinear robust codes and provides nearly perfect error detection capability (except with

exponentially small probability). We also conduct a comprehensive analysis in which we

apply our technique to different elliptic curves (i.e. Weierstrass and Edwards) over different

coordinate systems (i.e. affine and projective).

Acknowledgments

First of all, I would like to give my sincerest thanks to my advisor, Professor Berk

Sunar. I learned a lot from him. I will never forget the effort, time, and energy he put in

my academic life. I also would like to say a few things in Turkish to show my appreciation

for all his help: “Hocam, uzerimde cok hakkiniz ve emeginiz var. Fazla soze hacet yok, her

sey icin cok tesekkur ederim.”

I would also like to thank Prof. Xinming Huang and Dr. Gunnar Gaubatz for agreeing

to be on my dissertation committee. I really appreciate the time they took to significantly

improve my dissertation. Additionally, I would like to thank National Science Foundation

for partially funding this research through the Cybertrust CNS Award No. 0831416.

A considerable amount of my time at WPI was funded through being a TA. I thank

our department head Professor Fred Looft, for keeping me on board for all these years. I

also want to thank my lab mates and coauthors whom I prefer to call my academic siblings:

Deniz Karakoyunlu, Ghaith Hammouri, Yin Hu, Chenguang Yang, and Michael Moukarzel.

Also, I would like to thank my best friends Ismail Onur Filiz, Emrah Deniz, Erdinç

Öztürk, Emrah Durulan and Volkan Kurt for always being there for me.

I also would like to thank my family, but I want to do it in my own language: “Annem

Aytan Akdemir, babam Mehmet Akdemir, ve canimdan cok sevdigim cadi kardesim Burcu

Caglar Akdemir’e her zaman yanimda olduklari ve beni destekledikleri icin tesekkur ederim.

Sizleri cok ozluyorum. Umarim nese ve umut dolu bir hayatiniz, mutluluk dolu bir omrunuz

olur; cunku ben mutlu olmak icin hep sizden guc aliyorum..”

Recently, I had a another father, mother, and brother whom I love as much as my own.

I also would like to thank them: “Annem Mine Keceli, babam Sedat Keceli, ve ici tertemiz

kardesim Mustafa Keceli’ye beni kucaklayip ailelerine dahil ettikleri icin tesekkur ederim.

Her seyin en guzelini hakediyorsunuz. Umarim her sey gonlunuzce olur.”

Last but certainly not least I want to thank my best friend and my wife Merve Keceli.

“Seni ilk tanidigim gunden beri eksik etmedigin emegin, destegin, ve guler yuzun icin cok

sagol Mervem. Sen oldugun icin, senin gibi oldugun icin, ve hep benimle olacagin icin cok

tesekkur ederim.”

Worcester, MA, Fall 2010

Kahraman Daglar Akdemir

Contents

Abstract i

Acknowledgments iii

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 4

1.2 Dissertation Outline . 5

2 Adversarial Faults and Detection Model 7

2.1 Characterizing Adversarial Faults . 7

2.1.1 Structure Obfuscation . 7

2.1.2 Injection Methodology . 8

2.1.3 Resolution . 9

2.1.4 Abstract Error Model . 10

2.1.5 Adaptive Injection . 10

2.1.6 Multiplicity . 10

2.1.7 Effective Duration . 11

2.1.8 Invasiveness . 11

2.2 The Advanced Attacker . 12

3 Background on Robust Nonlinear Codes 15

4 Hardening FSMs Against Strong Adversaries 21

4.1 Motivation . 21

4.2 The Error Detection Technique . 24

4.2.1 Why Is It Difficult to Secure FSMs? 24

4.2.2 Proposed Solution . 26

4.2.3 Security Proof . 29

v

4.3 Proposed Next-State Logic Construction . 31

4.3.1 Generic Technique for Next-State Logic Construction 31

4.3.2 Case Study Utilizing the Proposed Construction 34

4.4 Hardware Realizations of the Next-State Logic 37

4.5 Comparison with other FSM security schemes 39

4.6 Implementation Results . 41

4.7 Summary . 45

5 MUX-based Error Detection for FSMs 47

5.1 Motivation . 47

5.2 The Error Detection Technique . 48

5.3 Security Analysis . 54

5.4 Hardware Scalability . 57

5.5 Comparison with other FSM security schemes 58

5.6 Summary . 59

6 PUF-based Error Detection Methods in FSMs 61

6.1 Motivation . 61

6.2 Physically Unclonable Functions . 63

6.3 Securing Known-Path State Machines . 66

6.4 Key Integrity . 73

6.5 Error Detection Network Security . 77

6.6 Summary . 79

7 Nonlinear Error Detection for ECC 81

7.1 Motivation . 81

7.2 Background . 83

7.2.1 Elliptic Curve Cryptography Overview 84

7.2.1.1 Simplified Weierstrass Formulation for Elliptic Curves . . . 84

7.2.1.2 Edwards Formulation for Elliptic Curves 85

7.2.2 Existing Error Detection Techniques in ECC 87

7.3 The Error Detection Technique . 89

7.3.1 Security Analysis . 90

7.4 Proposed Point Addition and Doubling Constructions 94

7.4.1 Edwards Projective Unified Addition 94

7.4.2 Weierstrass Affine Addition and Doubling 100

7.5 Results and Discussion . 103

7.6 Summary . 109

8 Conclusion 111

Bibliography 113

A Non-redundant Datapath Formulas in Dataflow Format 123

vi

B Predictor Designs 126

vii

List of Tables

4.1 Grouped state assignment table . 34
4.2 First level Lagrange . 35
4.3 Second level Lagrange . 36
4.4 Hardware implementation results for different FSM protection schemes. . . 42
4.5 Breakdown of the gate count for different Montgomery multipliers. 44
4.6 Overhead caused by our protection scheme for different MMs. 44

7.1 Overhead analysis for the error detection technique proposed in this chapter 104
7.2 Operation counts of robust modular arithmetic functions proposed in [22] . 105
7.3 Overhead analysis for the error detection technique proposed in [22] 106
7.4 Estimated overhead comparison . 108

viii

List of Figures

4.1 Fault injection example on the control unit of the Montgomery Ladder Al-
gorithm with Point of Attack indicated by the dashed transition [24] 22

4.2 Arithmetic parallel hardware implementation of the next-state logic 38
4.3 Time redundant (serial) arithmetic hardware implementation of the next-

state logic . 39
4.4 Error masking probability per unit area . 43

5.1 Proposed error detection technique . 49

6.1 A basic delay based PUF circuit . 64
6.2 State Diagram Representation of Left-to-Right Exponentiation Algorithm

with Point of Attack . 68
6.3 PUF-based circuit for protecting FSMs . 69
6.4 Key integrity check using PUF . 74
6.5 PUF based EDN . 78

7.1 Secure Edwards projective unified point addition 98
7.2 Secure Weierstrass affine point addition . 100
7.3 Secure Weierstrass affine point doubling . 101

ix

Chapter 1

Introduction

“Side channel” attacks (SCA) pose a serious threat on many cryptographic devices

and are shown to be effective on many existing security algorithms which are in the

black box model considered to be secure. These attacks are based on the key idea of

recovering secret information using implementation specific side-channels. SCA can

be broadly classified as passive and active attacks.

In passive attacks, the adversary is restricted to only observing implementation

specific characteristics of the chip to reveal the secret information located in the

device. Power consumption, timing information, electromagnetic (EM) emissions,

and acoustic emissions are the most popularly utilized sources of passive attacks.

Power and timing analysis attacks mainly exploit information leaked through

power and timing channels in order to deduce the secret data [37, 38]. Note that while

a cryptographic device operates, it consumes power. The amount of power consumed

is related to the amount of computation conducted by the device. Consequently, by

tapping into the power pin of the device and observing the power consumption profile,

an attacker can deduce information about the operations conducted in that device.

Also note that when these operations are data dependent (e.g. dependent on the

secret key), the adversary can gain information about the key used inside this device.

1

2 CHAPTER 1. INTRODUCTION

A similar approach applies to timing information as well when operation durations

are data dependent.

Similarly, while electronic circuits (i.e. ICs, sensors, connection cables, etc.) op-

erate, they leak EM waves at different frequencies. An attacker could use this leaked

information to retrieve internal/secret data that is located on that device. Various

versions of this side-channel attack are proven to be effective against different appli-

cations. For example, the project code named TEMPEST investigates the utilization

of unintentional emissions (electromagnetic, mechanical, and acoustic) from a source

to disclose secret information about that source [1]. Similarly, Kuhn showed that by

collecting the EM waves leaked from the monitor cables of computers, the displayed

data on a CRT monitor can be reconstructed by an adversary [40, 41, 42]. In other

words, using the leaked EM information, the attacker can see what we have on our

monitor even through walls. Furthermore, EM emanations are used to reach to se-

cret keys in cryptographic devices such as RFIDs and FPGAs [17, 52]. In this case,

the attacker analyzes the EM spectrum while the chip is running using a coil and

processes this information to retrieve the secret key.

Acoustic attacks can also be used in order to leak information about a crypto-

graphic device. These attacks are very similar to electromagnetic attacks, yet use

acoustic waves instead of electromagnetic waves. Acoustic side-channel attacks are

already proven to be effective in extracting the executed instruction information from

CPUs [61]. In this case, by listening to the acoustic sound emanations of a CPU,

the attacker can obtain the executed instruction flow and break the system. [5, 69]

show that a similar attack could be conducted on keyboards as well. In this case, the

attacker can identify the typed characters on a keyboard even through walls. Note

that each time a key is pressed, it leaks acoustic information which has key specific

characteristics. As a result, an attacker can steal passwords using this technique.

Boneh et al. [13] demonstrated that the active fault injection attacks are also very

3

effective in terms of breaking otherwise impervious cryptographic schemes. The main

idea of active attacks is to inject faults into specific parts of an integrated circuit (IC).

This faulty execution is used to gain access to the secret information, such as the cryp-

tographic key. More specifically, the seminal paper of Boneh et al. [13] demonstrated

that it is relatively easy to break the Chinese Remainder Theorem (CRT) based RSA

algorithm in the presence of faults. They mainly proposed and showed how to break

this scheme by injecting a fault into one of the two exponentiations required to gener-

ate the RSA signature. Following this work, Biham et al. [11] introduced differential

fault attacks (DFA) and showed that secret key cryptosystems such as DES can also

be compromised using active fault injection attacks.

External clock transients, variations in the external voltage lines, temperature

variations, EM fault injection, and bit-flips using optical laser beams are some of the

many active fault attack techniques found in the literature.

In case of the external clock transients, the clock line is toggled in an unexpected

nature and this in turn causes a faulty operation on the sequential portion of the

circuit. Mainly, the flip-flops in the circuit are affected from this attack. Due to the

faulty clock transitions, faulty digital values are latched by these flip-flops. External

voltage line attacks are similar to clock transient attacks but use power lines instead.

Due to variations on the voltage lines, some circuit elements behave unexpectedly

and cause faults.

Similarly, temperature variations can be used as the source to create faults. Since

temperature is a very important parameter in the performance of electronic compo-

nents, by changing the temperature of an integrated circuit (i.e. heating or cooling),

some components on the device can be forced to perform unexpectedly.

EM-based fault injection techniques depend on the formation of Eddy current on

the surface of a chip due to an adversarial EM pulse [60]. The EM pulse is generated

using a spark generator. Essentially, the Eddy current passes through the silicon

4 CHAPTER 1. INTRODUCTION

and causes bit-flips on the register/gate level. In case of the optical fault injection

attacks, the first step is to remove the package of the device under attack (DUA).

Next, an optical laser beam is shined on the silicon in order to cause bit-flips on the

register/gate level [60, 63].

More information about side-channel attacks could be found in the survey papers

of Bar-El et al. [6] and Naccache [54]. In this dissertation, we mainly focus on active

fault attacks and propose various error detection techniques against them.

1.1 Motivation

Side-channel attacks pose a serious threat for many cryptographic applications, such

as smartcards. Typically active attacks are harder to introduce but can be more

effective. Various countermeasures have been proposed to provide security against

these attacks. Double-Data-Rate (DDR) computation, dual-rail encoding and con-

current error detection (CED) are the most popular countermeasures proposed in the

literature to counter active attacks.

In the Double-Data-Rate (DDR) computation technique [50, 51], both edges of the

clock are used to make the same computation twice and check for errors by comparing

the two results.

Another countermeasure proposed against side-channel attacks is the dual-rail

encoding. In these schemes, a data value is represented by two wires. In this case,

two out of four states represent the data and the two extra states which are “quiet”

and “alarm” can be used for security purposes. Consequently, utilizing the dual

railing for the cryptographic designs can potentially provide security against active

and passive side-channel attacks [64, 68, 16, 43].

The most commonly used fault detection technique is CED which employ circuit

level coding techniques, e.g. parity schemes, modular redundancy, temporal redun-

1.2. DISSERTATION OUTLINE 5

dancy, etc. to produce and verify check digits after each computation [9, 23, 35, 53].

For example, in triple modular redundancy (TMR), three copies of the non-redundant

circuit are run in parallel and a majority voting decides if the operation of the device

is fault free or not. Quadruple modular redundancy (QMR) works exactly the same

way but with four copies. Temporal redundancy is based on a similar idea. In this

case, recomputations are done by the same hardware but at different times. If the

results of these different computations do not match, this points to a possible fault

injection attack.

Non-linear robust error detection codes [34], a more advanced CED technique,

provide the most effective defense mechanism against active fault attacks. The details

of this coding scheme and its possible applications, e.g. protection of the Advanced

Encryption Standard (AES) datapath, are described in [33, 32, 44, 45, 46].

Even though these protection schemes provide sufficient security against weak

adversaries, they can be broken relatively easily (except nonlinear robust codes) by

a more advanced attacker. Hence, in this dissertation, we first define the “advanced

attacker” in detail and provide its characteristics. As part of this definition, we

provide a generic metric to measure the strength of an adversary. Next, we propose

various error detection schemes on different cryptographic blocks that will now be

secure even against this highly talented adversary.

1.2 Dissertation Outline

This dissertation consists of four major chapters (4 through 7) that represent the

major results of the authors research. It is organized as follows: In Chapter 2 we

will provide the reader with an overview of our adversarial fault model that forms

the basis of our research and we will define the “advanced attacker” in detail. In

Chapter 3, we will give the required background information associated with robust

6 CHAPTER 1. INTRODUCTION

nonlinear codes. Chapter 4 contains the results of our research on hardening state

machines against strong adversaries. We show how robust nonlinear codes can be

used to provide redundancy and error detection mechanisms for finite state machines

(FSMs). In Chapter 5, we consider a different nonlinear error detection technique for

FSMs. This is a multiplexer-based technique which is inspired from the efficient FSM

implementations. Chapter 6 provides a high level description of a technique which

uses physically unclonable functions (PUFs) to secure a class of FSMs against fault

injection attacks. Finally, in Chapter 7, we discuss how to apply systematic nonlinear

error detection codes to protect elliptic curve point addition and doubling operations

against an advanced attacker.

Chapter 2

Adversarial Faults and Detection

Model

All the proposed error detection schemes in this dissertation target an advanced at-

tacker with high fault injection capabilities. In this chapter, we define this “advanced

attacker” model and provide the details of its characteristics.

2.1 Characterizing Adversarial Faults

In this section, we provide a general taxonomy of the adversarial faults. We mainly

describe the important features associated with an adversary.

2.1.1 Structure Obfuscation

This feature essentially is a measure of the amount of information the attacker has of

the system he is attacking to. From an attacker’s point of view, while conducting an

attack on a cryptographic system, having information about the structure of the sys-

tem becomes very crucial. In what follows, we show some of the important questions

that are relevant from an attacker’s perspective when attacking a system.

7

8 CHAPTER 2. ADVERSARIAL FAULTS AND DETECTION MODEL

• What are the main arithmetic/logical blocks in this system?

• What specific function does each block implement?

• How is the circuit laid-out on the silicon?

• What kind of a timing behavior does the system show?

Most of the time, even though the attacker will have some idea about the structure

of the system, all these details will not be public. However, this in turn becomes

some form of security through obfuscation. Ideally, a cryptographic system should

still survive when there is no obfuscation about the structure and the attacker has a

detailed understanding of the system.

2.1.2 Injection Methodology

This feature describes the possible fault injection methods an attacker can use to

conduct an attack on a cryptographic system. In the following, we cover some of these

crucial methodologies that are used to implement active attacks on cryptographic

chips.

• Optical: In this method, the first step is to remove the package of the device

under attack (DUA). Next, an optical laser beam is shined on the silicon in

order to cause bit-flips on the register/gate level.

• Electromagnetic: This method depends on the Eddy current that is formed

on the surface of a chip due to an EM pulse. The EM pulse is generated using

a spark generator. Essentially, the Eddy current passes through the silicon and

causes bit-flips on the register/gate level.

• Clock transients: In this method, the clock line is toggled in an unexpected

nature and this in turn causes a faulty operation on the sequential portion of

2.1. CHARACTERIZING ADVERSARIAL FAULTS 9

the circuit. Mainly, the flip-flops in the circuit are affected because due to the

faulty clock transitions, wrong values can be latched in this case.

• Variations in the external power lines: This fault injection method is

similar to clock transient attacks but uses power lines instead. Due to variations

on the voltage lines, some circuit elements behave unexpectedly and cause faults.

• Temperature variations: Since temperature is a very important parameter

in the performance of electronic components, by changing the temperature of

an integrated circuit, some components on the device can be forced to perform

unexpectedly.

An attacker can use any of these fault injection methodologies depending on his

resources to break a system. Ideally, a cryptographic circuit should be secure against

any of these attacks.

2.1.3 Resolution

This feature is a measure of the attacker’s capability in injecting a fault to a specific

part of the circuit at a specific time. Resolution can be broadly discussed under the

following two categories:

• Temporal resolution defines the accuracy of the attacker in the time domain,

i.e. fault insertion at a particular time.

• Spatial resolution on the other hand is a measure of the attacker’s precision

in injecting a fault at a very specific location on the device.

An attacker with limited resources probably will not have high temporal and

spatial resolution. On the other hand, an advanced attacker with various resources,

tools, and machines can inject faults with high precision.

10 CHAPTER 2. ADVERSARIAL FAULTS AND DETECTION MODEL

2.1.4 Abstract Error Model

The basic active fault injection model assumes that when the attacker injects a fault

into the circuit, an erroneous result will be observed at the output. Consequently,

the error e becomes the difference between the expected output x and the observed

output x̃=x + e. This error can be characterized either as logical or arithmetic

depending on the functions implemented by the target device. If the target area of

the device is mostly dominated by flip-flops, RAM, registers, etc. then using the

logical model, where the error is expressed as an XOR operation (x̃=x⊕ e), is more

appropriate. If on the other hand, the targeted region of the device is an arithmetic

circuit, then it is more useful to use the arithmetic model where the error may be

expressed as an addition with carry (x̃=x + e mod 2k, where k is the data width).

2.1.5 Adaptive Injection

We define the adaptive fault injection feature as follows: If the attacker can observe

any existing data on the circuit at the time of fault injection i.e. in the same clock

cycle, and can adjust his fault injection accordingly, then he is told to have an adaptive

fault injection capability. This means that the attacker will be able to adaptively

attack the circuit by first reading the existing data and then choosing the appropriate

error vector.

2.1.6 Multiplicity

Error multiplicity is a measure of how many bits of the output is affected due to

the implemented active attack. For example, if 8-bits of the output are affected

(i.e. changed value), this is called to be an error with a multiplicity of 8. It is

usually reasonable to assume that injecting errors with higher multiplicities requires

more effort. Hence, an advanced attacker will be able to inject faults with various

2.1. CHARACTERIZING ADVERSARIAL FAULTS 11

multiplicities while an attacker with limited resources will not be able to pass a

threshold.

2.1.7 Effective Duration

This feature is a measure of the duration for which the injected fault stays in effect.

In general, faults can be broadly classified into the following two classes when effective

duration is concerned:

• Permanent Faults are the faults that are irreversible. In this case, the effect

of the injected fault on the device is permanent.

• Transient Faults are on the other hand non-permanent. In other words, the

effect of this type of faults are temporary and the device returns to normal

operation usually after a couple of clock cycles.

In general, it can be argued that the transient faults are usually more useful for

the attacker because in this case he can try many different fault injections without

affecting the device permanently.

2.1.8 Invasiveness

In an adversarial setting, invasiveness is a measure of the DUA’s mechanical integrity.

Invasiveness of an attack can be categorized into the following classes:

• Non-invasive faults preserves the mechanical integrity of the DUA. The pack-

age, any protective coating, etc. are not removed. The fault injection is mainly

limited to the electromagnetic radiation or to the pins of the IC.

• Invasive faults on the other hand sever the mechanical integrity of the DUA.

Potentially, the package of the device is removed and any form of tamper-

12 CHAPTER 2. ADVERSARIAL FAULTS AND DETECTION MODEL

proofing circuitry is disabled. This is probably the most advanced attack appli-

cable because it gives the attacker the highest level of control over the device.

• Semi-invasive faults provide a compromise between the invasive and non-

invasive cases. In this case, the package is removed but the rest of the circuit

remains intact.

Invasiveness is essentially a measure of how advanced an attacker is. More ad-

vanced attackers want a higher level of control on the device. As a result, they need

to be more invasive while injecting faults.

2.2 The Advanced Attacker

In this section, we define the “advanced attacker” which is the main target of the

proposed error detection techniques in this dissertation. The following assumptions

in connection with the characteristics we discussed in Section 2.1 define our fault

model.

1. The details of the particular structure/function of the device is public.

2. There is no limit on the attacker’s particular fault injection methodology.

3. The attacker is an advanced one with high temporal and spatial fault injection

capability.

4. The errors observed at the output of the device are always additive in nature

and the attacker cannot conduct his attack by overwriting the output values.

5. The attacker cannot observe any existing data on the circuit at the time of fault

injection i.e. in the same clock cycle. This means that the attacker will not be

able to adaptively attack the circuit by first reading the existing data and then

choosing the appropriate error vector.

2.2. THE ADVANCED ATTACKER 13

6. The attacker can configure the fault injection process to reflect any specific error

vector he desires at the output, i.e. he can pick the value of e.

7. Every error vector (all multiplicities) can be observed at the output of the

device. 1

The detection model we assume disables the device or resets the secret informa-

tion after an injected fault is detected. Hence, the attacker will not be able to try

many different error vectors until he breaks the device. He has only one chance to

successfully inject a fault.

1Also, a small study we conducted suggests that for limited fault injection multiplicities on a

specific circuit (e.g. logical values of only m nodes are inverted with a fault), error distribution at

the output is not uniform and depends on the specifics of the logic design. However, since we are

trying to construct a generic method that is applicable to all FSMs and since the attackers will

always aim for the most vulnerable error vector in a circuit, we will conduct our error detection

study assuming that all the errors can be observed at the output of the proposed design with the

same frequency.

14 CHAPTER 2. ADVERSARIAL FAULTS AND DETECTION MODEL

Chapter 3

Background on Robust Nonlinear

Codes

Karpovsky and Taubin proposed a new class of nonlinear error detection codes in

[34]. These codes minimize over all (n, k, r)-codes the maxima of the fraction of

undetectable errors. Note that the (n, k, r)-codes are coding schemes where k is the

bit length of the information, r is the bit length of the redundant check-sum associated

with the information, and n=k + r is the bit length of the codewords in these codes.

The following definition from [34] provides the structural details of the binary version

of these codes.

Definition 3.0.1. [34] Let V be a binary linear (n, k) code with n ≤ 2k and check

matrix H = [P |I] with rank(P) = n − k. Then CV = {(x,w)|x ∈ GF (2k), w =

(Px)3 ∈ GF (2r)}.

An attacker essentially aims to inject a fault into the circuit and cause modifi-

cations on the original data values. In order to model this theoretically, the errors

caused by the attacker are assumed to affect the original codewords in an additive

nature. According to Definition 3.0.1, each data value in the circuit is represented as

the pair (x,w), where x is the original data and w is the check-sum associated with it.

15

16 CHAPTER 3. BACKGROUND ON ROBUST NONLINEAR CODES

Hence, in order to be successful, the attacker will have to inject a pair of error vectors

on both x and w. Note that a non-zero error e is masked for a codeword (x,w) when

the erroneous message (i.e. fault injected codeword) is still a valid codeword in CV .

In other words, the error e ∈ {(ex, ew)|ex ∈ GF (2k), ew ∈ GF (2r)} is masked for the

message (x,w) when (x + ex, w + ew) ∈ CV , i.e. iff

(P (x + ex mod 2k))3 = (Px)3 + ew mod 2r. (3.1)

In this case, the error masking probability for a given non-zero error e = (ex, ew)

may be quantified as

Q(e) =
|{x|(x + ex, w + ew) ∈ CV }|

|CV |
. (3.2)

This definition essentially provides a metric to quantify the performance of CV . Note

that CV is called robust, if it minimizes maxima of Q(e) over all possible non-zero

errors. More specifically, robustness is defined as following in [44]:

Definition 3.0.2. [44] The code CV is defined to be robust iff Q(e) < 1 for all pos-

sible error vectors e or equivalently if its kernel only contains the zero vector K={0}.

According to this definition, the robustness property states that the attacker will

not be able to compute a non-zero error vector e ∈ {(ex, ew)|ex ∈ GF (2k), ew ∈
GF (2r)} which will be masked by all the valid codewords of CV . For robust codes,

such an error pattern does not exist. The following theorem from [34] quantifies the

error detection performance of the proposed nonlinear code CV .

Theorem 3.0.1. [34] For CV the set E = {e|Q(e) = 1} of undetected errors is a

(k−r)-dimensional subspace of V , from the remaining 2n−2k−r errors, 2n−1 +2k−1−
2k−r are detected with probability 1 and 2n−1−2k−1 errors are detected with probability

1− 2−r+1.

This theorem is constructed and proved under the following uniformity assump-

tion:

17

Assumption 3.0.2. All the codewords x ∈ GF (2k) in CV are uniformly distributed

and have the same probability of being observed.

The main disadvantage of these codes however is that they do not preserve arith-

metic and hence cannot be used to secure arithmetic structures against active fault

injection attacks. To solve this problem, [22] proposed a new type of non-linear arith-

metic codes called “robust quadratic codes”. In what follows, we will describe the

details of this coding scheme.

As the first step, the following definition from [22] defines the generic structure of

the arithmetic single residue codes in detail.

Definition 3.0.3. [22] Let C={(x,w)|x ∈ Z2k , w = f(x) ∈ Fp} be an arithmetic

single residue code where the function f : Z2k 7→ Fp is used to compute the check-sum

w. The check-sum w is computed with respect to the prime check modulus p which

has a length of r=⌈log2 p⌉ bits.

Similarly, the error e ∈ {(ex, ew)|ex ∈ Z2k , ew ∈ Z2r} is masked for the message

(x,w) when (x + ex, w + ew) ∈ C, i.e. iff

f((x + ex mod 2k)) = f(x) + ew mod 2r. (3.3)

In this case, the robustness property states that the attacker will not be able

to compute a non-zero error vector e ∈ {(ex, ew)|ex ∈ Z2k , ew ∈ Z2r} which will be

masked by all the valid codewords of C. As described before, such an error pattern

does not exist for robust codes. Similarly, C is called ǫ-robust if it achieves an upper

bound of maxe6=0(Q(e))≤ ǫ · 2−r on the error masking probability, where constant

ǫ << 2r.

In [22], Gaubatz et al. mainly choose f(x)=x2 mod p for the check-sum function

of Definition 3.0.3 and defines the “robust quadratic codes” as follows:

18 CHAPTER 3. BACKGROUND ON ROBUST NONLINEAR CODES

Definition 3.0.4. [22] Let C be an arithmetic single residue code according to Defi-

nition 3.0.3 with f(x)=x2 mod p. Then Cp = {(x,w)|x ∈ Z2k , w = (x2 mod p) ∈ Fp}
where 2k − p < ǫ and r=k.

The next step is to measure the performance of the defined code in terms of

its error masking probability. Similar to the Assumption 3.0.2, Gaubatz et al. [22]

make the following uniformity assumption in order to quantify the error detection

performance of Cp:

Assumption 3.0.3. The values of x ∈ Z2k in Cp are uniformly distributed, i.e. each

value of x appears at the output with equal probability.

Note that due to the arithmetic nature of the circuits for which this coding scheme

is suitable for, this is a valid/reasonable assumption. Using this assumption, they

provide the following bound on the error masking equation associated with Cp.

Theorem 3.0.4. [22] For Cp, maxe6=0(Q(e))=2−k·max(4, 2k − p + 1).

This theorem quantifies the error detection capability of the nonlinear code Cp.

In other words, all non-zero error patterns can be detected with a probability lower

bounded by 1−max(4, 2k − p + 1) · 2−k. For more details on the proof of Theorem

3.0.4, the reader is referred to [22].

Contrary to linear codes, the probability of missing an error is largely data-

dependent in these coding schemes. Consequently, an active adversary trying to

induce an undetected error in the data would need to know the value of the data

before the fault injection process in order to compute an undetectable error pattern.

Furthermore, he needs to have sufficient spatial and temporal accuracy to inject these

error pairs. Hence, an attacker will have practically no chance of inserting an unde-

tectable error vector, unless he reads the target data vector first, then computes an

appropriate error pattern, and precisely inserts the computed pattern with high spa-

tial and temporal resolution. In a linear scheme, the success of a specific error vector

19

is independent from the data because any error vector which is also a valid code-

word is masked in this case. Also note that the error detection probability provided

by the nonlinear codes has a uniform lower bound. In other words, error detection

probability does not dramatically decrease for any specific error pattern.

Possible applications of systematic non-linear error detection codes, such as the

protection of finite state machines and Advanced Encryption Standard (AES) data-

path are described in [46, 45, 33, 32, 44, 2].

20 CHAPTER 3. BACKGROUND ON ROBUST NONLINEAR CODES

Chapter 4

Generic Approach for Hardening

State Machines Against Strong

Adversaries

4.1 Motivation

Protecting the datapath of cryptographic algorithms is the focus of CED based pro-

tection schemes. However, even if the datapath is protected with the most secure

scheme, the unprotected control unit may cause a serious vulnerability on the sys-

tem. For instance, by injecting specifically chosen errors into the part of the IC

that implements the control units, the adversary may bypass the encryption states

in an FSM to conveniently gain access to secret information. Similarly, e.g. in a

cryptographic authorization protocol the state which checks the validation of login

information can be skipped with minimal effort. Thereby, the adversary can directly

impersonate a valid user. Such attacks are indeed practical since states in an FSM

are implemented using flip-flops, which can be easily attacked using bit-flips realized

through fault injections.

21

22 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

Idle Init Load1 Load2

Result Square Multiply

count 0≥

count 0≥

start=1

start=0

count < 0

Figure 4.1: Fault injection example on the control unit of the Montgomery Ladder

Algorithm with Point of Attack indicated by the dashed transition [24]

A literature review brings to light that other than a few scattered references, there

is not much work done on control unit protection. [7, 39] propose simple single-bit

error detection/correction schemes utilized in the areas of aerospace and communi-

cations. However, these schemes mainly target natural faults (for example due to

radioactive radiation) and mostly single event upsets that occur on the control units.

As a result, they are ineffective against an intelligent adversary with precise fault

injection capabilities.

Another well-known solution which could be used is the application of modular

redundancy, i.e. Triple Modular Redundancy (TMR) and Quadruple Modular Re-

dundancy (QMR). Both of these schemes will provide an acceptable level of security

against a weak attacker. However, when the advanced attacker defined in Chapter 2

is concerned, modular redundancy based schemes will offer no security at all. The

reason is that the attacker can inject the same fault to all the copies of the FSM and

these faults will be masked as all the copies will provide the same faulty output.

In cryptographic settings, Gaubatz et al. [24] proposed to apply linear error

detection codes to prevent fault injection attacks against finite state machines (FSM).

Figure 4.1 shows an example attack scenario from their paper on the FSM of the

Montgomery Ladder Algorithm. They show that the attacker can recover the secret

4.1. MOTIVATION 23

exponent using this attack with mild effort. Even though using linear codes for FSM

protection is a reasonable approach, it can only provide a limited level of robustness.

Any fault injection that manifests itself with an error pattern, which is also a valid

codeword in the utilized coding scheme, will be missed in a linear error detection

scheme. Consequently, even though this method is sufficient to protect against weak

adversaries, a more advanced attacker can still easily bypass this error detection

mechanism and manipulate the device under attack.

Our Contribution: In this chapter, we propose a novel methodology to remove

the vulnerability of control units against active fault attacks. As an initial step,

we describe an important observation associated with the application of robust non-

linear codes to FSMs. This observation states that due to the nonuniform behavior

of the FSM variables (i.e. state registers, inputs, etc.), a direct implementation

of non-linear codes for FSM security will not work. As a result, securing FSMs

using non-linear codes is an important and difficult problem which requires additional

effort. Our solution to this problem is built around two ideas. We first provide an

arithmetic state machine construction for which the robustness of the applied non-

linear error detection scheme can be easily measured and shown. This formulation

also dramatically simplifies the predictor design. Next, we use randomized embedding

to achieve unpredictability and uniformity. This two-pronged technique provides a

generic solution applicable to any FSM. Consequently, the resulting FSMs will be

robust even against advanced attackers with precise fault injection capabilities. At

this point, it is also important to note that the control structures are very small when

compared to the datapaths and occupy only a very small percentage of the whole

hardware. Hence, the overall overhead of the proposed non-linear error detection

technique will be minimal.

The remainder of this chapter is organized as follows: Proposed error detection

technique and its robustness measure are presented in Section 4.2. Section 4.3 de-

24 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

scribes the proposed robust state machine construction. Section 4.4 discusses possible

hardware implementations for the robust next-state logic. In Section 4.5, the pro-

posed solution is compared with other existing FSM protection techniques. Finally,

Section 4.6 provides the implementation results associated with our scheme.

4.2 The Error Detection Technique

In this section, we describe the proposed error detection technique to secure the next-

state logic of an FSM. The main idea is to encode the variables of the FSM using a

non-linear robust code (n, k, r) as in Definition 3.0.4, and to use the error detection

capability of this coding scheme for fault detection. However, a direct implementation

of this coding scheme for an FSM would cause a serious security problem. In the

following, we will explain this problem and describe why it is inherently difficult to

secure FSMs in the aforementioned adversarial setting.

4.2.1 Why Is It Difficult to Secure FSMs?

The specific error detection technique proposed by Gaubatz et al. in Definition 3.0.4

works under the uniformity assumption which states that all the codewords are ob-

served with the same probability (Assumption 3.0.3). This is a valid assumption if

the code is applied to an arithmetic structure (such as an adder or a multiplier) where

the inputs, and hence the outputs tend to be uniformly distributed. However, when

the FSMs are concerned, this assumption becomes invalid because

1. depending on the FSM, some states may be visited more than others while the

device is in operation, and

2. the number of inputs and states in an FSM are usually relatively small over a

large domain.

4.2. THE ERROR DETECTION TECHNIQUE 25

Due to this non-uniform behavior, the security level provided by Theorem 3.0.4

does not apply if this non-linear coding scheme is directly applied to an FSM. It is

important to note that even though this naive version of the security scheme provides

total robustness as defined in Definition 3.0.2, the error detection probability will be

much smaller due to the non-uniformity. The reason can be explained both intuitively

and mathematically.

Intuitively, the security of this particular non-linear coding scheme mainly depends

on the assumption that the attacker cannot observe the output value of the device

in the same clock cycle as fault injection. If the attacker knew the output value of

the device before injecting a fault, he could easily choose the error pattern which

would be successful because the details of the structure used in the state machine are

public. Also note that the state values of an FSM are non-uniform and some states

are visible most of the time. What the attacker can do at this point is to tap into

the device and figure out the state that repeats with the highest frequency. This is

essentially the same as knowing the output value of the next-state logic of this FSM.

Consequently, the attacker can easily guess the error vector that will successfully

cause faulty transitions.

Mathematically, the error detection probabilities of Theorem 3.0.4 will be much

smaller because the number of valid codewords (fault free next-state values) determine

the value of |Cp| in the error masking probability

Q(e) =
|{x|(x + ex, w + ew) ∈ Cp}|

|Cp|
.

If the whole state space is being used uniformly by the valid next-state values (in-

formation carried by the code), then |Cp|=2k as in this theorem. However, in the

non-uniform case of FSMs, the value of |Cp|=t, where t is the number of states in the

FSM. This alone dramatically increases the error masking probability of the detec-

tion scheme when t≪ 2k (which is usually the case for reasonable security levels). In

addition, if there are some states that are visited more than others, this will decrease

26 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

the effective value of |Cp| even further, and hence will also cause an increase in the

error masking probability.

In order to illustrate the problem in more detail, we will propose an attack on an

FSM that is protected by the naive implementation of the error detection technique

proposed in Definition 3.0.4. The objective of the attacker is to inject faults into the

next-state logic of this FSM and cause state transition errors so that he can reveal

information about the secret in the device. Assume that the FSM of Figure 4.1 is

protected by a non-linear (n, k, r)-code that is constructed using Definition 3.0.4,

where k=r is selected to be much greater than t=7 for higher security. Also assume

that the states {Idle, Init, Load1, Load2, Multiply, Square, Result} are encoded as

{S0, S1, S2, S3, S4, S5, S6}, respectively. Note that when the “start” signal is

asserted, this FSM transitions as follows: {S0, S1, S2, S3, S4, S5, S4, S5, S4, S5,

. . . , S4, S5, S6, S0}. As a result, the state registers will most of the time have

either the value S4 or S5. Note that the FSM and coding structures are public. Also,

the advanced attacker can easily tap into the state registers and observe this non-

uniformity. Consequently, all he has to do is to pick the eS4 or eS5 which are the

specific error vectors that will be masked in this error detection scheme for S4 and

S5, respectively. In this scenario, the attacker will be successful with a probability of

one in transitioning the state machine into a wrong state without being detected.

4.2.2 Proposed Solution

Our solution to this problem is built around two innovative ideas:

• Arithmetic formulation of the next-state logic using Lagrange interpolation.

This formulation, in comparison to regular Boolean next-state logic construc-

tion, dramatically simplifies the predictor design due to its arithmetic nature.

Also, it is this arithmetic form of the next-state logic that makes it possible to

precisely bound the error detection probability.

4.2. THE ERROR DETECTION TECHNIQUE 27

• Randomized embedding to solve the nonuniformity problem discussed before.

In this method, each state value will have multiple images and this will provide

unpredictability and uniformity.

More specifically, we first propose making state transitions work according to an

arithmetic formula in a non-redundant field Fq, i.e. s′=f(s, i) where s′ is the next-

state value, i is the input, and s is the current-state value. In this setting, s′, s, and i

∈ Fq. The generation of this arithmetic formula is described in Section 4.3. Note that

if the next-state logic is implemented as a set of Boolean functions, efficient predictor

design and robustness quantification would be difficult.

However, this is not sufficient to solve the previously discussed non-uniformity

problem because even though the state transitions are now working according to an

arithmetic formula, the same non-uniform behavior is observed at the state registers.

To solve this problem, we need unpredictability. In other words, the state machine

variables must be practically unpredictable to the attacker. As a result, as the second

step of the solution, we propose embedding the non-redundant field Fq into a larger

redundant ring R=ZM using a transformation φ: Fq 7→ R (or φ: R 7→ R) where

φ is a homomorphism. Therefore, all the arithmetic operations defined for Fq can

also be carried in R. Utilization of scaled embedding for error detection in finite field

arithmetic circuits is previously proposed by [22] for a similar purpose. In our case,

randomized embedding is achieved by defining the ring modulus M and the scaling

factor S with M=S × q where q is the prime defining the field Fq. In this setting, we

define the function φ as

φ(s) = s + R× q (mod M)

where R is a randomly chosen value from ZS. This scaling effectively partitions the

ring R into co-sets, of which only one contains the non-redundant codewords. As a

result of this scaling, each state and input value now has S images. In other words,

28 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

the same state and input will now be represented by S different values in the ring

R depending on the value of the random R. This will increase the uniformity of the

state values observed at the output of the next-state logic, and essentially increase

the error detection capability of the non-linear coding technique we propose in this

chapter. Note that when the state value is reduced using q, we obtain the non-

redundant value of the state. We now formally define a randomized robust code by

merging this embedding with the robust code definition introduced by Gaubatz et al.

[22] in Definition 3.0.4 as follows.

Definition 4.2.1. We define the coset randomized robust code (n, k, r) as C =

{(x,w)|x = y + R × q (mod M),∀x and ∀y ∈ ZM , w = x2 (mod p) ∈ Fp, R ∈ ZS}
where r=k, k ≥max(⌈log2 M⌉, ⌈log2 p⌉).

In addition, two important points for picking the scaling factor are

• to select the ring R large enough to provide sufficient redundancy.

• to pick an M which enables efficient reduction.

Since we are free to choose the state encoding for the robust state machine design, we

can pick a suitable (q, S) pair which will satisfy the required level of security while

producing an ideal M for easy reduction.

After the randomization of the next-state function f is achieved, we can use

individually robust arithmetic circuits such as multipliers, adders, etc. to build the

proposed robust FSM. To achieve this, we utilize the non-linear code explained in

Definition 4.2.1 to encode the state variables and inputs. Next, we use the individually

robust arithmetic circuits that will work in the ring R to implement the next-state

function f . Robust adder and multiplier implementation examples that work under

the utilized code are provided in [22].

4.2. THE ERROR DETECTION TECHNIQUE 29

4.2.3 Security Proof

In this section, we prove the robustness of the proposed scheme and give a lower

bound on the error detection probability. First of all, we will encode each of the next-

state logic variables using the non-linear (n, k, r) code given in Definition 4.2.1, where

the value of k is determined by the size of the ring R and prime p. More specifically,

k ≥max(⌈log2 M⌉, ⌈log2 p⌉). Also note that the value of q is bounded by the number

of states t in the FSM as q=⌈log2 t⌉.
For error detection, we need redundancy. We define the following error check

function on a variable x ∈ ZM to obtain a non-linear error check-sum

w = h(x) = x2 (mod p) ∈ Fp. (4.1)

Consequently, the states and inputs are decoded as (s, h(s)) and (i, h(i)) respec-

tively. From a practical viewpoint we have added r check digits to the state value as

an error check redundancy.

In the following theorem, we establish the error detection probability of our

scheme. In this theorem, we also address the nonuniform distribution observed at

the output of the next-state logic.

Theorem 4.2.1. For the nonlinear code C that is defined as in Definition 4.2.1,

the error masking probability will be upper bounded by S−1·max(4, 2k − p + 1), where

S >max(4, 2k − p + 1).

Proof. In order to compute the error masking probability of their scheme, Gaubatz

et al. [22] count the number of x values that satisfy the numerator of Equation 3.2

for each e. To achieve this, they use the following error masking equation:

(x + ex mod 2k)2 mod p = (x2 mod p) + ew mod 2k. (4.2)

In their paper, they prove that the number of solutions to this equation is upper

bounded by max(4, 2k − p + 1). Finally, in order to bound the error masking prob-

30 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

ability, this number is normalized with the number of valid codewords, 2k in their

case.

In order to quantify the error detection capability of our code, we also need to

bound the value of Q(e) for all e. We achieve this in two steps. First of all, we

will bound the number of solutions to the error masking equation for this new code

(numerator), and as the second step, we compute the number of valid codewords

(denominator).

Note that the code we define here as in Definition 4.2.1 will have the exact same

error masking equation. However, also note that the domain of the x values will be

different. In our case, x ∈ ZM , instead of x ∈ Z2k . Since M < 2k, the number of

solutions to the error masking equation cannot be larger than max(4, 2k − p + 1),

even in the worst case. As a result, the upper bound of the numerator to our error

masking probability will be max(4, 2k − p + 1).

However, when the uniformity assumption is not valid, which is the case for FSMs,

the normalization constant needs to be modified in order to address the nonuniformity.

Note that for an FSM with nonuniform distribution, in the worst case, one of the

states will be visible at the next-state logic output most of the time. In this case, we

can assume uniformity at the state register for S different values due to the random

mask R (e.g. each state value will have S different images due to the randomized

embedding). Again in the worst case, for a specific error pair (ex, ew), max(4, 2k−p+1)

solutions can be in the check-sum space. As a result, the error masking probability

for this case will be S−1·max(4, 2k − p + 1).

Example 4.2.1. Consider the FSM of Figure 4.1. As discussed before, this FSM

bounces between “Square” and “Multiply” states most of the time. If we select Fq=F11

and S=390451572, then M=4294967292 and we will need a (64, 32, 32)-code with

p=4294967291. In this case, injected errors are detected with a probability of at least

1−S−1·max(4, 2k−p+1)=1−(232−4294967291+1)/(2×390451572) ≃ 1−2−27. The

4.3. PROPOSED NEXT-STATE LOGIC CONSTRUCTION 31

denominator in this case becomes 2 × S because the “Square” and “Multiply” states

and their images will be uniformly distributed.

4.3 Proposed Next-State Logic Construction

In this section, we describe the proposed next-state logic construction which is a

generic solution applicable to any FSM. Next, the idea is clarified by an example.

We assume that we are given a state diagram, and we are free to choose the state

assignments. The key is to make the state transitions work according to an algebraic

formula which permits us to establish its robustness. There is no reason why one

may not simply construct Boolean expressions to realize the state machine in the

traditional way. However, then we would need to count the number of solutions that

satisfy the error detection equation to determine the degree of robustness. This is

highly inconvenient as the counting process would have to be repeated for each new

state machine design.

4.3.1 Generic Technique for Next-State Logic Construction

In this section we outline a general next-state logic construction approach that as-

sumes an arbitrary state machine that is given without any state assignments. Note

that the choice of state assignment does not have a direct effect on the performance

of the proposed scheme. The important parameter to select is the field modulus q

where the non-redundant FSM is defined. As a result, as long as we pick the most

appropriate q that will provide the highest security and easy reduction for modulus

M , the choice of state assignment is not an issue.

Next, we will have a state machine in the form of a state transition table which

32 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

gives us the next-state value according to the current state and input:

δ(s0, i0) = s′0

δ(s1, i1) = s′1
... =

...

δ(sn−1, in−1) = s′n−1

where s′i represents the next-state, si represents the current state, and the ii represents

the inputs of the state machine.

Then we may capture the transitions of the state machine using an algebraic

function s′ = f(s, i) which explicitly computes the transitioned state from the current

state and input values. To construct f(s, i) we view the given set of transitions as eval-

uations of the function f(s, i) at the points (s0, i0, s
′
0), (s1, i1, s

′
1), . . . , (sn−1, in−1, s

′
n−1).

Hence, given n evaluations we may express the function as a bi-variate polynomial of

degree n.

Remember for a univariate function f(x) given n evaluations (x0, f(x0)), (x1, f(x1)),

(xn−1, f(xn−1)), the Lagrange interpolation can be constructed as follows

f(x) =
n
∑

t=0

f(xt)
n
∏

j=0,j 6=t

x− xj

xt − xj

. (4.3)

This formula basically generates a univariate polynomial, e.g. a curve in two di-

mensions, that passes through all the given points. However, FSM structures are

bi-variate systems. This means that we need to figure out a way to compute the

three dimensional surface that passes through all the given three dimensional points.

In other words, for a two input system we need to derive the bi-variate polynomial

s′ = f(s, i). The solution is to apply the Lagrange formulation in two levels. More

specifically, we first group the provided points according to their current state values.

In this case, we will have t different groups, where t is determined by the number of

states defined in our FSM diagram. Then, for each current state value sj, we will have

4.3. PROPOSED NEXT-STATE LOGIC CONSTRUCTION 33

bj number of (ij, s
′
j) pairs, where bj is the number of transitions from each specific

state and the (ij, s
′
j) pairs are the input/next-state pairs associated with this current

state. An example of this grouping mechanism is shown in Table 4.1. First of all,

note that there are t=7 total groups in this table because this state machine has seven

states. Also note that the “Idle” and “Square” states have two input/next-state pairs

(for “Idle”: (000,000), (001,001) and for “Square”: (010,100), (011,110)) while all the

other states have a single input/next-state pair. We have two pairs for the “Idle”

and “Square” states because these states have b=2 possible transitions from them.

Next, for each current-state group where there are more than one input/next-state

pair (ij, s
′
j), the first level Lagrange interpolation is conducted, i.e. Equation 4.3 is

applied. This is shown in Table 4.2. After this first level interpolation, there will

be t number of (sj, s
′
j) pairs, where sj is the current state and the s′j = g(i) is the

next-state which is a (bj − 1)th degree univariate polynomial defined as a function of

the input i. This case is illustrated in the first two columns of Table 4.3. Note that

for the “Idle” and “Square” states, next-state value s′ is a function of the input i.

For these states, b=2 and hence the next-state is a (b− 1)th=1st degree polynomial of

i. Then, we treat these (sj, s
′
j) pairs as the given points for another Lagrange inter-

polation. The Lagrange formula provided in Equation 4.3 is again applied to these

points as the second level of our construction. The result is a bi-variate polynomial

with at most n=(max(bj)× t) terms and is of the form

s′j = f(sj, ij) = an−1(i)
max(bj)−1(s)t−1 + an−2(i)

max(bj)−1(s)t−2 + . . . + a2s + a1(i) + a0.

In this equation, i variable will have at most max(bj)-1
st degree coming from the

first level Lagrange and s variable will have at most t − 1st degree coming from the

second level Lagrange. max(bj) in this equation is the number of transitions from

the state with the maximum number of transitions going out in the FSM diagram.

Note that we will have at most n=(max(bj)× t) terms because the result of the first

level Lagrange can have at most max(bj)-1
st degree and the result of the second level

34 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

Lagrange can have at most t− 1st degree.

4.3.2 Case Study Utilizing the Proposed Construction

Table 4.1: Grouped state assignment table

Input(i) CS(s) NS(s′)

Idle
000 000 000

001 000 001

Init 000 001 010

Load1 000 010 011

Load2 000 011 100

Multiply 000 100 101

Square
010 101 100

011 101 110

Result 000 110 000

In this section, we present the application of the proposed technique of Section

4.3.1 to an example FSM. This example will illustrate the generation of the algebraic

function s′ = f(s, i) which explicitly computes the transitioned state from the current

state and input values for the FSM shown in Figure 4.1.

As an example binary encoding is utilized to encode this FSM. We encode the

input (i) and state variables (s,s′) in Fq with the prime q=7 (smallest prime that

includes all the input and state values). As a result, it is important to note that all

the numbers and variables we discuss in this part are actually elements in the field

Fq, and all the operations are conducted using modulo q.

The first step of the Lagrange method is to group and tabulate the FSM diagram

and to create Table 4.1. The state transitions are grouped according to the current

state value(s), and the first level Lagrange is realized using the (i, s′) pairs in each

4.3. PROPOSED NEXT-STATE LOGIC CONSTRUCTION 35

Table 4.2: First level Lagrange

For CS=000

i s′ Lagrange Coefficients Interpolated Polynomial

000 000 l0(i) = i−001
000−001

001 001 l1(i) = i−000
001−000

i

For CS=101

i s′ Lagrange Coefficients Interpolated Polynomial

010 100 l0(i) = i−011
010−011

011 110 l1(i) = i−010
011−010

2i

group. The values of i, s′, and Lagrange coefficients associated with each current

state value (s) is shown in Table 4.2. When these points are interpolated using the

indicated coefficients, we get the shown interpolated polynomials in the last columns.

Next, using the results of the first level Lagrange interpolation, we create the

second level Lagrange table as shown in Table 4.3. As can be observed from this

table, each current state value (s) and its corresponding first level approximation

polynomial (which is a function of the input variable i) form the coordinates of the

points to be interpolated. The calculated Lagrange coefficient for this level are also

indicated in the last column of this table. Next, we insert these coefficient values into

the following Lagrange formulation

s′ = f(s, i) = l0(s)(i)+l1(s)(2)+l2(s)(3)+l3(s)(4)+l4(s)(5)+l5(s)(2i)+l6(s)(0) (4.4)

and we get the resulting bi-variate polynomial in the open form as

s′ = f(s, i) = (4i)s6+(2+4i)s5+(3+6i)s4+(1+2i)s3+(5+3i)s2+(5+i)s+i. (4.5)

This polynomial represents the next-state s′ as a function of the input and current

state variables i and s, respectively. It is this algebraic formulation of the next-state

36 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

variable that makes it possible to easily analyze and determine the robustness of the

implemented non-linear coding scheme.

Table 4.3: Second level Lagrange

s s′
Lagrange Coefficients li

In Ratio Form In Extended Form

000 i (s−1)(s−2)(s−3)(s−4)(s−5)(s−6)
(0−1)(0−2)(0−3)(0−4)(0−5)(0−6)

6s6 + 1

001 010 (s−0)(s−2)(s−3)(s−4)(s−5)(s−6)
(1−0)(1−2)(1−3)(1−4)(1−5)(1−6)

6s6 + 6s5 + 6s4 + 6s3 + 6s2 + 6s

010 011 (s−0)(s−1)(s−3)(s−4)(s−5)(s−6)
(2−0)(2−1)(2−3)(2−4)(2−5)(2−6)

6s6 + 5s5 + 4s4 + 6s3 + 5s2 + 3s

011 100 (s−0)(s−1)(s−2)(s−4)(s−5)(s−6)
(3−0)(3−1)(3−2)(3−4)(3−5)(3−6)

6s6 + 4s5 + 5s4 + s3 + 3s2 + 2s

100 101 (s−0)(s−1)(s−2)(s−3)(s−5)(s−6)
(4−0)(4−1)(4−2)(4−3)(4−5)(4−6)

6s6 + 3s5 + 5s4 + 6s3 + 3s2 + 5s

101 2i (s−0)(s−1)(s−2)(s−3)(s−4)(s−6)
(5−0)(5−1)(5−2)(5−3)(5−4)(5−6)

6s6 + 2s5 + 3s4 + s3 + 5s2 + 4s

110 000 (s−0)(s−1)(s−2)(s−3)(s−4)(s−5)
(6−0)(6−1)(6−2)(6−3)(6−4)(6−5)

6s6 + s5 + 6s4 + s3 + 6s2 + s

Also, note that all the operations conducted to compute the next state polynomial

of Equation 4.5 are over modulo q. Once this polynomial is computed, the next step

is to encode the input and current state values using the coset randomized code of

Definition 4.2.1. In this case, input will be (i, |i2|p) and the current state will be

(s, |s2|p) where i, s ∈ ZM . Next, using the computed function f(s, i), we compute

(s′, |(s′)2|p). In this computation, all the main datapath operations are conducted over

modulo M . Also note that each arithmetic unit (both in function f and randomizer

unit) is a robust one which implements nonlinear error detection individually. For

example, all the multipliers in function f and randomizer unit compute the output

and its redundant checksum using the inputs and their redundant checksums. These

individual components can detect an injected fault and signal an error signal. Next,

using the randomizer unit, we compute z=s′ + R × q (mod M). These operations

are conducted using robust arithmetic units and are over modulo M as well. The

resulting randomized next state value is then fed as the current state value into the

4.4. HARDWARE REALIZATIONS OF THE NEXT-STATE LOGIC 37

next state logic in the next iteration. Note that we do not need to recover s′ for the

following next state computation. Since the function f(s, i) and randomizer unit work

modulo M , the next state value will always be a randomized image of the correct next

state value. The naked form of the next state value (∈ Fq) can always be computed

by reducing the randomized images modulo q.

With the proposed solution, we essentially push the security threat on a system

from FSMs to the peripherals which require the naked form of the state and output

values. As a result, the naked form of the state and output values that drive the

peripherals in the system become vulnerable points for possible attacks. One possible

solution to this problem is to utilize the same coding structure in all components of

the system. In this case, we need secure decoder circuits that would generate the

appropriate output control signals from the redundant (randomized) form of these

signals. However, design of such components is beyond the scope of this thesis and

can be listed as a potential future work.

4.4 Hardware Realizations of the Next-State Logic

In this section, we will outline a technique for implementing the proposed next-state

logic construction. A direct arithmetic implementation of Equation 4.5 can be found

in Figure 4.2. As can be observed from this figure, the next-state is algebraically

formulated as a function of the input and current-state. The randomized embedding

is realized using the randomizer block in the figure. For reference, the operators
⊗

M ,
⊕

M , and x2
M in this figure stand for multiplication, addition, and squaring modulo

M , respectively. All of these operations (including the coefficients at the top) are

carried-out in the redundant ring R=ZM using individually robust arithmetic units.

Note that since we are using the nonlinear code proposed in Definition 4.2.1 (whose

robustness is proved in Theorem 4.2.1) to encode the next-state logic variables, the

38 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

security of this system will also be bounded by the security of the proposed code.

In other words, each individual robust unit of this figure provides the security level

proposed by Theorem 4.2.1. The reader is referred to [22] for examples of robust

arithmetic units (e.g. adder, multiplier, etc.) that are used in this figure.

|z |p2

|s |p22|i |p

s3

M

z

s

s

M M

2xM

M M

i

2x

M

M

MMM

M M

M M M

M

2x

M

f(s,i)

Randomizer

RM

5+3i

q

4i i5+i3+6i 1+2i2+4i

Figure 4.2: Arithmetic parallel hardware implementation of the next-state logic

We also propose a more efficient approach that can be followed in order to optimize

this circuit. The idea is to add time-redundancy and reuse the expensive hardware

modules (e.g. the multiplier and the adder) in a serial manner. This can be achieved

by rearranging the next-state polynomial of Equation 4.5 using Horner’s method. In

this case, the next-state equation becomes

s′ = ((((((4i)s + (2 + 4i))s + (3 + 6i))s + (1 + 2i))s + (5 + 3i))s + (5 + i))s + i. (4.6)

This implementation is demonstrated in Figure 4.3. In this case, the function f is

serialized and the randomization block is the same as the parallel implementation. As

4.5. COMPARISON WITH OTHER FSM SECURITY SCHEMES 39

Randomizer

f(s,i)

R

p

Reg

s

2|i |p

|s |p2

|z |p2

Latch EnableM M

M M

4+10i 8+10i 1+7i 4+2i Ground 7+4i10

i

s

z

Figure 4.3: Time redundant (serial) arithmetic hardware implementation of the next-

state logic

can be observed from this figure, only 2 robust multipliers combined with 7 adders,

5 robust constant multiplications, a controlled latch, and a shift register is sufficient

to implement the same functionality as Figure 4.2.

4.5 Comparison with other FSM security schemes

In this section, we will compare our scheme with other error detection schemes that

exist on the literature. One of the most common error detection techniques is the

application of modular redundancy, i.e. Triple Modular Redundancy (TMR) and

Quadruple Modular Redundancy (QMR). In TMR, three copies of the non-redundant

FSM are run in parallel and a majority voting decides if the operation of the FSM

is fault free or not. QMR works exactly the same way but with four copies. Under

our adversarial fault model, TMR and QMR will be broken with a probability of one.

The reason is that the attacker can inject the same fault to all the copies of the FSM

and these faults will be masked as all the copies will provide the same faulty output.

Under our fault model, protection scheme that uses linear codes [24] will also be

broken with a probability of one. An error vector which is also a valid codeword in

40 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

the utilized linear code will be missed because the sum of these two codewords is

another valid codeword in this scheme.

The efficient PUF-based error detection scheme of [26], which is discussed in Chap-

ter 6, works only for a specific class of FSMs and hence is not a generic solution that

can be applied to any FSM. However, it is important to note that this solution pro-

vides error detection on both physical and logical levels.

Finally, [2] proposes a hybrid method in which non-linear codes are interleaved

with a MUX-based predictor design. This is a generic scheme that will work on all

FSMs. The bound of the error detection probability associated with this scheme is

1 − 9 × 2−k, where k is the length of the information portion of the applied code.

The disadvantage of this scheme is that it needs secure storage on the device for the

round randomization masks that need to be transferred to the next round.

The scheme we propose is a generic solution that can be applied to any FSM.

The minimum error detection probability is bounded by 1− S−1·max(4, 2k − p + 1).

Note that 2k −M < ǫ and q is the smallest prime that can include all the different

next-state logic variables. As a result, (2k − ⌊log2 S⌋) < ǫ. This means that the error

detection probability of our scheme is on the order of the security level provided by

[2]. The advantage of our scheme is that we do not need a secure location on the chip

for the randomization mask that is used in each cycle because the operation of each

cycle is independent from previous and next clock cycles. In addition, the proposed

technique enables the utilization of robust arithmetic components for secure FSM

design. This is an important point because security characteristics/performance of

arithmetic structures is well studied in the literature. The algebraic formulation of

the next-state logic also simplifies the predictor design in our solution.

4.6. IMPLEMENTATION RESULTS 41

4.6 Implementation Results

In order to compare the performance of our scheme with previously proposed FSM

protection techniques, we implemented the following solutions for the FSM of the

powering ladder algorithm that is shown in Figure 4.1:

1. regular FSM with no error detection or any type of redundancy.

2. FSM protected with linear error detection codes.

3. triple modular redundancy (TMR).

4. quadruple modular redundancy (QMR).

5. FSM protected with (10, 5, 5), (20, 10, 10), (30, 15, 15), (40, 20, 20), (50, 25, 25),

(60, 30, 30) coset randomized robust codes (our solution).

We implemented these techniques using VHDL and synthesized them using the

tcb013lvhptc and dw (design ware) libraries of the Synopsys design tool. We report

the gate count and time delay results in Table 4.4. This table also includes the

minimum error detection capability of each technique against the adversary we assume

in our fault model.

First of all, note that even though they cause reasonable area overhead, the lin-

ear error detection codes, TMR, and QMR do not provide any security against the

advanced attacker we assume in this thesis. On the other hand, our technique causes

a large area overhead and time delay. However, we claim that this is a price which

needs to be paid to secure FSMs against such advanced attackers. First of all, time

delay caused by our scheme does not have a big impact on the circuit performance

because FSMs are usually not in the critical path of a circuit. Critical path usually

goes through the datapath which includes various arithmetic operations.

Furthermore, in our implementation of the coset randomized robust codes, we used

the built in design ware multipliers and dividers to create a generic solution that can

42 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

Table 4.4: Hardware implementation results for different FSM protection schemes.

Gate count Time delay (ns) Min. Error Detection Prob.

Non-red FSM 80 0.64 0

Linear 260 ≈ 0.64 0

TMR 260 ≈ 0.64 0

QMR 342 ≈ 0.64 0

(10, 5, 5) 8305 29.99 1− 2−2

(20, 10, 10) 27779 88.69 1− 2−6

(30, 15, 15) 57310 196.42 1− 2−9

(40, 20, 20) 96096 294.57 1− 2−16

(50, 25, 25) 146038 444.04 1− 2−18

(60, 30, 30) 206676 618.4 1− 2−23

be applied to different FSMs and code sizes. We believe that for a specific FSM and

code size, there will be room for gate count optimizations up to 30%. In addition,

we argue that while measuring the performance of our scheme, analysing the gate

count individually may be misleading. As a result, we propose a new performance

measure which is called error masking probability per unit area. For the six different

coset randomized robust codes we show in Table 4.4, we computed the error masking

probability per unit area and we plotted the result as a function of the code size k

in Figure 4.4. We plotted the synthesized results and added the interpolated version

of this data as well. As can be observed in this figure, for larger code sizes, the error

masking probability per unit area decreases. Note that this is a valid justification of

the area overhead caused by our scheme.

It is also important to note that even though our protection scheme is not ap-

propriate for low power cryptographic hardware, it can be applied to circuits that

include large and parallel arithmetic units in the datapath. Low power cryptographic

4.6. IMPLEMENTATION RESULTS 43

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

−5

k

E
r
r
o
r

m
a
s
k
i
n
g

p
r
o
b
.

p
e
r

u
n
i
t

a
r
e
a

Synthesized
Interpolated

Figure 4.4: Error masking probability per unit area

units have relatively large FSMs due to their serial nature. In this case, large area

overhead of our FSM protection scheme might affect the circuit area and performance

in an unacceptable way. However, we argue that the overhead of our technique will

be reasonable for cryptographic hardware with parallel arithmetic units (i.e. adders,

multipliers, etc.) in the datapath. This kind of circuits have relatively small FSMs

and hence the overhead of our protection scheme becomes minimal.

In order to clarify this idea, we investigated the effect of our FSM protection

scheme on the overall circuit area. First of all, we analyzed four different Montgomery

multipliers (MM) with different parameters. MM(x,y,z) indicates a Montgomery

multiplier with different parameters where x is the size of the operands, y is the

number of pipeline stages, and z is the word size. Table 4.5 show the breakdown of

the gate count into FSM and datapath units for four different MMs. Note that as

the operand and word sizes increase, the parallel nature of the circuit also increases.

As a result, the ratio of the FSM to the whole design gets smaller.

44 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

Table 4.5: Breakdown of the gate count for different Montgomery multipliers.

Non-red FSM Non-red Datapath FSM ratio (%)

MM(256,2,64) 3843 124750 3.08

MM(256,1,128) 3812 201588 1.89

MM(512,1,128) 3841 217168 1.77

MM(512,1,256) 7307 714557 1.02

Assume that we use the (10, 5, 5) robust code to protect the FSM of these cir-

cuits. Table 4.4 indicates that this code increases the non-redundant FSM size ap-

proximately 100 times. However, remember that this number is for the generic imple-

mentation of this scheme and does not include all the possible optimization methods.

If additional optimization techniques are applied, this ratio could be dropped to ap-

proximately 70. In addition, assume that we protect the datapath of these circuits

with non-linear robust codes as well. Non-linear robust codes usually increase the

datapath area 3 to 4 times [44]. We assume that the datapath size will increase by

a factor of 3.5 in average. When we apply these numbers to the gate counts of the

non-redundant designs of Table 4.5, we get the results shown in Table 4.6. Note that

the overhead caused by our scheme gets smaller for circuits with large and paral-

lel datapaths. For example, our FSM protection scheme causes an area overhead of

approximately 16% for the MM(512,1,256) case.

Table 4.6: Overhead caused by our protection scheme for different MMs.

Robust FSM Robust Datapath FSM ratio (%) Overhead (%)

MM(256,2,64) 269010 436625 61.61 37.58

MM(256,1,128) 266882 705560 37.83 27.05

MM(512,1,128) 268870 760090 35.37 25.76

MM(512,1,256) 511532 2500949 20.45 16.74

4.7. SUMMARY 45

4.7 Summary

In this chapter, we propose utilizing non-linear error detection codes for the control

unit design of cryptographic hardware. However, the nonuniform behavior of the

FSMs make it difficult to apply nonlinear codes and provide high security. Our solu-

tion to this problem includes two main steps. First, we apply Lagrange interpolation

to model the state transitions using an arithmetic formula. This not only simplifies

predictor design, but also makes it easier to generically quantify the security level of

the applied scheme. Second, we use randomized embedding to achieve uniformity and

unpredictability. Note that without the arithmetic formulation (through Lagrange in-

terpolation) of the next-state logic, robust arithmetic units proposed by [22] could

not be utilized in this scheme. In addition, note that we could also use Boolean

expressions to realize the state machine in the traditional way. However, then we

would need to count the number of solutions that satisfy the error detection equation

to determine the degree of robustness. This is highly inconvenient as the counting

process would have to be repeated for each new state machine design.

To be successful against this type of a protection, the attacker must be able to

precisely read the existing data in control unit hardware, and then must select the

most appropriate error vector that has the highest probability of succeeding. This, of

course, is much more difficult to accomplish for an attacker and therefore this scheme

is secure even against very advanced adversaries.

As future work, it may be possible to investigate the application of nonlinear codes

to Boolean next-state logic functions. To achieve this, an efficient Boolean predictor

design and a generic security quantification methodology must be developed.

46 CHAPTER 4. HARDENING FSMS AGAINST STRONG ADVERSARIES

Chapter 5

Multiplexer-based Non-linear

Error Detection for Finite State

Machines

5.1 Motivation

In Chapter 4, we discussed the security problems associated with Finite State Ma-

chines (FSMs) in an adversarial setting. We argued that the FSM security is a

neglected area and as a solution to this problem, we proposed a generic FSM protec-

tion technique that is based on non-linear codes and arithmetic formulation of the

next-state logic.

Our Contribution: In this chapter, we propose a different generic non-linear

error detection technique for FSMs. This is a multiplexer-based technique which is

inspired from the efficient FSM implementations. In this case, instead of formulating

the next-state logic in an arithmetic fashion, we utilize the well-known (and used)

multiplexers for both the non-redundant datapath and the predictor units. The main

The work presented in this chapter is a joint work with Ghaith Hammouri.

47

48 CHAPTER 5. MUX-BASED ERROR DETECTION FOR FSMS

advantage of this scheme is its simplicity. Remember that protecting FSMs with sys-

tematic non-linear codes is a difficult problem due to the non-uniform characteristics

of FSMs. As a solution to this problem, in this chapter we propose using randomized

masking. This makes it possible to apply the nonlinear codes to FSMs and inherit

their high error detection capabilities. In our security analysis, we show that any

injected fault will be detected with probability exponentially close to 1.

The remainder of this chapter is organized as follows: The proposed error detection

technique is described in Section 5.2. The security and robustness measure of the

proposed scheme are presented in Section 5.3. In Section 5.4, hardware scaling results

are provided. Finally, in Section 5.5, the proposed scheme is compared with other

FSM protection schemes from a security perspective.

5.2 The Error Detection Technique

Systematic nonlinear codes described in Chapter 3 provide robustness and error de-

tection uniformity which are crucial when error detection is concerned. As a result,

the proposed error detection technique in this chapter inherits the main structure of

these codes to protect next-state logics of FSMs. Note that the security level pro-

vided by the nonlinear codes is sufficient for arithmetic circuits even against strong

adversaries such as the one discussed in Chapter 2. However, the structure of these

codes needs to be modified to some extent to make them applicable to FSMs.

Assume that we want to apply the nonlinear (n, k, r)-code of Definition 3.0.1 to

protect a specific FSM. When FSMs are concerned, the number of valid codewords

is limited by the number of states in the FSM, which is usually a relatively small

number. In addition to this, some states of the FSMs can be visited more than

others. As a result, FSMs show a non-uniform behavior over a larger domain that is

defined by the values of k and r of the applied (n, k, r)-code. Due to this non-uniform

5.2. THE ERROR DETECTION TECHNIQUE 49

?
==

1R =RR2

R2

3
()

2()R1
R2

^3

R0 +R0()3

^3

1R

1R3

1R3
1R3

1R3
1R

Write
Back

2R

()iR+
3

R0
3

+R0()

^3 ^3

==
?

R0

?
==

()iR+
3

+R0()3

t2 R()2
3

2()R
3 3

()1R
3 3

t2 ()R
3

R() R

s

s

s

s

s s

s

iR i si s

i iR si s

Select L
ine C

hecker

Error Error

Logic
NS

ss

ss

i
s

Predictor
s i

EDN

Error

R
andom

izer

Figure 5.1: Proposed error detection technique

characteristic of the FSMs, applying the non-linear (n, k, r)-code becomes a difficult

problem. In this case, the security level provided by this method cannot be quantified

as in Theorem 3.0.1 because FSMs do not satisfy Assumption 3.0.2. Consequently, to

inherit the useful error detection characteristics of these codes, we need to guarantee

that the state register value will have a distribution that is close-to-uniform.

As a solution to this problem, we now formally define a randomized robust code

by merging a randomized masking process with the robust code definition introduced

by Karpovsky et al. [34] in Definition 3.0.4 as follows.

Definition 5.2.1. Let V be a binary linear (n, k) code with n = 2k. We define the ro-

bust code with randomized masking as CV = {(x,R,w)|x ∈ GF (2k), R ∈ GF (2k), w =

50 CHAPTER 5. MUX-BASED ERROR DETECTION FOR FSMS

(x + R)3 ∈ GF (2k)}.

In this code, the masking is achieved by the random string R. The effect of

masking is to essentially remove the non-uniform characteristic of the FSM. In this

case, the error detection probability can be quantified as in Theorem 3.0.1 because

Assumption 3.0.2 is satisfied with the utilization of randomized masking. Note that

because we are working in a finite field the above randomization can be realized by

an addition as in the definition or by a multiplication.

The proposed solution which utilizes the defined randomized robust code is shown

in Figure 5.1. There are five main building blocks in this solution and these blocks

will be described in more detail shortly. Note that all the variables in this figure

are elements of GF (2k) and all the operations are conducted over GF (2k). At a

high level, the essential idea of this scheme is to provide fault free operations on the

non-redundant next-state logic unit. In order to achieve this, we propose having two

parallel computational paths. The first path computes the next-state value (using the

non-redundant next-state logic) and randomizes the result (through the randomizer

block) using the random value R2. The second path (the predictor unit) essentially

selects the appropriate check-sum associated with the randomized version of the next-

state value. More specifically, using a multiplexer circuit which is controlled by the

input and current state, the predictor block selects the correct randomized check-sum

from a pool that is full of all possible randomized next-state check-sums. Results of

these two paths are then compared (using the EDN block). A mismatch at the output

potentially indicates an adversarial fault injection and is handled appropriately. This

“two parallel paths” approach is usually costly when integrated with nonlinear codes.

Therefore, we use a multiplexer structure which will help improve the efficiency of the

circuit. Also note that when multiplexers are concerned, attacks on the select lines

could lead to potential vulnerabilities. As a result, the proposed solution implements

separate comparisons (in the select line checker block) to ensure that no errors were

5.2. THE ERROR DETECTION TECHNIQUE 51

injected into the i and s values which are the select lines of the multiplexer in the

predictor unit. In what follows, we provide a more detailed description for each

building block of this scheme.

• NS Logic: This is basically the non-redundant next-state logic of any FSM.

Using the input (i) and current-state (s), this block computes the appropriate

next-state value (s′). Note that i, s, and s′ are padded with zeros so that they

will be elements of GF (2k). In other words, i, s, and s′ ∈ GF (2k). However,

this does not affect the logic that implements the next-state function. This

block uses the well-known next-state logic computation methods.

• Randomizer: This block applies the randomized masking on the next-state

value (s′). In this case, randomization is achieved by multiplying the computed

next-state value with R2 which is the main randomizer that is used in the current

cycle. Note that R2 is computed in the predictor unit and is the product of the

main randomizer from the previous cycle (i.e. R) and the input R1. R1 is

assumed to be generated by an RNG on the device and is refreshed in every

clock cycle. The refreshness of R1 is a very crucial property that needs to be

satisfied in our scheme. Otherwise, the attacker can iteratively (i.e. he can first

observe the existing values at the output and then pick an appropriate error

vector) inject faults into the FSM and cause masked faulty transitions.

This block essentially computes s′R2. Due to this randomization, the non-

uniform behavior of the FSM is removed at the error-check (i.e. comparison)

level. Even though the non-redundant next-state logic block still provides non-

uniform behavior, this does not affect the error detection probability because

cubing and hence the error-checking is done on the randomly masked version of

the next-state value.

We also need to compute the check-sum associated with the computed next-

52 CHAPTER 5. MUX-BASED ERROR DETECTION FOR FSMS

state value. This check-sum will be used in the next cycle by the select line

checker block to make sure that the current-state value itself is fault free. As

multiplication is more expensive than addition and this multiplication has al-

ready been performed, the next state is passed the codeword (s′, R
′

0, (s′ +R
′

0)
3)

where a different version of the randomizer, namely R
′

0 is used. Note that R
′

0

will also be used in the next cycle by the select line checker block for the val-

idation of the current-state value. This verification is very important because

current-state value s controls the multiplexer circuit in the predictor unit. As a

result, it needs to be fault-free. More specifically, the output of this block will

be

s′R2 = s′ + s′(R2 − 1), (5.1)

where R
′

0 = s′(R2 − 1). In order to compute R
′

0 for the following cycle, s′ is

subtracted from the output s′R2 of the randomizer. The check-sum (s′ + R
′

0)
3

is essentially computed by the cubing after this block. Note that (s′R2)
3=(s′ +

s′(R2−1))3=(s′+R
′

0)
3. Keep in mind that all these addition and multiplication

operations are conducted over GF (2k).

• Predictor: The function of the predictor block is to predict the check-sum of

the randomized next-state logic value (output of the randomizer). In order to

achieve this, the predictor takes the input (i) and current-state (s). In this block,

there is a register that holds the (s′jR)3 values with randomizer R ∈ GF (2k)

(this is actually the main randomizer from the previous cycle) where j indexes

all possible next-state values. With every clock-cycle, the values in this register

are randomized with R1 (more specifically by multiplication with R3
1) that is

generated using a true-random number generator (TRNG) and the results are

also written back into the original register. This block also computes and stores

the main randomizer R2=R×R1. This value is also written-back and replaces

the previous cycle’s randomizer (i.e. R in Figure 5.1). It is also sent to the

5.2. THE ERROR DETECTION TECHNIQUE 53

randomizer block for the randomization process. The write-back is necessary

to prevent the attacker from reading the existing values of the original register,

calculating the appropriate error vector that will be missed, and injecting the

faults that will result with this error vector. In other words, we want to update

these register values at every clock cycle because the advanced attacker we

are modeling cannot read and write within the same clock cycle. After the

computation of the new (s′jR2)
3 for all j, the input i and the current-state

s select the appropriate (s′R2)
3 using a multiplexer circuit. The multiplexer

circuit is inspired from the efficient FSM implementations. This is the predicted

check-sum of the randomized next-state logic.

As with the randomizer block, the multiplication and cubing operations are

conducted over GF (2k).

• Select Line Checker: As we mentioned earlier, since s and i are used as the

select lines of the multiplexer in the predictor unit, they create a potential point

of attack. Hence, we need a mechanism to verify that the s and i variables in the

circuit are intact and fault-free. Select line checker block is aimed to achieve

this goal. Basically, to verify the integrity of the current state s, this block

utilizes the codeword (s′, R
′

0, (s′ + R
′

0)
3) which is generated by the randomizer

block in the previous cycle. It mainly computes (s+R0) and takes the cube of

this addition, which is equivalent to computing the check-sum associated with

s and R0. The result is then compared with the fault-free check-sum (s + R0)
3

that is computed in the previous cycle. The same idea applies to the input i

as well. However, in our solution, we assume that the input is always coupled

with its randomizer Ri and check-sum (i + Ri)
3. In other words, the peripheral

that manages the inputs always sends the codeword (i, Ri, (i + Ri)
3) to our

state machine implementation. Any error generated by this block indicates that

either s or i inputs of our state machine implementation is exploited by a fault

54 CHAPTER 5. MUX-BASED ERROR DETECTION FOR FSMS

injection.

• EDN: The error detection network (EDN) is mainly a comparator. It compares

the cube of the randomized next-state logic with the predicted check-sum. If

the results match, this means that the operation is fault free, yet if there is a

mismatch, then an error signal is triggered. The error signal can either reset the

secret information or can stop the operation. A PUF based EDN mechanism is

proposed in [26]. This provides a fault free EDN block and prevents the attacker

from simply attacking and disabling the error signal.

5.3 Security Analysis

The main idea of the proposed protection scheme is to prevent an attacker from

forcing the state machine into an arbitrary state. The predictor’s job is focused on

using the checksum of the state and the input in order to generate the checksum of

the next state. Building a circuit which directly performs this operation can be quite

costly. Therefore, we have used a multiplexer structure as explained in the previous

section. The multiplexer uses the current input and the current state to compute the

check sum of the next state. This operation does not preserve the isolation between

the predictor branch and the FSM which could have an effect on the security of the

scheme. To solve this problem we perform an overall comparison between the current

state and its checksum. We also perform separate comparisons between the actual

values and the checksums of both the current state and the input. In this section we

will show that the error detection probability will be exponentially close to 1. We

start with the following Corollary to Theorem 3.0.1.

Corollary 5.3.1. Given a uniformly random x ∈ {0, 1}k and w = x3 ∈ {0, 1}k the

probability that any chosen pair (ex, ew) 6= 0 satisfies (x + ex)
3 = w + ew is lower

bounded by 1− 2−k+1.

5.3. SECURITY ANALYSIS 55

Proof. Use Theorem 3.0.1 with parameters n = 2k, k = r and H = I.

We will also need the following Lemma.

Lemma 5.3.2. Given a uniformly random x ∈ {0, 1}k and any w ∈ {0, 1}k the

probability that any chosen pair (ex, ew) such that ex 6= 0 satisfies (x + ex)
3 = w + ew

is upper bounded by 3 · 2−k.

Proof. The equation (x + ex)
3 = w + ew is a cubic equation over GF(2k) and hence

will have at most 3 solutions for x for any given w, ex, ew. As x is chosen uniformly

at random, the probability that x will be the correct solution for a specific w, ex, ew

will be at most 3
2k .

Now we can prove the main theorem.

Theorem 5.3.3. The error detection probability of the scheme depicted in Figure 5.1

is lower bounded by 1− 9 · 2−k.

Proof. Recall that under the adversarial fault model we are assuming, the attacker

will not know R0, Ri, R and R1 in the same clock cycle in which he will inject his

error. The scheme of Figure 5.1 will perform a comparison between sw = (s + R0)
3

and the cube of (s + R0), and similarly for iw = (i + Ri)
3 and the cube of (i + Ri).

As Ri and R0 are unknown and uniformly random to the attacker, using Corollary

5.3.1 we can assume that except with probability at most 2 · 2−k+1 no error will be

injected on s or i. Now we proceed by assuming error injections in every possible

location of the circuit. Let the error injected into the FSM reflect to s′ as a shift of

es′ . Similarly, let the error injected into the registers holding R,R1, R2, (S
′R)3 and

(S ′R2)
3 be eR, eR1, eR2, eSR and ew respectively. Also, let the error injected into the

multiplication between s′ and R2 be ex. Finally, let the error injected into the cubing

of R1 be eR3 . The output of the main branch will be

(s′ + es′) [(R1 + eR1)(R + eR) + eR2] + ex.

56 CHAPTER 5. MUX-BASED ERROR DETECTION FOR FSMS

The output of the predictor side will be

((s′R)3 + eSR)[(R1 + eR1)
3 + eR3] + ew.

As the main goal of an attacker is to change s′ to another valid state we can assume

es′ 6= 0. We will now work our way backwards. The EDN will cube the main

branch and compare it to the predictor branch. Now the term to the left of ex in

the main branch equation, which we label x, is a uniformly random string in {0, 1}k

and similarly, the term to left of ew, which we label w is some string in {0, 1}k.
Therefore, using Lemma 5.3.2 if ex 6= 0 the probability of finding (ex, ew) to satisfy

the comparison will be upper bounded by 3 ·2−k. If this is not the case we can assume

that ex = 0. Next, we assume that (RR1) 6= 0 which will happen with probability at

least 1− 2 · 2−k. We can now factor RR1 from x and (RR1)
3 from w. For the left side

we get,

(RR1)[(s
′ + es′)[(1 + eR1R

−1
1)(1 + eRR−1) + eR2(RR1)

−1]] .

The right side becomes.

(RR1)
3[((s′)3 + eSRR−3)[(1 + eR1R

−1
1)3 + eR3R−3

1]] + ew .

We can now write the comparison as

[(RR1)(x̂ + es′)]
3 ?

= (RR1)
3(ŵ + ew) .

Where

x̂ = s′[(1 + eR1R
−1
1)(1 + eRR−1) + eR2(RR1)

−1] + eReR1es′(RR1)
−1

+eRes′R
−1 + eRes′R

−1
1 + eR2es′(RR1)

−1

which can be seen as a uniformly random string in {0, 1}k. Similarly,

ŵ = ((s′)3 + eSRR−3)[(1 + eR1R
−1
1)3 + eR3R−3

1] + e2(RR1)
−3]

5.4. HARDWARE SCALABILITY 57

which is some string in {0, 1}k which can be dependent on x̂. Recall, that (RR1) 6= 0

therefore the comparison above will hold iff

(x̂ + es′)
3 = (ŵ + ew) .

However, es′ 6= 0. Now using Lemma 5.3.2 the above will hold with probability

1 − 3 · 2−k. This will make the overall probability of an error not being detected by

the scheme of Figure 5.1 lower bounded by

1− (2 · 2−k+1 + 3 · 2−k + 2 · 2−k) = 1− 9 · 2−k

The theorem above insures the security of the proposed scheme against fault

attacks. We note here that this scheme needs to carry three separate comparisons. A

simpler scheme would be for the main branch to compute (i + Ri)× (s + R0)× (sR2)

then cube this term and compare it to (i + Ri)
3 × (s + R0)

3 × (sR2)
3 coming from

the predictor branch. In fact, we conjecture that the error detection probability of

such a scheme will still be exponentially close to 1. However, in this chapter we do

not present a formal proof of this conjecture.

5.4 Hardware Scalability

As can be observed from Figure 5.1, the scheme requires 4 k-bit finite field cubings (1

k-bit squaring + 1 k-bit multiplication), (t+2) k-bit finite field multiplications where

t is the number of states in our FSM, and 3 k-bit finite field additions 1. Since addition

over GF (2) is just XORing, field adders can be implemented very efficiently. Squaring

over GF (2) can also be implemented quite efficiently. As a result, the effect of the

1The number of multipliers in our design can be reduced to 2 by using only 1 multiplier in the

predictor unit. In this case, all t multiplications will be implemented in a serial manner.

58 CHAPTER 5. MUX-BASED ERROR DETECTION FOR FSMS

field adders and squarings in the scheme will be minimal. However, multiplication

over GF (2) is an expensive operation and hence the multipliers will dominate most

of the area of the whole scheme. Since this is the case, the total area of the proposed

FSM will scale in parallel with the area of the field multipliers. It is a reasonable

assumption to state that the area of a field multiplier will scale as O(k2). Hence the

area of the whole scheme will scale as O(k2).

The scaling factor O(k2) essentially determines a trade-off between area overhead

and security. When the FSM is running a very sensitive application with a high

security risk, one cannot tolerate any errors. Therefore, only an exponentially small

probability of failure can be accepted. Of course it does not make sense to pay for

such an overhead when the underlying application is not sensitive.

An interesting perspective is to consider the overhead from a complexity point of

view. With this perspective one can see that the proposed scheme requires a circuit

of size polynomial in k while providing an exponentially small (in k) fault injection

probability.

5.5 Comparison with other FSM security schemes

At this point, it is also important to compare the error detection capability of our

scheme with other error detection schemes. Triple modular redundancy (TMR) and

quadruple modular redundancy (QMR) are two of the most common error detection

techniques against active fault attacks. In TMR, the non-redundant FSM is replicated

three times and a majority voting circuit determines the correct result. QMR works in

the exact same way, but the non-redundant FSM is replicated four times. Applying

linear codes for error detection is another proposed method [24]. Under a weak

attacker model, linear codes, TMR, and QMR may provide limited security with

minimum error detection probability greater than zero. However, in the advanced

5.6. SUMMARY 59

attacker model considered in this chapter, an attacker can with %100 probability

cause invalid state transitions on an FSM protected by these schemes. For example,

in TMR and QMR, the attacker can inject the exact same error to all replicas of the

original design. This attack will clearly go undetected as all replicas of the circuits

will behave in an identical fashion. Similarly, in the linear scheme, the attacker will

choose error vectors which are also valid codewords in the utilized code and hence

the injected error will be undetected. It should be clear that the strength of the

scheme proposed in this chapter stems from the exponentially small error detection

probability even against an advanced attacker.

Another interesting FSM security scheme based of physically unclonable func-

tions (PUF) was proposed in [26]. This PUF-based scheme is quite efficient with an

exponentially small error detection probability even against an advanced attacker.

However, it is only applicable to known-path FSMs, which is a specific class of FSMs.

The approach we present in this chapter is a generic one that can be applied to any

FSM.

5.6 Summary

We presented a fault detection scheme in FSMs based on multiplexers and systematic

nonlinear error detection codes. Our scheme detects any injected fault with proba-

bility exponentially close to 1 even against an advanced attacker with high temporal

and spatial fault injection capability. Furthermore, the work here presents a new ap-

proach to handling the non-uniform output of a state machine in a way which enables

the usage of some classical error detection techniques.

60 CHAPTER 5. MUX-BASED ERROR DETECTION FOR FSMS

Chapter 6

Novel PUF-based Error Detection

Methods in Finite State Machines

6.1 Motivation

Utilizing Physically Unclonable Functions (PUFs) [21, 57, 62] for protection against

active attacks in authentication schemes is an interesting approach. A PUF is a phys-

ical pseudo-random function which exploits the small variances in the wire and gate

delays inside an integrated circuit (IC). Even when the ICs are designed to be logically

identical, the delay variances will be unique to each IC. These variances depend on

highly unpredictable factors, which are mainly caused by the inter-chip manufactur-

ing variations. Hence, given the same input, the PUF circuit will return a different

output on different chipsets [49]. Additionally, if the PUFs are manufactured with

high precision, any major external physical influence will change the PUF function

and therefore change the output. These features are indeed very attractive for any

low cost scheme hoping to achieve tamper-resilience against active attacks.

In this chapter, we focus our attention on active attacks and present a CED

The work presented in this chapter is a joint work with Ghaith Hammouri.

61

62 CHAPTER 6. PUF-BASED ERROR DETECTION METHODS IN FSMS

design based on PUFs. We mainly focus on error detection in FSMs of hardware

implementations. Basically, we propose a different approach to protect the FSMs

against active fault attacks in an adversarial setting. This approach is different than

the previously proposed techniques becuase it is not built on systematic non-linear

codes. Instead, the main building blocks of the scheme proposed in this chapter are

PUFs.

Our Contribution: In this chapter, we present a high level description of a

technique which uses PUFs to secure a class of finite state machines against fault

injection attacks. Our proposal offers a two-layer security approach. In the first layer

the PUF’s functionality is used to produce a checksum mechanism on the logical

level and in the second layer, the intrinsic sensitivity of the PUF construction is

used as a protection mechanism on the physical level. An injected error has a high

probability of either causing a change in the checksum, or causing a change in the PUF

characteristics, therefore signaling an attack. With this dual approach our proposal

opens an interesting area of research which explores hardware specific features of

state machines. The proposed design integrates with a finite state machine in three

different ways: 1) It provides a checksum mechanism for the state transitions 2)

It provides key integrity protection for any secrets used by the state machine 3) It

provides a novel fault-resilient implementation of the error detection network. Our

work here is the first study on utilizing PUFs to secure the control logic in hardware

implementations. In addition, the utilization of PUFs proved to be extremely suitable

when the hardware resources are limited.

The remainder of this chapter is organized as follows: Section 6.2 introduces the

necessary background on PUF circuits. Our PUF-based approach to secure known-

path state machines is discussed in Section 6.3. Next, the key integrity scheme uti-

lizing PUFs is described in Section 6.4. In Section 6.5, a PUF-based secure error

detection network (EDN) is presented.

6.2. PHYSICALLY UNCLONABLE FUNCTIONS 63

6.2 Physically Unclonable Functions

A PUF is a challenge-response circuit which takes advantage of the interchip varia-

tions. The idea behind a PUF is to have the same logical circuit produce a different

output depending on the actual implementation parameters of the circuit. The varia-

tions from one circuit implementation to another are not controllable and are directly

related to the physical aspects of the fabrication environment. These aspects in-

clude temperature, pressure levels, electromagnetic waves and quantum fluctuations.

Therefore, two identical logical circuits sitting right next to each other on a die in

a fabrication house might still have quite different input-output behavior due to the

nature of a PUF.

The reason one might seek to explore such a property is to prevent any ability

to clone the system. Additionally, because of the high sensitivity of these interchip

variations it becomes virtually impossible for an attacker to accurately reproduce the

hardware. Another major advantage of the PUF’s sensitivity is to prevent physical

attacks on the system. Trying to tap into the circuit will cause a capacitance change

therefore changing the output of the PUF circuit. Removing the outer layer of the

chip will have a permanent effect on these circuit variables and again, it will change

the output of the PUF circuit. Briefly, we can say that a well-built PUF device will

be physically tamper-resilient up to its sensitivity level. Multiple designs have been

proposed in the literature to realize PUFs. Optical PUFs were first introduced in [58].

Delay-based PUFs or more known as silicon PUFs were introduced in [21]. Coating

PUFs were introduced in [66]. More recently, FPGA SRAM PUFs were introduced

in [25]. Surface PUFs were proposed in [57, 67] and further developed in [62]. In

general, so far the usage of PUFs has focused on the fact that they are unclonable. In

this chapter we focus our attention to the delay-based PUF first introduced in [21].

A delay based PUF [21] is a {0, 1}n → {0, 1} mapping, that takes an n-bit chal-

lenge (C) and produces a single bit output (R). The delay based PUF circuit consists

64 CHAPTER 6. PUF-BASED ERROR DETECTION METHODS IN FSMS

of n stages of switching circuits as shown in Figure 6.1. Each switch has two input

and two output bits in addition to a control bit. If the control bit of the switch is

logical 0, the two inputs are directly passed to the outputs through a straight path. If

on the other hand, the control bit to the switch is 1, the two input bits are switched

before being passed as output bits. So based on the control bit of every switch, the

two inputted signals will take one of two possible paths. In the switch-based delay

PUF, there are n switches where the output of each switch is connected to the input of

the following switch. At the end, the two output bits of the last switch are connected

to a flip-flop, which is called the arbiter. The two inputs to the first of these switches

are connected to each other, and then connection is sourced by a pulse generator.

Arbiter

2cc1

0

1

1

0 0

1

0

1

0

1

1

0

c

Data

Clock

R

n

Figure 6.1: A basic delay based PUF circuit

The delay PUF can be described using the following linear model [21, 27],

R = PUFY (C) = sign

(

n
∑

i=1

(−1)piyi + yn+1

)

. (6.1)

where Y = [y1 . . . yn+1] with yi as the delay variation between the two signal paths

in the ith stage and yn+1 captures the setup time and the mismatch of the arbiter.

Sign(x) = 1 if x > 0, and 0 if x ≤ 0. pi = ci ⊕ ci+1 ⊕ . . . ⊕ cn, where ci is the ith

bit of C. Note that the relation between P = [p1 . . . pn] and C = [c1 . . . cn] can be

described using the equation (P = UC). The strings C and P are represented as

column vectors, U is the upper triangular matrix with all non-zero entries equal to

1 and the matrix multiplication is performed modulo 2. Equation 6.1 captures the

6.2. PHYSICALLY UNCLONABLE FUNCTIONS 65

ideal PUF response. However, due to race conditions which will sometimes cause the

two signals inside the PUF paths to have very close delays, the output of the PUF

will sometimes be random. We refer to these random outputs as metastable outputs.

This happens with a certain probability depending on the sensitivity of the arbiter.

For typical flip-flops a 64-bit PUF will have about 1 metastable output for every 1000

outputs [47].

The variables yi capture the secret maintained in the hardware, and which cannot

be measured directly. These variables are usually assumed to be independent with

each following a normal distribution of mean 0 and some variance which can be

assumed to be 1 without loss of generality [49]. We note here that the independence

of these variables will highly depend on the manufacturing process. For example in an

FPGA implementation it is much harder to get almost independent yi variables. In an

ASIC implementation the yi variables seem to be closer to independence. However,

to simulate an independent response one might average over multiple independent

challenges. In this study, we will work under the assumption that the yi variables are

independent.

With the independence assumption one can derive the probability distribution of

two inputs C(1) and C(2) producing the same PUF output over all possible outputs

as follows,

Prob[PUFY (C(1)) = PUFY (C(2))] = 1− 2

π
arctan

(

√

d

n + 1− d

)

. (6.2)

where d is the Hamming distance between P (1) = UC(1) and P (2) = UC(2). For the

full derivation the reader is referred to [28, 27]. This relation carries the important

fact that the correlations in the PUF output are solely dependent on the Hamming

distance.

It is important to mention that due to the linear nature of the PUF circuit, given

a number of challenge-response pairs (C,R), an attacker can use linear programming

66 CHAPTER 6. PUF-BASED ERROR DETECTION METHODS IN FSMS

[59, 55, 21] to approximate for the unknown vector Y . To solve this problem we

have one of two options. First, hide the output R such that it is not accessible to

an adversary. Our second option is to use non-linearization techniques such as the

feed-forward scheme presented in [21, 47]. For simplicity we will assume that the

output R is not available to an adversary. This only means that the attacker cannot

read R, but he still can inject a fault. We will shortly see from the coming sections

that this is quite a reasonable assumption.

Note on the Adversarial Fault Model: In this chapter, we are mostly con-

cerned with secure FSMs and key storage. As a result, it is more appropriate to use

the logical fault model. It is also important to note that since the analysis conducted

in this chapter does not assume attacker’s inability to read the existing data on the

circuit before injecting a fault, overwriting and jamming errors can also be modeled

as logical error additions. In addition, note that one additional assumption for the

fault model of Section 6.4 is described by Assumption 6.4.1.

6.3 Securing Known-Path State Machines

In this section we address the security of state machines against adversarial fault

attacks. We focus our attention to the state machines which are not dependent upon

input variables. Such machines are quite common in cryptographic applications which

typically contain a limited number of states and perform functions which require a

long sequence of states. We now formally define the class of state machines which we

address in this section.

Definition 6.3.1. A known-path state machine, is a state machine in which state

transitions are not dependent upon the external input. The state-sequence which the

state machine goes through is known beforehand, and can be considered a property of

the state machine.

6.3. SECURING KNOWN-PATH STATE MACHINES 67

Algorithm 6.1 Always multiply Right-to-Left Binary Exponentiation Algorithm [29]

Require: x, e=(et−1, ..., e0)2

Ensure: y = xe

R0 ← 1 INIT

R1 ← x LOAD

for i = 0 upto t− 1 do

b = 1− ei

Rb ← R2
b SQUARE

Rb ← Rb · Rei
MULTIPLY

end for

y ← R0 RESULT

An example of an algorithm that can be implemented with a known-path state

machine is the “always multiply right-to-left binary exponentiation” [29] which is

shown above. The associated state diagram for this algorithm is shown in Figure

6.2 with a possible fault injection attack (indicated by the dotted line). As can

be observed, once the start signal is received, the transitions will follow a specific

pattern and are independent from any kind of input except i which is a predetermined

value. Another example of a known-path state machine is the “Montgomery ladder

exponentiation” which is commonly used for RSA signature generation [30]. The PUF

based security mechanism which we describe in this section defines a generic approach

to secure this class of state machines. We now rigorously define our approach and

derive the probability of detecting an injected error.

Let F be a known-path state machine with m states. We refer to the known-path

of states which the state machine goes through in a full operation as the state-sequence

and we denote it by SΩ. Here, Ω represents the encoded states in the state-sequence

observed by F . We define f to be the encoding function for our states. The function

f is also assumed to produce a binary output. Let n be the bit size of the output of

68 CHAPTER 6. PUF-BASED ERROR DETECTION METHODS IN FSMS

S5

S4 S3

S2

S1S0
Init

Load

SquareMult

Result

Idle

start=0

start=1

i t−1
i t−1

Figure 6.2: State Diagram Representation of Left-to-Right Exponentiation Algorithm

with Point of Attack

f and k the number of states in Ω. So for example, if F enters the state-sequence

s1, s2, s3, s4, s3, s4, s5 then Ω = [f(1), f(2), f(3), f(4), f(3), f(4), f(5)]. If the encoding

scheme is a simple binary encoding then Ω = [001, 010, 011, 100, 011, 100, 101], n = 3

and k = 7.

With the above definitions our proposal’s main goal becomes to finger-print the

state-sequence SΩ. The way we achieve this is by adding a PUF circuit to the state

machine logic. The straightforward idea of the scheme works as follows: at initializa-

tion time the circuit calculates the PUF output for each of the encodings in Ω. This

output which we label ω is then securely stored for future comparisons. The ith bit

of ω which we label ωi is calculated as

ωi = PUFY (Ω(i))

where Ω(i) is the ith entry in Ω. This equation means that an n-bit PUF needs to

be utilized, and that ω will be a k-bit string. This straightforward approach captures

the essential idea of the proposal. However, there are problems with the efficiency

of this approach. One can imagine a simple state machine going into a 3-state loop

for 1000 cycles. This would mean that ω contains at least 3000 bits of a repeating

3-bit sequence. If secure storage is not an issue, or if k is a small number, then the

6.3. SECURING KNOWN-PATH STATE MACHINES 69

straightforward approach should suffice. However, when a state machine is expected

to have large iterations over various cycles a different approach should be explored.

2

3

q

1

p1

M
ul

tip
le

xe
r

D
ec

od
er

Current State

PUF

EDN

n

Error Flag

f

Y

Control Unit
log(q)

p

pq

3

p2

Clockwo
i

Figure 6.3: PUF-based circuit for protecting FSMs

To solve this problem we take a deeper look into the state-sequences that we

expect to observe in the known-path state machines. Such state-sequences can be

broken into q different sub-sequences each of which contain pi states and is repeated

for ci cycles. We can now rewrite the overall state-sequence as

Ω = [{Ω1}c1 | {Ω2}c2 | . . . | {Ωq}cq] ,

where | stands for concatenation of sequences, and {Ωi}ci indicates the repetition of

the sub-sequence Ωi for ci times. Note that k = c1p1 + c2p2 + . . . + cqpq. With the

new labeling, we can see that the checksum does not need to be of length k. It should

suffice for the checking circuit to store the constants ci and pi in addition to the bits

ωi,j = PUFY (Ωi(j)) for i = 1 . . . q and j = 1 . . . ci. We can write

ω = [ω1 | ω2 | . . . | ωq] ,

where ωi will contain pi bits. With only having to store the ωi strings, the scheme

will be efficient in terms of storage. We next explain how the checking circuit works.

As can be seen in Figure 6.3, the checking circuit stores each of the ωi strings

in a separate shift register with the output (the most significant bit) connected to

70 CHAPTER 6. PUF-BASED ERROR DETECTION METHODS IN FSMS

the input (the least significant bit) of the register. The outputs of the shift registers

are also connected to a multiplexer, whose log(q) select signals connected to a small

control unit. The control unit’s main task is to maintain a counter C which will

indicate how far along the state-sequence is the state machine, therefore generating

the select signals for the multiplexer. When C ≤ c1p1 the first register’s output is

selected. Once the counter exceeds c1p1 the control unit will select the second register,

and will maintain the same output until the counter reaches c1p1 + c2p2. The control

unit will essentially chose the ith register as long as c1p1 + c2p2 + . . . + ci−1pi−1 <

C ≤ c1p1 + c2p2 + . . . + cipi. The checking circuit continues in this fashion until the

counter reaches k = c1p1 + c2p2 + . . . + cqpq at which point the counter resets to zero

since the state machine will be back to its initial state. We will label the output of

the multiplexer at ith state of the state-sequence as ωo
i . For the registers to generate

the right output, the select signals produced by the control unit also need to be fed

into a decoder which will produce the clock signals of the registers. The input of

the decoder will be the master clock signal, and the outputs of the decoder will be

connected to the clock inputs of the shift registers. Note that these signals will only

be high when the corresponding register is being used, therefore causing the register

to shift accordingly.

At every clock cycle the current check bit xi = PUFY (f(Si)) is generated, where

Si is the current state of the state machine. The checking circuit will verify the

condition ωo
i = xi. Whenever this condition is violated the checking circuit can issue

a signal to indicate a fault injection. We have mentioned earlier that the output of

a PUF circuit will not be consistent for a certain percentage of the inputs. This

percentage will set a tolerance threshold labeled L for the checking circuit. If the

number of violations detected by the checking circuit is more than L, the checking

circuit can signal an attack, therefore halting the circuits operation.

To calculate the probability of an attack actually being detected, we note that

6.3. SECURING KNOWN-PATH STATE MACHINES 71

the PUF output is uniform. A fault injected by the attacker will change the current

state, and will consequently change the following states. We label the states in the

fault-free sequence SΩ as ideal states, and we label the states which are different as

a result of the fault injection as faulty states. The fault-free sequence and the new

faulty sequence will have t different states, t ≤ k. We are interested in calculating

the probability of the new faulty states actually yielding a different PUF output

than that of the ideal states. Equation 6.2 shows that when the Hamming distance

between the two PUF inputs is about n/2, this probability is 0.5. With this in mind,

we can choose the encoding function f and the size of its output n such that the

encodings of any two states have a Hamming distance of n/2. Even more efficiently,

if the encoding is assumed to be secret, the Hamming distance between the encoded

state vectors would be averaged over all possible encodings, therefore also yielding an

effective Hamming distance of n/2 between any two state vectors. In either case, the

probability of a faulty state generating the same PUF output as an ideal state will

effectively be 0.5. With these factors, we can expect the detection probability of an

injected fault which causes a total of t state changes to be

Pt = 1− 2−(t−L) .

Naturally, t is assumed to be larger than L since otherwise the detection probability

would be zero. If the fault injected causes a small number of state changes t, this

probability will not be sufficient to secure the system. Although it is expected that

an injected fault will cause a large number of state changes, for completeness we next

handle the case when t is small.

We propose two approaches to solve this problem. The first is to utilize a number

of PUF circuits each of which storing a separate array of checksums. And the second

is to use a single PUF but calculate the check bits for different encoding functions of

the states. Essentially one can use a single encoding and then apply a permutation to

generate a variant encoding. Whether we use d PUFs or we use d different encodings,

72 CHAPTER 6. PUF-BASED ERROR DETECTION METHODS IN FSMS

in either case we will be adding d-levels of check bits. Regardless of which of the two

approaches we use the detection probability of a fault causing t state changes will be

Pt = 1− 2−(td−L) .

Using error control techniques for the PUF circuit such as majority voting [47], the

error rate in the PUF output can be reduced to as low as 1 in 1000. This means that

for state machine where k < 1000 states, the probability of error detection becomes

Pt = 1− 21−td. Naturally, this probability does not take into account the probability

of inducing a change in the internal PUF parameters. Such a change will have an

effect on the PUF output and will therefore increase the error detection probability.

In order to estimate the hardware overhead incurred by the proposed error detec-

tion mechanism, we carry out the following analysis. The number of flip-flops required

for storing the checksums will be equivalent to the number of flip-flops used in the

current state register. As mentioned earlier, the counter C constitute the main part

of the control unit, which is also the case for the state machine. Therefore, we can

argue that the size of the control unit and the checksum storage will be approximately

the same as the state machine, implying a 100% overhead.

The encoding function f will typically have an output size which is on the order

of the total number of states m. Consequently, we can assert that the function f

will on average use about 2m combinational gates. The same applies to the PUF

circuit which will also require about 2m gates. Finally, the size of the decoder and

the multiplexer shown in Figure 6.3 is expected to be on the order of log(q) gates.

Although q can be of any size, in a typical state machine q will not be larger than

2m. Hence, the number of gates associated with the multiplexer and the decoder will

be about 2m. Adding these numbers results in a total gate count of 6m. This is the

same number of gates used by the current state register (Note that m flip-flops are

approximately composed of 6m universal gates). In general, it is safe to assume that

the current state register will consume approximately 50% of the total state machine

6.4. KEY INTEGRITY 73

area, which implies an area overhead of 50%.

As a result, the total area overhead introduced by the proposed error detection

scheme will be approximately 150%, with a high error detection rate even against

strong adversaries. When compared to the simpler error detection schemes such as

Triple Modular Redundancy (TMR) and Quadruple Modular Redundancy (QMR)

(which only replicate the existing hardware, implement the same function concur-

rently, and do a majority voting to check if an error has been injected), the proposed

scheme provides a higher level of security even against advanced adversaries because

an attacker can simply inject the same error to all replicas of the original hardware

and mask the error in these detection schemes. The area overhead associated with

these trivial detection mechanisms will be at least 200% for TMR and 300% for QMR

which is also higher than the overhead of the proposed mechanism. As a compar-

ison to a more advanced error detection scheme, the study conducted by Gaubatz

et al. [24], which utilizes linear codes for error detection, reports an area overhead

of more than 200%. However, their fault model assumes weak adversaries and the

error detection scheme becomes vulnerable against strong attackers. It is important

to note that, finite state machines usually constitute a very small part of the entire

circuit. Therefore, although the reported area overhead might appear to be large,

the effective increase in the overall area is reasonable. To sum up, PUF-based error

detection mechanism discussed in this chapter accomplishes a higher level of security

with a reduced area overhead.

6.4 Key Integrity

In [11], Biham and Shamir extended the fault injection attacks to block-ciphers and

reported that they can recover the full DES key of a tamper-proof encryptor by

examining 50 to 200 cipher-texts. In their paper, they also described a method to

74 CHAPTER 6. PUF-BASED ERROR DETECTION METHODS IN FSMS

break an unknown (unspecified) cryptosystem by utilizing the asymmetric behavior

associated with the used memory device. Basically, their fault model assumes that

the applied physical stress on the memory device, which contains the key bits, could

only cause one to zero transitions1. Using this attack, the secret key can be obtained

using at most O(n2) encryptions. Similarly, Kocar [36] reports a method to estimate

the key bits of a cryptographic device by employing the charge shifting characteristic

of EEPROM cell transistors after baking. In addition, in [4] authors describe an

EEPROM modification attack where they can recover the DES key by overwriting

the key bits one by one and checking for parity errors. Same authors, in [3], also

discuss example attacks on PIC16C84 microcontroller and DS5000 security processor

in which security bits can be reset by modifying the source voltages. The key overwrite

attacks also constitute a crucial risk on smart cards where the key is stored inside

the EEPROM. To summarize, fault injection attacks on secret keys stored on-chip

memory pose a serious threat in many cryptographic hardware implementations.

Key CheckSumSecret Key

PERMUTE

PUF

t

k

n

Figure 6.4: Key integrity check using PUF

In this section, we propose utilizing PUFs as a solution to this important problem.

The main idea here is similar to that of the previous section. Basically, we generate a

secret key fingerprint or checksum for the correct secret key using a PUF circuit. As

outlined earlier, the checksums are assumed to be stored secretly while allowing fault

1This one-way characteristic can also cause zero to one transitions depending on the asymmetry

of technology used to fabricate the memory device.

6.4. KEY INTEGRITY 75

injection. Regularly, the checking circuit can check and verify the integrity of the key.

If the checksum value for the current key does not match the checksum value for the

correct secret key, this can be interpreted as an error injection to the key. As a result,

an error message can be issued and the secret data can be flushed or the device can

be reseted to prevent any kind of secret leakage. This mechanism is briefly shown

in Figure 6.4. This figure shows part of the memory which contains a secret key of

size k × n. Each row of this key block is labeled ri and is treated as an input to the

PUF circuit. If the rows are directly fed to the PUF circuit, an attacker can carefully

choose his errors such that the Hamming distance between the actual variables (P)

defined in Equation 6.1 is minimal. Recall that this would mean that the PUF output

will not be able to detect the injected error. If the size of the checksum for each key

row is a single bit, the error detection probability for an injected error would be 0.5

as the PUF can only provide an output of {0, 1}. In this case, the success rate for the

attacker is considerably high. This is why we utilize a permutation block as shown

in Figure 6.4.

The permutation block will essentially permute each input row ri by a pre-

determined permutation ρj where j = (1, . . . , t) and t < n. Consequently, ρj(ri)

is fed to the PUF in order to generate the (i, j) bit of the checksum. In short, for

the secret key array S with size k × n and rows ri, we calculate the (i, j) bit of the

checksum Sw as

Sw(i, j) = PUFY (ρj(ri)) (6.3)

where the ρj’s are random permutations pre-chosen secretly and Sw is of size k × t.

When this model is applied to secure the cryptographic devices against memory

overwrite attacks, the robustness and security measure of the error detection scheme

becomes a direct function of t, the number of the permutations used for each row. The

probability of an error being detected is essentially the probability of an error changing

the PUF output. However, we have seen in the previous section that the PUF output

76 CHAPTER 6. PUF-BASED ERROR DETECTION METHODS IN FSMS

will sometimes be metastable. Therefore, we will again define an acceptable level

of errors which will be a property of the system and which will not raise an alarm.

Similar to the previous section we define this level as L. Now we can define the event

for an error being detected. In particular, an error injected to row ri will be detected

provided that the following equation will not hold for more than L of the row’s t

checking bits.

PUFY (ρj(ri)) = PUFY (ρj(ri + e)) (6.4)

where e indicates an error injected to the ith row, e.g. bit flip of some memory cells.

We now calculate this probability. Equation 6.4 is essentially the probability calcu-

lated in Equation 6.2. Therefore, we will again have to refer back to the Hamming

distance between the ideal and the attacked PUF inputs. Because the permutations

ρj are taken over all possible permutations, the attacker cannot control the effective

location of his injected errors. To simplify the calculation we make the following

assumption.

Assumption 6.4.1. We assume an attacker model where the number of faults injected

by the attacker is uniform over all possible number of faults.

With Assumption 6.4.1 we can calculate the expected value of the Hamming

distance between the P values of the original data and the faulty data when taken over

all permutations to be equal to n/2. Going back to Equation 6.2 for this particular

Hamming distance the probability for Equation 6.3 to hold will be 0.5. With this,

the detection probability of an error becomes 1− 2−(t−L).

At this point, it is important to note the trade-off between the area overhead and

security level of the suggested mechanism. As the number of permutations t for each

row increases, the security of the device gets stronger because the error detection

probability increases. However, the area overhead also increases linearly with t due

to the checksum storage space. The optimal value for t is an application dependent

6.5. ERROR DETECTION NETWORK SECURITY 77

issue and can be adjusted according to the required security level or allowed area

overhead.

Note that one can use error correcting codes to address the integrity issue. How-

ever, such a solution would require substantially more hardware for decoding the code

words. Moreover, the PUF circuit has built-in fault resilience due to its sensitive char-

acteristics. Consequently, any kind of fault injection or perturbation of the hardware

will modify the result of the PUFs. This brings an additional level of security to the

proposed key integrity and protection scheme. In addition, the solution we present

here views the separate memory rows as independent entities. It is an interesting

problem to explore combinations of the rows and columns, which might improve the

error detection probability. Finally, the model here assumes that the checksum is

hidden secretly. If a designer wishes to relax this condition different PUF designs

should then be explored.

6.5 Error Detection Network Security

Concurrent error detection (CED) is one of the most common solutions against active

fault attacks. The basic idea in these schemes is to calculate the expected result

using predictor circuits in parallel to the main hardware branch, and compare if the

predicted value of the result matches the actual value calculated in the main branch.

A good overview along with elaborate examples about this mechanism can be found

in [22]. An error signal is issued when these two paths do not produce agreeing results.

This comparison along with the error signal generation are conducted by the error

detection network (EDN) modules.

While the attackers are always assumed to target the main or predictor branch

of a cryptographic device, the EDN network which is in fact the weakest link in the

design is always assumed to be completely fault resilient. An attacker can deactivate

78 CHAPTER 6. PUF-BASED ERROR DETECTION METHODS IN FSMS

the EDN by preventing an error signal from being issued or by just simply attacking

the inputs of the EDN. Therefore, totally disabling/bypassing the error detection

mechanism. To tackle this problem, we propose utilizing PUF structures to design

secure and fault tolerant EDN blocks.

t

E
D

N
XOR

Pr
ed

ic
to

r
PUF

nn

M
ai

n
Permute

Figure 6.5: PUF based EDN

The suggested PUF based EDN mechanism is shown in Figure 6.5. Basically,

the results coming from the main and predictor branches of the computation are

first XOR-ed together. In the absence of an injected fault, the result will be the

zero vector. The circuit starts by producing a fingerprint of the PUF response to

an all zero bit challenge right before the circuit is deployed. This fingerprint is

stored as the checksum bit. Throughout the circuit’s operation, the XOR-ed results

are continuously permuted and fed into the PUF circuit. This permutation block

implements the same functionality as in Section 6.4. In the absence of an error, the

permutation will have no effect on the all zero vector, Therefore the output should

always match the stored checksum bit. However, when an error is injected the output

of the XOR will not be the all zero vector. This will cause the permutations to

generate different challenge vectors which will consequently produce PUF outputs

which are different from the checksum bit.

6.6. SUMMARY 79

When the circuit detects a mismatch between the output of the PUF and the

checksum bit an injected fault is assumed and an error signal can be issued. Similar

to the analysis conducted in the previous two sections, the error detection capability

of the EDN is dependent upon the number of applied permutations t, and can be

formulated as 1 − 2−(t−L). As in the previous sections, L here is the acceptable

threshold of errors in the PUF response. The trade-off between the security and area

overhead discussed in Section 6.4 also exists in this PUF based EDN methodology

too.

Note that any attempt by the attacker to modify the voltage levels of the wires

located inside the EDN will affect and change the result of the PUF due to its high

sensitivity. This intrinsic tamper resistance of the PUF circuit acts as assurance

against fault attacks targeting the EDN.

6.6 Summary

In this chapter, we explored the integration of PUFs into the building blocks of fi-

nite state machines to provide security. In particular, we addressed the security

of state-transitions (next-state logic) against fault-injection attacks, the integrity of

secret information, and finally fault-resilience in error detection networks. We pro-

posed PUF-based architectures for the security of these modules in a control unit,

and showed that the probability of error detection is high. More importantly, the

solution we propose provides security on the physical level as well as the logical level.

Even if the adversary can find the appropriate fault to inject, there will still be a

good chance of being detected by the change in the PUF behavior. The designs we

propose in this chapter are described from a higher level and therefore are far from

being final solutions ready for implementation. Rather, these solutions are mainly in-

tended to open a new door for research in the area of unclonable protection of FSMs.

80 CHAPTER 6. PUF-BASED ERROR DETECTION METHODS IN FSMS

Such mechanisms can provide strong error detection with a relatively low hardware

overhead. Our work here is a first step in this direction.

Chapter 7

Nonlinear Error Detection for

Elliptic Curve Cryptosystems

7.1 Motivation

Elliptic curve cryptosystems (ECC) offer the highest security per bit among the ex-

isting public key cryptography systems such as RSA, Diffie-Hellman and ElGamal.

In [48], Lenstra and Verheul reported that ECC using a 130-bit key offers compara-

ble security as RSA with a key length of 1024 bits. As a result, it is a reasonable

alternative to RSA especially for embedded applications. However, such devices are

more vulnerable to side-channel attacks, since the attacker can procure, isolate, and

test such a system without being detected [3, 4].

Elliptic curves are conventionally represented using Weierstrass formulation in

the most general form. In 2007, Edwards proposed a novel formulation of elliptic

curves and associated point arithmetic operations defined over all non-binary fields

[19]. Edwards elliptic curves, which have no point at infinity, are the normal form of

birationally equivalent Weierstrass elliptic curves. In addition, Edwards formulation

The work presented in this chapter is a joint work with Deniz Karakoyunlu.

81

82 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

may provide performance benefits especially when projective coordinates are used in

the absence of an efficient modular divider. Moreover, point addition and doubling

operations can be handled with the same unified operation. This facilitates the design

of side-channel resistant ECC systems [8, 31].

ECC based systems have also been a target of active fault attacks. In [10], Biehl

et al. showed that using fault injection, ECC point multiplication can be forced to

be computed over a less secure elliptic curve. As a result, it becomes relatively easy

to solve the discrete log problem over this less secure curve. They also proposed

implementing bit faults during random moments of a multiplication operation and

showed that it is possible to reveal the secret key d in a bit-by-bit fashion. In [15],

authors relaxed the assumptions of Biehl et al. in terms of the location and precision

of the injected faults. They used two main fault models: 1) A permanent fault (in

an unknown location on the device) on any of the system parameters defining the

elliptic curve 2) A transient fault that occurs while the system parameters are being

transferred to the working memory (RAM). Even with this new attacker model, their

attack essentially recovers the (partial) secret in ECC discrete log problem. Note that

the attacks described in these two papers can be prevented by checking whether the

points used in these computations are on the utilized elliptic curve. However, in [12],

Blomer et al. proposed the so-called “Sign Change Fault” attacks on the ECC based

systems. These attacks do not change the original curve and work with points on

this curve. Basically, they propose changing the signs of intermediate points during

a scalar multiplication using fault injection. This leads to a faulty output which is

also on the curve. Then they use a similar algorithm to the one described in [13] to

recover the secret scalar in polynomial time.

Our Contribution: In this chapter, we propose applying systematic nonlinear

error detection codes to protect elliptic curve point addition and doubling operations

against active fault attacks. We analyze the security level provided by this error

7.2. BACKGROUND 83

detection technique and show that these codes provide nearly perfect error detection

capability (except with exponentially small probability) for elliptic curve point oper-

ations. In addition, we discuss how to design low-overhead predictor circuits as part

of our nonlinear error detection scheme. In this comprehensive analysis, we include

both Weierstrass and Edwards curves over different coordinate systems (i.e. affine

and projective). Moreover, we compare our technique with the method discussed in

[22] where the authors proposed an error detection technique for robust public key

arithmetic. They did not explicitly apply their technique to secure ECC point opera-

tions. However, by using their robust arithmetic units to implement each arithmetic

operation in ECC, their security level can be achieved for ECC point operations as

well. When compared with their method, our technique provides approximately the

same level of security and robustness with much less overhead. The overhead of our

scheme is less than half (42%-46%) of the overhead of [22] for Edwards curves and is

52% to 81% of the overhead of [22] for different versions of the Weierstrass curves.

This chapter is organized as follows: In Section 7.2, we give a short overview

of the ECC and existing error detection techniques for ECC in the literature. The

proposed error detection technique is described in Section 7.3. In Section 7.4, we

discuss the proposed point addition and doubling constructions. Finally, we discuss

the area overhead associated with our technique in Section 7.5.

7.2 Background

In this section, we initially present the required background on elliptic curves and

ECC. We also provide the existing error detection strategies proposed to prevent

fault injection attacks on ECC implementations.

84 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

7.2.1 Elliptic Curve Cryptography Overview

This section briefly describes the elliptic curve discrete logarithm problem (ECDLP)

and ECC formulations over finite fields of prime characteristics. A point P of order n,

selected over an elliptic curve E defined over a finite field Fp, can be used to generate

a cyclic subgroup 〈P 〉 = {∞, P, 2P, 3P, . . . , (#n− 1)P} of E(Fp).

The ECDLP is the underlying number theoretical problem used by ECC, and it

is defined as determining the value k ∈ [1, #n− 1], given a point P ∈ E(Fp) of order

#n, and a point Q = kP ∈ 〈P 〉. In a cryptosystem, the private key is obtained by

selecting an integer k randomly from the interval [1, #n − 1]. Then corresponding

public key is the result of scalar point multiplication Q = kP , which is computed by

a series of point additions and doublings.

7.2.1.1 Simplified Weierstrass Formulation for Elliptic Curves

An elliptic curve E defined over a prime field Fp (with p > 3) can be written in the

simplified Weierstrass form as:

E(Fp) : y2 = x3 + ax + b (7.1)

where a, b ∈ Fp, and the discriminant of the curve ∆ = −16(4a3 +27b2) 6= 0. A point

addition operation can be defined for adding two points P = (x1, y1) and Q = (x2, y2)

in E(Fp) resulting in a third point P + Q = (x3, y3) in E(Fp) with the point at

∞ serving as identity element (P +∞ = P). Assuming that P 6= ±Q, the point

P + Q = (x3, y3) can be computed as:

x3 =

(

y2 − y1

x2 − x1

)2

− x1 − x2 (mod p) (7.2)

y3 =

(

y2 − y1

x2 − x1

)

(x1 − x3)− y1 (mod p)

7.2. BACKGROUND 85

For P = Q the operation is called doubling, and the calculation of 2P = (x3, y3) is

slightly different:

x3 =

(

3x2
1 + a

2y1

)2

− 2x1 (mod p) (7.3)

y3 =

(

3x2
1 + a

2y1

)

(x1 − x3)− y1 (mod p)

Finally, if P = −Q the operation results in point at infinity, and it should be handled

separately.

A Weierstrass elliptic curve defined in Equation (7.1) is converted to Jacobian

coordinates as follows:

E(Fp) : Y 2 = X3 + aXZ4 + bZ6

where X = xZ2, Y = yZ3. Then the point addition (Equation 7.4) and doubling

(Equation 7.5) formulations with Jacobian coordinates become [14]:

X3 = (Y2Z
3
1 − Y1Z

3
2)2 − (X2Z

2
1 −X1Z

2
2)2(X2Z

2
1 + X1Z

2
2) (mod p) (7.4)

2Y3 = (Y2Z
3
1 − Y1Z

3
2)[(X2Z

2
1 −X1Z

2
2)2(X2Z

2
1 + X1Z

2
2)− 2X3]

−(X2Z
2
1 −X1Z

2
2)3(Y2Z

3
1 + Y1Z

3
2) (mod p)

Z3 = (X2Z
2
1 −X1Z

2
2)Z1Z2 (mod p)

X3 = (3X2
1 + aZ4

1)2 − 8X1Y
2
1 (mod p) (7.5)

Y3 = (3X2
1 + aZ4

1)(4X1Y
2
1 −X3)− 8Y 4

1 (mod p)

Z3 = 2Y1Z1 (mod p)

7.2.1.2 Edwards Formulation for Elliptic Curves

An elliptic curve E defined over a prime field Fp (with p > 3) can be written in the

Edwards normal form as:

E(Fp) : x2 + y2 = c2(1 + dx2y2) (7.6)

86 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

where the parameter c can be chosen as 1 without loss of generality. Addition of two

points P = (x1, y1) and Q = (x2, y2) in E(Fp) resulting in a third point P + Q =

(x3, y3) in E(Fp) can be computed as:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2

(mod p) (7.7)

y3 =
y1y2 − x1x2

1− dx1x2y1y2

(mod p)

This equation is valid even if P = Q, and it never results in point at infinity. An Ed-

wards elliptic curve defined in Equation (7.6) is converted to homogeneous projective

coordinates as follows:

E(Fp) : X2 + Y 2 = Z4 + dX2Y 2

where X = xZ, Y = yZ. The following formulas compute the unified point addition

and doubling (Equation 7.8), and optimized doubling (Equation 7.9) operations with

projective coordinates [8]:

X3 = Z1Z2(X1Y2 + Y1X2)(Z
2
1Z

2
2 − dX1X2Y1Y2) (mod p) (7.8)

Y3 = Z1Z2(Y1Y2 −X1X2)(Z
2
1Z

2
2 + dX1X2Y1Y2) (mod p)

Z3 = (Z2
1Z

2
2 − dX1X2Y1Y2)(Z

2
1Z

2
2 + dX1X2Y1Y2) (mod p)

X3 = 2X1Y1(X
2
1 + Y 2

1 − 2Z2
1) (mod p) (7.9)

Y3 = (X2
1 − Y 2

1)(X2
1 + Y 2

1) (mod p)

Z3 = (X2
1 + Y 2

1)(X2
1 + Y 2

1 − 2Z2
1) (mod p)

We provide the dataflow of point operations associated with both Weierstrass and

Edwards curves in Appendix A. The dataflow format makes it easier to count the

number of operations that are used for each point operation.

7.2. BACKGROUND 87

7.2.2 Existing Error Detection Techniques in ECC

In this section, we will give a brief overview of the existing techniques that can be

used for error detection in ECC systems. One countermeasure against active fault

attacks in ECC is to check if the resulting point is on the elliptic curve or not. This

method is called point validation (PV). However, Blomer et al. showed that PV is

not sufficient against sign change fault attacks [12]. As a countermeasure against sign

change fault attacks, they proposed performing scalar multiplication over a combined

curve. The additional curve is then used to verify the final result of the computation.

[65] proposed using the mathematical properties of the register transfer level field

primitives, i.e. field inversion, field addition, and squaring, for concurrent error detec-

tion. For example, for the field inversion operation, they propose feeding the output

of the first inversion operation to the same inversion block and compare it to the

original input. Since inversion is an involutional operation, the comparison should

hold in the absence of any faults. A similar time redundant approach is applied to

multiplication, addition, and squaring as well. Even though this is an interesting

approach, it may not be suitable for time-critical ECC implementations due to its

high time overhead which is on the order of 120%.

In [20], Francq et al. proposed the integration of the parity preserving logic gates

to some blocks of an elliptic curve unit. More specifically, borrow-save adders (BSAs)

in the ECC unit utilize these parity checking gates in order to provide error detection

capabilities. This is a gate level security technique and the ratio of the undetected

faults is between 5 to 12% depending on the multiplicity of the injected errors. Also,

note that this technique only protects the BSA blocks in the ECC circuit and causes

high latency on the computations.

[56] proposed error detection for point multiplication based on “Euclidean Ad-

dition Chain” implementations where a sequence of additions are used to compute

the result of a point multiplication. In this method, at each point addition of the

88 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

sequence, the difference between the points is also computed and compared with one

of the operands stored from the previous addition in the chain. Any mismatch after

this comparison indicates a fault injection attack on the device. To implement this

additional subtraction operation, they propose using shared logic with the point ad-

dition. Even though this could be an interesting approach against a weak adversary,

this scheme can be broken by the advanced attacker that is assumed in this thesis.

By reflecting the same error vector (e) on both Uc(i) and U1(i) computations, the

attacker can bypass the (if UD 6= UC) check and mask the error. In this case, the

error vector e is the effect of the injected fault on a fault-free variable, Uc(i), U1(i),

U2(i), and UD(i) are partial products in the addition chain. By implementing such

an attack, the attacker can successfully change the output of the whole point multi-

plication operation. This algorithm also requires the secure transfer of intermediate

values such as U1(i−1), U2(i−1), and UC(i−1) between each round to be successful

against fault injection attacks.

Another approach proposed by [18] is based on time and hardware redundancy.

In this paper, authors proposed the application of encoding techniques called “input

point and scalar randomization” to ECC operations. More specifically, a point P

on the projective coordinates of an elliptic curve E has multiple representations. By

encoding this point to one if its images and using time redundant/parallel compu-

tation, error detection can be achieved. The outputs of the actual and redundant

computation are then compared. If there is a mismatch, this points to a fault in-

jection attack. A similar encoding approach can be used to randomize the scalar k

of the multiplication operation as well. The error masking probability of the pro-

posed scheme is on the order of 1/q2, where q ≈ 2160 for standard NIST curves. It is

also important to note that the parallel computation method described in this paper

brings a hardware overhead of approximately %137. In this paper, authors assume

the secure implementation of point and scalar randomization modules, multiplexers,

7.3. THE ERROR DETECTION TECHNIQUE 89

and registers that are used in the proposed error detection scheme. Moreover, the

randomization approach they use requires a random number generator (RNG) that

will generate the encoding masks. We do not incorporate any kind of RNG in our

technique.

7.3 The Error Detection Technique

We mainly propose applying nonlinear codes to secure operations conducted over el-

liptic curves, i.e. point addition and doubling operations against active fault injection

attacks. This is a generic method that can be applied to all elliptic curve structures

(Weierstrass and Edwards) and all coordinate systems (projective and affine). In this

chapter, we are focusing on ECC structures based on prime fields Fp, yet a similar

idea can be applied to protect elliptic curves that are defined over binary fields as

well.

The main idea is to encode the coordinates of elliptic curve points using the

systematic nonlinear (n, k, r)-code of Definition 3.0.4. This code essentially uses re-

dundancy for error detection. We define the following error check function on a point

coordinate X ∈ Fp to obtain a non-linear error check-sum

w = f(X) = X2 (mod p) ∈ Fp. (7.10)

Consequently, the point coordinate X is encoded as (X, f(X)). From a practical

viewpoint we have added r check digits to the point coordinate value as an error check

redundancy. We now formally define a robust code by embedding the nonlinear code

definition introduced by Gaubatz et al. [22] into elliptic curves as follows.

Definition 7.3.1. We define the prime field robust code (n, k, r) as Cp = {(x,w)|x ∈
Fp, w = x2 (mod p) ∈ Fp} where 2k − p < ǫ and r=k.

In this case, k ≥ ⌈log2 p⌉ because essentially k-bits are used to represent the x

and w values where x,w ∈ Fp. Furthermore, note that in this coding structure,

90 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

x and w are generic variables in Fp, and do not represent any coordinates of an

elliptic curve point. This code will essentially be applied to all the coordinates of an

elliptic curve point. In the non-redundant case, a point P on an elliptic curve E is

represented as P=(X,Y, Z) in projective and Jacobian coordinates and as P=(x, y)

in affine coordinates. However, after the robust code of Definition 7.3.1 is applied,

each point will be represented as P=(X,Xw, Y, Yw, Z, Zw) in projective and Jacobian

coordinates and P=(x, xw, y, yw) in affine coordinates, where subscript w is used to

show the check-sum portions. For the details on applying this coding technique to

elliptic curves point operations, please see Section 7.4 and appendices.

7.3.1 Security Analysis

In this section, we prove the robustness of the proposed scheme. To quantify the

performance of the nonlinear code described in Definition 7.3.1, we need to provide a

lower bound of its error detection probability as a function of all error vectors e 6= 0.

The following theorem establishes this bound for any elliptic curve E.

Theorem 7.3.1. For the nonlinear code C of Definition 7.3.1, the error masking

probability is upper bounded by max(4, 2k − p + 1) · (p + 1− 2
√

p)−1.

Proof. In order to quantify the performance of their scheme, Gaubatz et al. [22]

needed to bound the error masking probability associated with the nonlinear code they

used. Consequently, they count the number of x values that satisfy the numerator of

Equation 3.2 for each e 6= 0. They use the following error masking equation to count

these x values.

(x + ex mod 2k)2 mod p = (x2 mod p) + ew mod 2k. (7.11)

In their paper, they provide a detailed proof which shows that the number of solutions

to this equation is upper bounded by max(4, 2k−p+1). As the final step, this number

7.3. THE ERROR DETECTION TECHNIQUE 91

is normalized with the number of valid codewords, 2k in their case, to compute the

maximum error masking probability of their scheme.

We use a similar approach to quantify the error detection capability of our code.

Essentially, for the nonlinear coding structure we propose in this chapter, we need to

bound the value of Q(e) for all e = (ex, ew) 6= 0. We achieve this in two steps.

First of all, we will bound the number of solutions to the error masking equation

(numerator). In order to achieve this, we initially need to identify the error masking

equation for our specific coding structure. Note that even though x ∈ Fp in our

code, it is still represented using k-bits. Hence, when the attacker injects the error

vector e=(ex, ew) into the circuit, its additive effect on the x (datapath side) will be

x+ ex mod 2k. Similarly, values of w (check-sum associated with x) are also elements

of the domain Fp and since r=k in our code, redundant check-sum (w) values are

also represented using k-bits. In this case, the effect of the injected fault on the

check-sum side will be represented as w + ew mod 2k=(x2 mod p) + ew mod 2k. In

order to check if this fault injected data and check-sum pair is a valid codeword, we

apply the check-sum function f(x) = x2 mod p on the resulting data x + ex mod 2k

and compare it with the resulting check-sum (x2 mod p) + ew mod 2k. Note that this

is the exact same error masking equation shown in Equation 7.11. This proves that

the proposed code in this chapter will use the same error masking equation which is

used by [22]. Next step is to count the number of valid (x,w) pairs that will satisfy

this equation for each nonzero e=(ex, ew). In [22], authors compute the number of

solutions to the error masking equation for x ∈ Z2k . However, the domain of the x

values defined in our coding scheme will be different. In our case, x ∈ Fp, instead of

x ∈ Z2k . The important observation we made at this point is the following. Since

p < 2k, even in the worst case, the number of solutions to the error masking equation

cannot be larger than max(4, 2k−p+1) which is the bound computed by [22]. Hence,

the upper bound of the numerator of the error masking probability of our code will

92 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

also be max(4, 2k − p + 1).

As the second step, we compute the number of valid codewords (denominator)

that will be observed at the output of the ECC functional units. At this point, our

coding scheme has two important deviations from the scheme described in [22]:

• x ∈ Fp, instead of x ∈ Z2k .

• For an elliptic curve, the X, Y , and Z coordinate values (assuming projective

coordinates) will not be uniformly distributed over Fp.

In this case, Assumption 3.0.3 becomes invalid. As a result, we cannot use the same

normalization constant (2k) used by [22] to compute the error masking probability of

our scheme. Note that, only the X, Y , and Z values that satisfy the elliptic curve

equation can be visible at the output of the point addition and doubling operations.

As a result, the new normalization constant of the error masking equation will be the

number of valid points on the elliptic curve E. This can be bounded using Hasse’s

theorem which states that

p + 1− 2
√

p ≤ #E(Fp) ≤ p + 1 + 2
√

p .

Now, we will reformulate the uniformity assumption used by [22] to make it suitable

for our coding scheme and its security proof.

Assumption 7.3.2. For an elliptic curve E(Fp), the valid point coordinate values

are uniformly distributed, i.e. each possible value of the point coordinates appears at

the output with equal probability. The minimum number of these unique coordinates

is p + 1− 2
√

p.

Under this assumption, the denominator of the error masking equation will be

p + 1 − 2
√

p. Remember that in the worst case, for a specific error pair (ex, ew),

max(4, 2k − p + 1) solutions can be in the check-sum space. As a result, the error

masking probability for our coding scheme will be max(4, 2k−p+1) · (p+1−2
√

p)−1.

7.3. THE ERROR DETECTION TECHNIQUE 93

At this point, it is also important to discuss the two biases we have in our analysis.

The first bias is the difference 2k − p. In the first step of our proof (numerator), we

show that the number of solutions to the error masking equation of our code is upper

bounded by max(4, 2k − p + 1). Note that this bound is computed by [22] in great

detail. In this section, we proved that even in the worst case the error masking

equation associated with our code will have less solutions than max(4, 2k − p + 1).

The crucial point is to make this difference as small as possible because it directly

affects the attacker’s success chance in injecting and masking a fault in our scheme.

By choosing the appropriate k and p values, the designer of the circuit can reduce

the number of solutions to a minimum of 4 in our scheme.

The second bias is the difference p−#E. This bias indicates the difference between

the size of the finite field Fp and the number of valid points in the elliptic curve E(Fp).

This difference essentially affects the second step of our proof (denominator). Note

that as the valid number of points in an elliptic curve decreases, the denominator of

our error masking probability will get smaller. As a result, the attacker’s success rate

in inducing a successful fault will increase as well. Hence, to increase the performance

of our coding scheme, the circuit designer needs to pick the appropriate p and curve

parameters which will increase the valid number of points defined over this curve.

Example 7.3.1. Consider the NIST recommended prime field curve P-192. For this

curve, (2k−p+1) = 18446744073709551618 ≈ 264. In this case, according to Hasse’s

theorem, the number of valid points on this curve will be at least (p+1−2
√

p) ≈ 2192.

As a result, minimum error detection capability proposed by our scheme in this case

will be 1− 264/2192=2−128.

94 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

7.4 Proposed Point Addition and Doubling Con-

structions

In this section, we provide the secure implementations of point addition and doubling

operations for Edwards and Weierstrass curves. These implementations utilize the

error detection technique that is described in Section 7.3. The main idea of the

nonlinear error detection is to create two computation paths that are nonlinear to

each other. As the first step to achieve this, the coordinates of the input points

in an operation (point addition or doubling) are encoded using the nonlinear code

described in Definition 7.3.1. One of the nonlinear paths is the original non-redundant

datapath. The second path, which is called the “predictor” block, runs in parallel to

the non-redundant path, and essentially predicts the check-sum of the results of the

original computation. At this point, it is important to note that we do not simply

replicate the original hardware to implement the predictor. Predictor block uses the

fault-free check-sums of the inputs to compute the check-sum of the outputs that

will be computed by the original block. For each datapath, the total operation count

is expressed in terms of multiplications, divisions and addition/subtractions, where

M stands for multiplication, D stands for division, and A stands for addition or

subtraction.

7.4.1 Edwards Projective Unified Addition

As the first example, we will explain how this method can be applied to the unified

addition in Edwards curves that are using projective coordinates. Essentially, the

unified point addition operation computes the point P3=(X3, Y3, Z3) using the input

points P1=(X1, Y1, Z1) and P2=(X2, Y2, Z2). The explicit formula that implements

the point addition is shown in Equation 7.8. In the following, we show how the

predictor block works. It mainly computes the expected X3w, Y3w, Z3w using the

7.4. PROPOSED POINT ADDITION AND DOUBLING CONSTRUCTIONS 95

inputs and their check-sums. Note that the subscript w is used to specify the check-

sum of an information portion for a codeword as described in Definition 7.3.1. For

example, (X3, X3w) ∈ Cp constitute a codeword where X3w = X2
3 (mod p), X3 is

the information portion, and X3w is the check-sum. More specifically, the expected

check-sums should be

X3w = (X3)
2 = [Z1Z2(X1Y2 + Y1X2)(Z

2
1Z

2
2 − dX1X2Y1Y2)]

2

Y3w = (Y3)
2 = [Z1Z2(Y1Y2 −X1X2)(Z

2
1Z

2
2 + dX1X2Y1Y2)]

2

Z3w = (Z3)
2 = [(Z2

1Z
2
2 − dX1X2Y1Y2)(Z

2
1Z

2
2 + dX1X2Y1Y2)]

2

Next, we need to express the terms on the right hand side as a function of the

inputs and their check-sums. As an example, we will show how to achieve this for

X3. The same method can also be applied to the Y and Z coordinates as well.

X3w = [Z1Z2(X1Y2 + Y1X2)(Z
2
1Z

2
2 − dX1X2Y1Y2)]

2

= Z2
1Z

2
2(X2

1Y
2
2 + Y 2

1 X2
2 + 2X1Y2Y1X2)(Z

4
1Z

4
2 − 2Z2

1Z
2
2dX1X2Y1Y2 + d2X2

1X
2
2Y

2
1 Y 2

2)

= Z1wZ2w(X1wY2w + Y1wX2w + 2α)(Z2
1wZ2

2w − 2Z1wZ2wdα + d2X1wX2wY1wY2w)

where α=X1X2Y1Y2. After some algebra, we get the following equation array for each

coordinate of the resulting point P3. These equations mainly represent the function

implemented by the predictor unit in our design.

α = X1X2Y1Y2;

A = Z1wZ2w; B = X1wY2w; C = Y1wX2w; D = X1wX2w;

E = Y1wY2w; F = dα; G = B + C + 2α; H = D + E − 2α;

K = A2 + F 2; L = AF ; M = K − 2L; N = K + 2L;

X3w = AGM ;

Y3w = AHN ;

Z3w = MN ;

96 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

The total operation count for this predictor unit will be 14M + 7A, where M

is multiplication and A is addition. Note that, all the operations in this setup are

modulo p, where p is the prime that generates the finite field the elliptic curve is

defined over. Similarly, in the remaining of this chapter, all the arithmetic operations

are modulo p even though it is not explicitly stated in each equation.

At this point, it is important to note that α = X1X2Y1Y2 is taken from the non-

redundant datapath. One might think that the security of the system might decrease

in this case because a fault injected into α on the non-redundant datapath will be

automatically carried into the predictor unit as well. However, we argue that the

security level of the system will not be affected due to α. The following theorem and

its proof describes our reasoning.

Theorem 7.4.1. Let α = X1X2Y1Y2 be a computation result shared between the non-

redundant datapath and the predictor unit as shown above. This computation sharing

does not decrease the security of the proposed system and the error masking probability

is still upper bounded by max(4, 2k − p + 1) · (p + 1− 2
√

p)−1.

Proof. Note that when the device operates correctly, the X3 computed by the non-

redundant datapath will have the following equation:

X3 = Z1Z2(X1Y2 + Y1X2)(Z
2
1Z

2
2 − dX1X2Y1Y2) (mod p)

Assume that the attacker injected an error vector e ∈ Z2k to the portion of the circuit

which computes the α. In this case, the result of this computation will be α + e. Let

X̃3 be the faulty X3 value caused by this fault injection. Then,

X̃3 = Z1Z2(X1Y2 + Y1X2)(Z
2
1Z

2
2 − d(α + e)) (mod p)

where α = X1X2Y1Y2. Let β = Z1Z2(X1Y2 + Y1X2). Note that

X̃3 = β(Z2
1Z

2
2 − d(α + e)) (mod p)

= β(Z2
1Z

2
2 − dα)− βde

= X3 + ex

7.4. PROPOSED POINT ADDITION AND DOUBLING CONSTRUCTIONS 97

where ex = βde ∈ Z2k .

Note that this error will also propagate into the predictor unit as well. As a result,

the next step is to analyze the effect of e on the result of the predictor unit, i.e. X3w.

Note that in the fault free operation

X3w = Z1wZ2w(X1wY2w + Y1wX2w + 2α)(Z2
1wZ2

2w − 2Z1wZ2wdα + d2α2).

Let X̃3w be the faulty check-sum result due to e that is transmitted through the

shared α. Then

X̃3w = Z1wZ2w(X1wY2w + Y1wX2w + 2(α + e))(Z2
1wZ2

2w − 2Z1wZ2wd(α + e) + d2(α + e)2)

= Z1wZ2w([X1wY2w + Y1wX2w + 2α] + 2e)([Z2
1wZ2

2w − 2Z1wZ2wdα + d2α2] + 2d2αe +

d2e2 + 2Z1wZ2wde)

= X3w + ew

where ew ∈ Z2k is the addition of all extra terms that appear in this equation. Note

that the final check that is implemented by the error detection network will be as

following:

(X3 + ex mod 2k)2 mod p = X3w + ew mod 2k,

which is identical to the error masking equation we solved in Theorem 7.3.1. Hence,

the error masking probability of the system is still bounded by max(4, 2k−p+1) ·(p+

1− 2
√

p)−1. Note that a similar analysis also applies to Y3 and Z3 as well. However,

due to space considerations, we will not provide the details for these cases.

In terms of efficiency, pulling α = X1X2Y1Y2 from the non-redundant datapath is

very beneficial, since we do not have to compute this value in the predictor datapath.

Moreover, to be able to compute this value in the predictor datapath using the inputs

X1w=X2
1 mod p, Y1w=Y 2

1 mod p, X2w=X2
2 mod p, and Y2w=Y 2

2 mod p, we would have

to implement modular square-root operation. Modular square-root is a very costly

operation; therefore, we chose to take this value from the non-redundant datapath.

98 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

<<

<<

X2 X1 X2

X3 X3

X1 Y1 Z1Y1

Y3 Z3 Y3 Z3

Y2 Z2Y2 Z1 Z2d

?
==

?
==

?
==

Error

Error

Error

Predictor
ww w w w w

^2

^2

^2

EDN
w w w

Figure 7.1: Secure Edwards projective unified point addition

In addition, to ease the security analysis of our scheme, we conduct the secu-

rity checks at the outputs of the non-redundant datapath and the predictor. This

is achieved by reflecting the effect of each fault injection to the outputs. This is a

reasonable assumption because otherwise, one would need to write all possible er-

ror detection equations that would reflect to the outputs. However, this requires

exponentially many equations and makes the security analysis extremely difficult.

The hardware implementation of this technique is shown in Figure 7.1. In this

figure, the block on the left is the original, non-redundant datapath that computes

the unified point addition. The predictor block mainly implements the X3w, Y3w,

and Z3w computations defined above. Next, the output coordinates are squared to

compute their check-sums. Finally, the error detection network (EDN) compares the

results of these two paths. If all the results match, this means that the conducted

operation is fault free. However, if there is a mismatch in any one of the coordinate

comparisons, this points to an injected fault. Hence, an error signal is asserted. Once

7.4. PROPOSED POINT ADDITION AND DOUBLING CONSTRUCTIONS 99

the error signal is asserted, either the secret can be flushed or the device can be reset.

Example 7.4.1. Consider the following Edwards elliptic curve

E(Fp) : X2 + Y 2 = Z4 + dX2Y 2

in homogeneous projective coordinates with 160-bit parameters where c = 1,

p = 904237709503056132134073013251929604353336630099,

d = 654173458343505972456671157852824043318841457169.

Let P1=(X1, X1w, Y1, Y1w, Z1, Z1w,) and P2=(X2, X2w, Y2, Y2w, Z2, Z2w) be projective

representation of two points on this elliptic curve with

X1 = 870127788413360698968854496841390328966899692865,

Y1 = 574645271602872238900537148484954656697831740108,

Z1 = 345690248650413035085013184802176684592198761837,

X2 = 451150124911200084467566472191656051656543909608,

Y2 = 632698684792777393199017690844497399704298703004,

Z2 = 396991703048768867254892739709047646980786148617,

X1w = 182483089008170957111891478528504386053106733877,

Y1w = 134813777183292608845385299789608703898099046583,

Z1w = 282113222159106554505926145024027727198697475921,

X2w = 420952235496534850961769608406544657885631784595,

Y2w = 710441061377976621430641814219746918373154886080,

Z2w = 749997069021309398716883073899546932396100433538.

Then, the Edwards point addition computes P3=P1 + P2=(X3, X3w, Y3, Y3w, Z3, Z3w)

100 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

in E(Fp) as:

X3 = 282607044633721535356434898887682342662463434885,

Y3 = 151437733101300439566783013511004945509701913943,

Z3 = 676280858494145890216257639589440858874370755486,

X3w = 886720615771242635158918043316220517899362108425,

Y3w = 539773332576047866439050483158296420223533128115,

Z3w = 294791316023660503973046497238888178422349579242.

7.4.2 Weierstrass Affine Addition and Doubling

<<<<

<<

<<

x3x3 y3

y1 y2 x2 x1

y3

y2 y1 x2 x1

w w

?
==

Error^2

^2

w w w w

EDN

?
==

Error

Predictor

Figure 7.2: Secure Weierstrass affine point addition

In this section, we describe how the same approach can be applied to Weierstrass

curves in affine coordinates. In the following we provide secure implementations of

point addition and doubling using Weierstrass formulation. In order to show that our

7.4. PROPOSED POINT ADDITION AND DOUBLING CONSTRUCTIONS 101

approach can also be applied to different coordinate systems in a similar manner, we

pick the affine coordinates this time.

<< <<

<<

<< <<<<

<<<<

<<<<

x3x3

ax1 y1

y3

x1 y1

y3 w

?
==

Error^2

^2

w

w w

?
==

Error

EDN

Predictor

Figure 7.3: Secure Weierstrass affine point doubling

Using the same methodology discussed in Section 7.4.1, we first compute the

following predictor functions for point addition.

α = y2−y1

x2−x1

;

A = y1y2; B = x1x2; C = x1 + x2; D = x1 + C;

E = y2w+y1w−2A

x2w+x1w−2B
; F = E −D; G = x2w + x1w + 2B;

x3w = E2 + G− 2CE;

y3w = EF 2 + y1w + 2y1αF ;

where α =
(

y2−y1

x2−x1

)

is obtained from the non-redundant datapath. Total operation

102 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

count for this predictor unit is 8M + 13A + 1D, where D is used to indicate division.

A similar analysis for the point doubling produces the following predictor unit.

A = (3x1w+a)2

4y1w
; B = x1A; C = 3x1;

D = C − A; E = C + a;

x3w = A2 + 4x1w − 4B;

y3w = AD2 + y1w −DE;

In this case, the total operation count for the predictor becomes 6M + 9A + 1D.

We show the hardware implementations of these secure operations in Figures 7.2

and 7.3. The main blocks used in these figures implement the same functions as in

Figure 7.1.

Example 7.4.2. Consider the following Weierstrass elliptic curve

E(Fp) : y2 = x3 + ax + b

in affine coordinates with 160-bit parameters where

p = 777645715940287777910005789305681810797687415809,

a = 567500170552851441844054828293673707780907112235,

b = 703455979504253314740690805725708046205894842210.

Let P1=(x1, x1w, y1, y1w) be a point on this elliptic curve with

x1 = 245211220720271837476609018273451798269758920272,

y1 = 488246465761975155422094900504401588572724390052,

x1w = 695085568063915959775484082901035535862106313275,

y1w = 70293328921427552718062963363026722030435676726.

7.5. RESULTS AND DISCUSSION 103

The Weierstrass point doubling unit computes P2 = 2P1 = (x2, x2w, y2, y2w) in E(Fp)

as:

x2 = 728609857396342373439877711694115269199147865869,

y2 = 532357780097897790333060514664411836014525549756,

x2w = 576489689937230253513047354510609128256109419771,

y2w = 333980457248136285466037412958831355718690903835.

Due to space considerations, results of the similar analysis for the Weierstrass Ja-

cobian addition, Weierstrass Jacobian doubling, and Edwards affine unified addition

are presented in appendix B. We provide the predictor functions associated with each

of these cases and compute the total operation counts for their predictor units.

7.5 Results and Discussion

The area overhead caused by the application of our scheme is dependent on the

areas of arithmetic unit implementations in a particular system. Without knowing

the relative area ratios of division, multiplication and addition/subtraction units, it

is not possible to provide an exact overhead measure. However, given the higher

complexity of divisions and multiplications with respect to additions/subtractions,

it is reasonable to ignore additions and subtractions to obtain an estimation of the

overhead. Also, we assume that the area of a multiplication unit is on the order of

a division unit. This is a reasonable assumption because it does not make sense to

have an affine system where the area of a divider is much larger than the area of a

multiplier.

Having made these assumptions, the estimated percentage overheads of the non-

linear error detection scheme we propose for point operations are presented in Table

7.1. Note that this table provides results for both Weierstrass and Edwards curves

104 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

Table 7.1: Overhead analysis for the error detection technique proposed in this chapter

ECC System
Non-Redundant

Datapath

Our Predictor

Datapath

Our Complete

Datapath

Our Estimated

% Overhead

Weier. Affine

Point Addition
1D + 2M + 6A 1D + 8M + 13A 2D + 10M + 19A 300%

Weier. Affine

Point Doubling
1D + 3M + 5A 1D + 6M + 9A 2D + 9M + 14A 175%

Weier. Jacobian

Point Addition
16M + 7A 27M + 13A 43M + 20A 169%

Weier. Jacobian

Point Doubling
10M + 5A 13M + 8A 23M + 13A 130%

Edwards Affine

Unified Point

Addition

2D + 5M + 7A 2D + 6M + 8A 4D + 11M + 15A 114%

Edwards

Projective Unified

Point Addition

12M + 7A 14M + 7A 26M + 14A 117%

for different coordinate systems. We observe that the Weierstrass based elliptic curve

systems can be protected with reasonable area overhead. Note that the application

of our scheme cause 175%, 169%, 130% for the affine point doubling, Jacobian point

addition, and Jacobian point doubling operations, respectively. The worst case for

securing Weierstrass operations is the affine point addition which causes an area over-

head of 300%. In addition, we also observe that the predictor unit for point additions

incur more overhead than point doublings in Weierstrass systems. This is also an ex-

pected result since point addition operations are more complex than point doubling

operations.

7.5. RESULTS AND DISCUSSION 105

On the other hand, the balanced normal form of Edwards formulation provides

simpler predictor designs with less overhead when compared to the Weierstrass sys-

tems. In other words, the Edwards formulation is more appropriate for the non-linear

error detection technique that is proposed in this chapter. The secure unified point

addition in affine coordinates require an overhead of 114% while in projective coor-

dinates, the overhead ratio is 117%.

Table 7.2: Operation counts of robust modular arithmetic functions proposed in [22]

Operation Non-Redundant Datapath Predictor Datapath

Robust Addition 1A 1M + 3A

Robust Multiplication 1M 2M + 2A

Robust Division 1D 1D

In the proposed error detection technique for robust public key arithmetic [22],

Gaubatz et al. designed robust arithmetic units (i.e. adders, multipliers, etc.) that

work over integers. These are individually secure arithmetic units which can be uti-

lized to design secure public key crypto systems. Note that this is a generic approach

which targets the elementary modular arithmetic operations and it can be applied

to any modular arithmetic based system. In order to implement this security mea-

sure for their system, designers need to replace all the arithmetic units in their design

with their robust counterparts proposed by [22]. The elliptic curve point addition and

doubling operations presented in Section 7.2.1 are also based on modular arithmetic

operations. Hence, the technique described in [22] can also be applied to implement

secure ECC point operations. By using the individually robust arithmetic units pro-

posed by [22] as the building blocks of the ECC system, approximately the same

level of security we propose in this chapter can be achieved for ECC point operations.

However, due to its generic nature, this solution causes high overhead when applied

to public key algorithms.

106 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

Table 7.3: Overhead analysis for the error detection technique proposed in [22]

ECC System
Non-Redundant

Datapath

Predictor

Datapath of [22]

Complete

Datapath of [22]

Estimated %

Overhead of [22]

Weier. Affine

Point Addition
1D + 2M + 6A 1D + 10M + 22A 2D + 12M + 28A 367%

Weier. Affine

Point Doubling
1D + 3M + 5A 1D + 11M + 21A 2D + 14M + 26A 300%

Weier. Jacobian

Point Addition
16M + 7A 39M + 53A 55M + 60A 244%

Weier. Jacobian

Point Doubling
10M + 5A 25M + 35A 35M + 40A 250%

Edwards Affine

Unified Point

Addition

2D + 5M + 7A 2D + 17M + 31A 4D + 22M + 38A 271%

Edwards Proj.

Unified Point

Addition

12M + 7A 31M + 45A 43M + 52A 258%

On the other hand, our solution mainly focuses on the elliptic curve point addition

or doubling operations. We target these operations as a whole entity. Consequently,

we design robust elliptic curve point operations by implementing a predictor circuitry

for the complete point operation instead of targeting individual arithmetic operations.

In other words, the approach we propose is optimized for elliptic curve point opera-

tions. This essentially causes a considerable overhead reduction with approximately

the same level of security.

In order to compare the area overhead of our scheme with the overhead caused by

the scheme presented in [22], we computed the predictor overheads for each ECC point

7.5. RESULTS AND DISCUSSION 107

operation using the error detection scheme of [22]. Table 7.2 shows the non-redundant

datapath and predictor arithmetic operation counts for the robust modular arithmetic

functions proposed in [22]. As is shown in this table, a robust arithmetic unit consists

of two main parts: 1) non-redundant datapath and 2) predictor. Essentially, each

individual robust arithmetic unit shown in this table, provide the security level of the

proposed non-linear code in [22]. Note that, one way of applying this security scheme

to elliptic curve point operations (which we cover in this chapter) is to replace all the

arithmetic units with the robust arithmetic units shown in this table. For example,

the non-redundant path of the Edwards projective unified point addition shown in

Figure 7.1 has 12M and 7A. In order to apply their non-linear error detection scheme,

Gaubatz et al. in [22] propose replacing each of these arithmetic units with their

robust counterparts. In this case, each multiplication and addition operation will

have the predictor overheads shown in Table 7.2. Hence, the robust Edwards unified

point addition will have 12×(2M + 2A) = 24M + 24A in the robust multiplier

predictors and 7×(1M + 3A)=7M + 21A in the robust adder predictors. In total,

the robust version of the Edwards unified point addition proposed by [22] will have

31M + 45A in the predictors. Similarly, for the Weierstrass affine point addition

shown in Figure 7.2 which has 1D + 2M + 6A in the non-redundant datapath, the

technique presented in [22] will have a total of 1D + 2×(2M + 2A) + 6×(1M +

3A) = 1D + 10M + 22A in the predictors. By applying this approach for each

ECC system, we obtain the predictor overheads of [22] as presented in the third

column (Predictor Datapath) of Table 7.3. We also present the operation count of

the complete datapath (sum of the operation counts in non-redundant and predictor

datapaths), and the estimated overhead percentage. Note that we ignore the effect of

adders for the overhead percentage computation as we did in the overhead percentage

computation of our scheme. However, as it can be observed in the fourth column

(Complete Datapath) of Table 7.3, the number of adders reach to non-negligible

108 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

levels for this case.

Table 7.4: Estimated overhead comparison

Estimated % Overhead Our Approach
Gaubatz et al.

2006 [22]

Ratio of our

approach to [22]

Weierstrass Affine Point

Addition
300% 367% 82%

Weierstrass Affine Point

Doubling
175% 300% 58%

Weierstrass Jacobian

Point Addition
169% 244% 69%

Weierstrass Jacobian

Point Doubling
130% 250% 52%

Edwards Affine Unified

Point Addition
114% 271% 42%

Edwards Projective

Unified Point Addition
117% 258% 45%

Even when we ignore the impact of adders on their overhead computation, our

technique provides approximately the same level of security and robustness with much

less overhead. For Edwards curves, the overhead of our scheme is less than the half

(42%-46%) of the overhead of [22]. In addition, the overhead of our scheme is 52% to

81% of the overhead of [22] for different versions of the Weierstrass curves. The overall

summary of the estimated overhead percentages and their comparison is presented in

Table 7.4.

Furthermore, remember that in all of these secure point addition and doubling op-

erations, the utilized error detection technique provides an error detection capability

that is nearly perfect (except with exponentially small probability).

7.6. SUMMARY 109

7.6 Summary

In this chapter, we conducted a comprehensive analysis about integrating nonlinear

error detection techniques to ECC. We propose the application of systematic nonlinear

error detection codes to protect elliptic curve point addition and doubling operations

against active fault attacks. These codes provide nearly perfect error detection ca-

pability (except with exponentially small probability) at reasonable overhead. We

observe that the Weierstrass based elliptic curve systems can be protected with rea-

sonable area overhead. However, the balanced normal form of Edwards formulation

provides simpler predictor designs with less overhead. In other words, Edwards formu-

lation is more appropriate for the non-linear error detection technique that is proposed

in this chapter. We also compared our error detection technique with the method pro-

posed by [22]. Results indicate that our technique provides approximately the same

level of security and robustness with much less overhead. For Edwards curves, the

overhead of our scheme is less than half (42%-46%) of the overhead of [22]. In addi-

tion, the overhead of our scheme is 52% to 81% of the overhead of [22] for different

versions of the Weierstrass curves.

110 CHAPTER 7. NONLINEAR ERROR DETECTION FOR ECC

Chapter 8

Conclusion

“Side channel” attacks (SCA) pose a serious threat on many cryptographic devices

and are shown to be effective on many existing security algorithms which are in the

black box model considered to be secure. These attacks are based on the key idea

of recovering secret information using implementation specific side-channels. Espe-

cially active fault injection attacks are very effective in terms of breaking otherwise

impervious cryptographic schemes.

Various countermeasures have been proposed to provide security against these

attacks. Double-Data-Rate (DDR) computation, dual-rail encoding, and simple con-

current error detection (CED) are the most popular of these solutions. Even though

these security schemes provide sufficient security against weak adversaries, they can

be broken relatively easily by a more advanced attacker. In this dissertation, we pro-

posed various error detection techniques that target strong adversaries with advanced

fault injection capabilities.

We first described the “advanced attacker” in detail and provided its characteris-

tics. As part of this definition, we provided a generic metric to measure the strength

of an adversary.

Next, we discussed various techniques for protecting finite state machines (FSMs)

111

112 CHAPTER 8. CONCLUSION

of cryptographic devices against active fault attacks. These techniques mainly de-

pend on nonlinear robust codes and physically unclonable functions (PUFs). We

showed that due to the nonuniform behavior of FSM variables, securing FSMs using

nonlinear codes is an important and difficult problem. As a solution to this problem,

we proposed error detection techniques based on nonlinear codes with different ran-

domization methods. We also showed how PUFs can be utilized to protect a class

of FSMs. This solution provides security on the physical level as well as the logical

level. In addition, for each technique, we provided possible hardware realizations and

discussed area/security performance.

Bibliography

[1] Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/TEMPEST.

[2] K. D. Akdemir, G. Hammouri, and B. Sunar. Non-linear Error Detection for

Finite State Machines. Proceedings of The 10th International Workshop on In-

formation Security Applications, Busan, Korea, 5932:226–238, 2009.

[3] R. J. Anderson and M. G. Kuhn. Tamper Resistance–a Cautionary Note. The

Second USENIX Workshop on Electronic Commerce, Oakland, CA, USA, 2:1–11,

1996.

[4] R.J. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices. Pro-

ceedings of the 5th International Workshop on Security Protocols, Paris, France,

1361:125–136, 1997.

[5] D. Asonov and R. Agrawal. Keyboard acoustic emanations. In IEEE Symposium

on Security and Privacy, pages 3–11. Citeseer, 2004.

[6] Bar-El H. and Choukri H. and Naccache D. and Tunstall. M. and Whelan C. The

sorcerer’s apprentice guide to fault attacks. Proceedings of the IEEE, 94:370–382,

2006.

[7] M. Berg. Fault tolerant design techniques for asynchronous single event upsets

within synchronous finite state machine architectures. In 7th International Mili-

113

tary and Aerospace Programmable Logic Devices (MAPLD) Conference. NASA,

Sep 2004.

[8] D.J. Bernstein and T. Lange. Faster Addition and Doubling on Elliptic Curves.

International Conference on the Theory and Applications of Cryptology and In-

formation Security: Advances in Cryptology, Kuching, Malaysia, 4833:29–50,

2007.

[9] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, and Vincenzo Piuri.

Error analysis and detection procedures for a hardware implementation of the

advanced encryption standard. IEEE Transactions on Computers, 52(4):492–

505, 2003.

[10] I. Biehl, B. Meyer, and V. Muller. Differential fault attacks on elliptic curve

cryptosystems. Proceedings of the 20th Annual International Cryptology Confer-

ence on Advances in Cryptology, Santa Barbara, California, USA, 1880:131–146,

2000.

[11] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.

Proceedings of the 17th Annual International Cryptology Conference on Advances

in Cryptology, Santa Barbara, California, USA, 1294:513–525, 1997.

[12] J. Blomer, M. Otto, and J.P. Seifert. Sign change fault attacks on elliptic curve

cryptosystems. Proceedings of the 2nd Workshop on Fault Diagnosis and Toler-

ance in Cryptography, Edinburgh, Scotland, UK, 4236:25–40, 2005.

[13] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking

cryptographic protocols for faults. In W. Fumy, editor, Advances in Cryptology -

EuroCrypt’97, volume 1233 of Lecture Notes in Computer Science, pages 37–51,

Heidelberg, 1997. Springer. Proceedings.

114

[14] D.V. Chudnovsky and G.V. Chudnovsky. Sequences of Numbers Generated by

Addition in Formal Groups and New Primality and Factorization Tests. Advances

in Applied Mathematics, 7(4):385–434, 1986.

[15] M. Ciet and M. Joye. Elliptic curve cryptosystems in the presence of permanent

and transient faults. Designs, Codes and Cryptography, 36(1):33–43, 2005.

[16] P. Cunningham, R. Anderson, R. Mullins, G. Taylor, and S. Moore. Improving

Smart Card Security Using Self-Timed Circuits. In Proceedings of the 8th In-

ternational Symposium on Asynchronus Circuits and Systems. IEEE Computer

Society Washington, DC, USA, 2002.

[17] E. De Mulder, P. Buysschaert, SB Ors, P. Delmotte, B. Preneel, G. Vandenbosch,

and I. Verbauwhede. Electromagnetic analysis attack on an FPGA implemen-

tation of an elliptic curve cryptosystem. In Proceedings of the International

Conference on Computer as a tool (EUROCON), pages 21–24. Citeseer, 2006.

[18] A. Dominguez-Oviedo and M.A. Hasan. Error Detection and Fault Tolerance

in ECSM Using Input Randomization. IEEE Transactions on Dependable and

Secure Computing, 6(3):175–187, 2009.

[19] H.M. Edwards. A Normal Form for Elliptic Curves. Bulletin of the American

Mathematical Society, 44(3):393–422, 2007.

[20] J. Francq, J.B. Rigaud, P. Manet, A. Tria, and A. Tisserand. Error Detection for

Borrow-Save Adders Dedicated to ECC Unit. Proceedings of the 5th Workshop

on Fault Diagnosis and Tolerance in Cryptography, Washington DC, USA, pages

77–86, 2008.

[21] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Delay-based Circuit Au-

thentication and Applications. In Proceedings of the 2003 ACM Symposium on

Applied Computing, pages 294–301, 2003.

115

[22] G. Gaubatz, B. Sunar, and M.G. Karpovsky. Non-linear residue codes for robust

public-key arithmetic. Proceedings of the 3rd Workshop on Fault Tolerance and

Diagnosis in Cryptography Yokohama, Japan, 4236:173–184, 2006.

[23] Gunnar Gaubatz and Berk Sunar. Robust finite field arithmetic for fault-tolerant

public-key cryptography. In Luca Breveglieri and Israel Koren, editors, 2nd

Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC 2005,

September 2005.

[24] Gunnar Gaubatz, Berk Sunar, and Erkay Savas. Sequential circuit design for

embedded cryptographic applications resilient to adversarial faults. IEEE Trans-

actions on Computers, 57(1):126–138, 2008.

[25] Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, and Pim Tuyls. Fpga

intrinsic pufs and their use for ip protection. In CHES ’07: Proceedings of the

9th international workshop on Cryptographic Hardware and Embedded Systems,

pages 63–80, Berlin, Heidelberg, 2007. Springer-Verlag.

[26] G. Hammouri, K. Akdemir, and B. Sunar. Novel PUF-Based Error Detection

Methods in Finite State Machines. Lecture Notes In Computer Science, pages

235–252, 2009.

[27] Ghaith Hammouri, Erdinç Öztürk, and Berk Sunar. A tamper-proof and

lightweight authentication scheme. Pervasive Mob. Comput., 4(6):807–818, 2008.

[28] Ghaith Hammouri and Berk Sunar. PUF-HB: A Tamper-Resilient HB based

Authentication Protocol. In to appear in Proceedings of the Applied Cryptography

and Network Security Conference – ACNS08, 2008.

[29] M. Joye. Highly Regular Right-to-Left Algorithms for Scalar Multiplication.

LECTURE NOTES IN COMPUTER SCIENCE, 4727:135, 2007.

116

[30] M. Joye and S.M. Yen. The Montgomery Powering Ladder. Cryptographic Hard-

ware and Embedded Systems-Ches 2002: 4th International Workshop, Redwood

Shores, CA, USA, August 13-15, 2002: Revised Papers, 2002.

[31] D. Karakoyunlu, F. Gurkaynak, B. Sunar, and Y. Leblebici. Efficient and Side-

Channel-Aware Implementations of ECC Cryptosystems over Prime Fields . In-

formation Security, IET, 4(1):30–43, 2010.

[32] Mark Karpovsky, Konrad Kulikowski, and Alexander Taubin. Robust protection

against fault-injection attacks on smart cards implementing the advanced encryp-

tion standard. Proceedings of the 2004 International Conference on Dependable

Systems and Networks, Florance, Italy, page 93, 2004.

[33] Mark Karpovsky, Konrad J. Kulikowski, and Alexander Taubin. Differential

fault analysis attack resistant architectures for the advanced encryption standard.

Smart Card Research and Advanced Applications VI, 153:177–192, 2004.

[34] Mark Karpovsky and Alexander Taubin. A new class of nonlinear systematic

error detecting codes. IEEE Trans Info Theory, 50(8):1818–1820, 2004.

[35] Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim. Concurrent error

detection schemes for fault-based side-channel cryptanalysis of symmetric block

ciphers. IEEE Transactions on computer-aided design of integrated circuits and

systems, 21(12):1509–1517, 2002.

[36] Osman Kocar. Estimation of keys stored in cmos cryptographic device after

baking by using the charge shift. Cryptology ePrint Archive, Report 2007/134,

2007. http://eprint.iacr.org/.

[37] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. Advances in

Cryptology-Crypto’99: 19th Annual International Cryptology Conference, Santa

Barbara, California, USA August 15-19, 1999 Proceedings, 1999.

117

[38] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,

and other systems. In CRYPTO ’96: Proceedings of the 16th Annual Interna-

tional Cryptology Conference on Advances in Cryptology, pages 104–113, London,

UK, 1996. Springer-Verlag.

[39] Andrzej Krasniewski. Concurrent error detection in sequential circuits imple-

mented using fpgas with embedded memory blocks. In Proceedings of the 10th

IEEE International On-Line Testing Symposium (IOLTS’04), 2004.

[40] M.G. Kuhn. Optical time-domain eavesdropping risks of CRT displays. In IEEE

Symposium on Security and Privacy, pages 3–18. Citeseer, 2002.

[41] M.G. Kuhn. Electromagnetic eavesdropping risks of flat-panel displays. Lecture

Notes in Computer Science, 3424:88–107, 2005.

[42] M.G. Kuhn. Security limits for compromising emanations. Lecture notes in

computer science, 3659:265, 2005.

[43] K.J. Kulikowski, V. Venkataraman, Z. Wang, A. Taubin, and M. Karpovsky.

Asynchronous balanced gates tolerant to interconnect variability. In IEEE In-

ternational Symposium on Circuits and Systems, 2008. ISCAS 2008, pages 3190–

3193, 2008.

[44] K.J. Kulikowski, Z. Wang, and M.G. Karpovsky. Comparative Analysis of Ro-

bust Fault Attack Resistant Architectures for Public and Private Cryptosystems.

Proceedings of the 5th Workshop on Fault Diagnosis and Tolerance in Cryptog-

raphy, Washington DC, USA, pages 41–50, 2008.

[45] Konrad Kulikowski, Mark Karpovsky, and Alexander Taubin. Robust codes for

fault attack resistant cryptographic hardware. Proceedings of the 2nd Workshop

on Fault Tolerance and Diagnosis in Cryptography, Edinburgh, Scotland, UK,

4236:1–12, 2005.

118

[46] Konrad J. Kulikowski, Mark Karpovsky, and Alexander Taubin. Fault attack

resistant cryptographic hardware with uniform error detection. Proceedings of

the 3rd Workshop on Fault Tolerance and Diagnosis in Cryptography, Yokohama,

Japan, 4236:185–195, 2006.

[47] J. W. Lee, L. Daihyun, B. Gassend, G. E. Suh amd M. van Dijk, and S. Devadas.

A technique to build a secret key in integrated circuits for identification and

authentication applications. In Symposium of VLSI Circuits, pages 176–179,

2004.

[48] A.K. Lenstra and E.R. Verheul. Selecting Cryptographic Key Sizes. Journal of

Cryptology, 14:255–293, 2001.

[49] Daihyun Lim, Jae W. Lee, Blaise Gassend, G. Edward Suh, Marten van Dijk,

and Srinivas Devadas. Extracting secret keys from integrated circuits. IEEE

Trans. VLSI Syst., 13(10):1200–1205, 2005.

[50] P. Maistri and R. Leveugle. Double-Data-Rate Computation as a Countermea-

sure against Fault Analysis. IEEE Transactions on Computers, 57(11):1528–

1539, 2008.

[51] P. Maistri, P. Vanhauwaert, and R. Leveugle. Evaluation of Register-Level

Protection Techniques for the Advanced Encryption Standard by Multi-Level

Fault Injections. In 22nd IEEE International Symposium on Defect and Fault-

Tolerance in VLSI Systems, 2007. DFT’07, pages 499–507, 2007.

[52] A. Matthews. Low cost attacks on smart cards: The electromagnetic side-

channel. Next Generation Security Software, Sept, 2006.

[53] Subhasish Mitra and Edward J. McCluskey. Which concurrent error detection

scheme to choose? In Proc. Int. Test Conference (ITC), pages 985–994. IEEE,

IEEE Press, 2000.

119

[54] David Naccache. Finding faults. IEEE Security and Privacy, Oakland, Califor-

nia, USA, 3(5):61–65, 2005.

[55] Erdinc Ozturk, Ghaith Hammouri, and Berk Sunar. Towards robust low cost

authentication for pervasive devices. In PERCOM ’08: Proceedings of the Sixth

IEEE International Conference on Pervasive Computing and Communications,

2008.

[56] S. Pontarelli, G.C. Cardarilli, M. Re, and A. Salsano. Error detection in addi-

tion chain based ecc point multiplication. IEEE International On-Line Testing

Symposium, Sesimbra-Lisbon, Portugal, 0:192–194, 2009.

[57] R. Posch. Protecting Devices by Active Coating. Journal of Universal Computer

Science, 4(7):652–668, 1998.

[58] P.S. Ravikanth. Physical One-Way Functions. PhD thesis, MASSACHUSETTS

INSTITUTE OF TECHNOLOGY, 2001.

[59] Cornelis Roos, Tamas Terlaky, and Jean-Philippe Vial. Interior Point Methods

for Linear Optimization. Springer, second edition, 2005.

[60] J.M. Schmidt and M. Hutter. Optical and em fault-attacks on crt-based rsa:

Concrete results. Austrochip ’07: Proceedings of the 15th Austrian Workshop on

Microelectronics, Graz, Austria, pages 61–67, 2007.

[61] A. Shamir and E. Tromer. Acoustic cryptanalysis: on nosy people and noisy

machines. Online at http://people. csail. mit. edu/tromer/acoustic.

[62] B. Skoric, S. Maubach, T. Kevenaar, and P. Tuyls. Information-theoretic Anal-

ysis of Coating PUFs. Cryptology ePrint Archive, Report 2006/101, 2006.

120

[63] S.P. Skorobogatov and R.J. Anderson. Optical Fault Induction Attacks. Crypto-

graphic Hardware and Embedded Systems: 4th International Workshop, Redwood

Shores, CA, USA, 2523:2–12, 2002.

[64] Danil Sokolov, Julian Murphy, Alexandre V. Bystrov, and Alexandre Yakovlev.

Design and analysis of dual-rail circuits for security applications. IEEE Trans.

Computers, 54(4):449–460, 2005.

[65] R. Stern, N. Joshi, K. Wu, and R. Karri. Register Transfer Level Concurrent

Error Detection in Elliptic Curve Crypto Implementations. Proceedings of the 4th

Workshop on Fault Diagnosis and Tolerance in Cryptography, Vienna, Austria,

pages 112–119, 2007.

[66] P. Tuyls, G.J. Schrijen, B. Skoric, J. van Geloven, N. Verhaegh, and R. Wolters.

Read-Proof Hardware from Protective Coatings. Cryptographic Hardware and

Embedded SystemsCHES, pages 10–13, 2006.

[67] P. Tuyls and B. Skoric. Secret Key Generation from Classical Physics: Physical

Uncloneable Functions. In S. Mukherjee, E. Aarts, R. Roovers, F. Widdershoven,

and M. Ouwerkerk, editors, AmIware: Hardware Technology Drivers of Ambient

Intelligence, volume 5 of Philips Research Book Series. Springer-Verlag, Sep 2006.

[68] Jason Waddle and David Wagner. Fault attacks on dual-rail encoded systems.

In ACSAC ’05: Proceedings of the 21st Annual Computer Security Applications

Conference, pages 483–494, Washington, DC, USA, 2005. IEEE Computer Soci-

ety.

[69] L. Zhuang, F. Zhou, and JD Tygar. Keyboard acoustic emanations revisited.

In Proceedings of the 12th ACM conference on Computer and communications

security, pages 373–382. ACM New York, NY, USA, 2005.

121

122

Appendix A

Non-redundant Datapath Formulas

in Dataflow Format

Weierstrass Affine Addition Non-redundant Datapath:

A = y2 − y1; B = x2 − x1; C = A
B

; D = x1 − x3;

x3 = C2 − x1 − x2;

y3 = CD − y1;

Total operation count: 2M + 6A + 1D.

Weierstrass Affine Doubling Non-redundant Datapath:

A = 3x2
1 + a; B = A

2y1

; C = x1 − x3;

x3 = B2 − 2x1;

y3 = BC − y1;

Total operation count: 3M + 5A + 1D.

Weierstrass Jacobian Addition Non-redundant Datapath:

123

A = X1Z
2
2 ; B = X2Z

2
1 ; C = Y1Z

3
2 ; D = Y2Z

3
1 ;

E = Z1Z2; F = B − A; G = B + A; H = D − C;

K = D + C; L = F 2G; M = F 3K; N = L− 2X3;

X3 = H2 − L;

Y3 = HN−M
2

;

Z3 = EF ;

Total operation count: 16M + 7A.

Weierstrass Jacobian Doubling Non-redundant Datapath:

A = 3X2
1 + aZ4

1 ; B = Y 2
1 C = X1B; D = 4C −X3;

X3 = A2 − 8C;

Y3 = AD − 8B2;

Z3 = 2Y1Z1;

Total operation count: 10M + 5A.

Edwards Affine Unified Addition Non-redundant Datapath:

A = x1 + y1; B = x2 + y2; C = x1x2; D = y1y2;

E = AB − C −D; F = D − C; G = dCD; H = 1−G;

K = 1 + G;

x3 = E
K

;

y3w = F
H

;

Total operation count: 5M + 7A + 2D.

Edwards Projective Unified Addition Non-redundant Datapath:

124

A = Z1Z2; B = X1 + Y1; C = X2 + Y2; D = X1X2;

E = Y1Y2; F = BC −D − E; G = E −D; H = dED;

K = A2 + H; L = A2 −H;

X3 = AFL;

Y3w = AGK;

Z3w = KL;

Total operation count: 12M + 7A.

125

Appendix B

Predictor Designs

Weierstrass Jacobian Addition Predictor:

α = X1Z
2
2 ; β = X2Z

2
1 ; γ = Y1Z

3
2 ; δ = Y2Z

3
1 ;

A = αβ; B = γδ; C = β − α; D = Z1wZ2w;

E = X1wZ2
2w; F = X2wZ2

1w; G = Y1wZ3
2w; H = Y2wZ3

1w;

K = F + E − 2A; L = F − E; M = H + G− 2B; N = H + G + 2B;

P = H −G; R = 3CL− 2M ;

X3w = M2 + KL2 − 2CML;

Y3w = MR2+K3N−2CPRK
4

;

Z3w = KD;

where α = X1Z
2
2 , β = X2Z

2
1 , γ = Y1Z

3
2 , δ = Y2Z

3
1 are obtained from the non-

redundant datapath.

Total operation count: 27M + 13A.

Weierstrass Jacobian Doubling Predictor:

126

A = X1Y1w; B = 3X1w + aZ2
1w; C = Y 2

1w; D = X1wC;

E = Y1wZ1w; F = 12A−B2; G = BF ;

X3w = B4 + 64D − 16AB2;

Y3w = G2 + 64C2 − 16GC;

Z3w = 4E;

Total operation count: 13M + 8A.

Edwards Affine Unified Addition Predictor:

α = x1x2y1y2;

A = x1wy2w; B = y1wx2w; C = x1wx2w; D = y1wy2w;

E = A + B + 2α; F = C + D − 2α; G = dα; H = G2;

K = 1 + H + 2G; L = 1 + H − 2G;

x3w = E
K

;

y3w = F
L
;

where α = x1x2y1y2 is obtained from the non-redundant datapath.

Total operation count: 6M + 8A + 2D.

127

