
i

The Study of Energy Consumption of Acceleration Structures for

Dynamic CPU and GPU Ray Tracing

By

Chen Hao Chang

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

January 2007

APPROVED:

--
Professor Emmanuel Agu, Principal Thesis Advisor

--
Professor Robert W. Lindeman, Thesis Advisor

--
Professor Mark Claypool, Thesis Reader

--
Professor Michael Gennert, Head of Department

ii

Abstract

Battery life has been the slowest growing resource on mobile systems for several

decades. Although much work has been done on designing new chips and peripherals that use

less energy, there has not been much work on reducing energy consumption by removing energy

intensive tasks from graphics algorithms. In our work, we focus on energy consumption of the

ray tracing task because it is a resource-intensive, global-illumination algorithm. We focus our

effort on ray tracing dynamic scenes, thus we concentrate on identifying the major elements

determining the energy consumption of acceleration structures. We believe acceleration

structures are critical in reducing energy consumption because they need to be built

inexpensively, but must also be complex enough to boost rendering speed.

We conducted tests on a Pentium 1.6 GHz laptop with GeForce Go 6800 GPU. In our

experiments, we investigated various elements that modify the acceleration structure build

algorithm, and we compared the energy usage of CPU and GPU rendering with different

acceleration structures. Furthermore, the energy per frame when ray tracing dynamic scenes was

gathered and compared to identify the best acceleration structure that provides a good balance

between building energy consumption and rendering energy consumption.

We found the bounding volume hierarchy to be the best acceleration structure when

rendering dynamic scenes with the GPU on our test system. A bounding volume hierarchy is not

the most inexpensive structure to build, but it can be rendered cheaply on the GPU while

introducing acceptable energy overhead when rebuilding. In addition, we found the fastest

algorithm was also the most inexpensive in terms of energy consumption. We propose an energy

model based on this finding.

iii

Acknowledgements

First and foremost I would like to thank my thesis advisors, Professor Emmanuel Agu

and Robert W. Lindeman, for their guidance and inspirational advice. Emmanuel Agu has

always been very encouraging throughout the entire thesis work. Robert W. Lindeman provided

helpful technical tips and interesting ideas. They are both very friendly and always open to new

ideas and questions. I am especially grateful for the chance Professor Emmanuel Agu has given

me to work on my Masters thesis.

My thanks also go to my reader, Professor Mark Claypool, who gave me valuable

feedback and suggestions on the thesis. I would also like to thank my partner, Peter James

Lohrmann, who worked tirelessly with me to make the ray tracing implementation work well.

Last but not least, I would like to thank my uncle for offering me a place I can call home

in Massachusetts. I also want to thank my mother and sister for being supportive even though

they are in Taiwan. Special thanks to my friend Mike Chen and his wife who kindly invited me

to dinner countless times so I didn't die from hunger. My deepest appreciation goes to Robert W.

Lindeman, Emmanuel Agu, Beth, and Amanda N McCullough who provided tremendous help

on my English grammar.

iv

Table of Contents

Abstract ..ii

Acknowledgements...iii

Table of Contents ... iv

List of Figures ...vi

List of Tables..vii

1 Introduction ... 1
1.1 Introduction ... 1
1.2 Thesis Goal.. 2

2 Background.. 4
2.1 Ray Tracing ... 4
2.2 GPU Assisted Ray Tracing ... 6
2.3 Related Work... 8
2.3.1 GPU-based Ray Tracing.. 8
2.3.2 CPU-based Ray Tracing.. 10

3 Energy-Conscious Ray Tracing (ENCORE)... 12
3.1 Uniform Grid... 13
3.1.1 Build .. 13
3.1.2 Traversal.. 15
3.1.3 Moving to GPU ... 16

3.2 Kd-Tree ... 19
3.2.1 Build .. 19
3.2.2 Traversal.. 22

3.3 Bounding Volume Hierarchy (BVH) .. 24
3.3.1 Build .. 24
3.3.2 Update ... 25
3.3.3 Traversal.. 26

4 Test Environment.. 28
4.1 Hardware Settings ... 28
4.2 Software Settings... 28
4.3 Test Scenes.. 29
4.4 Software Measurement Tool ... 34
4.4.1 Power... 34
4.4.2 Power Test Settings... 35
4.4.3 Time .. 36

5 Measurement Results and Discussion ... 38
5.1 Acceleration Structure Energy Measurement ... 38
5.1.1 Model Size... 39
5.1.2 Memory Allocation ... 43
5.1.3 Memory Allocation Test Result Discussion ... 45

v

5.1.4 Uniform Grid Triangle-Box Intersection .. 46
5.1.5 Build Time... 48
5.1.6 Build Energy Discussion... 49

5.2 Static Rendering Energy Measurement... 51
5.2.1 11K Model Results.. 52
5.2.2 48K Model Results.. 56
5.2.3 Static Rendering Discussion.. 58

5.3 Dynamic Rendering Energy Measurement ... 60
5.3.1 11K Model Measurement Results ... 62
5.3.2 48K Model Energy Measurement Results .. 64
5.3.3 Dynamic Rendering Energy Measurement Discussion... 65

5.4 Discussion of System and Experiment Limitations .. 67

6 Modeling Energy Usage.. 69

7 Conclusion and Future Work .. 71
7.1 Conclusion... 71
7.2 Future Work .. 71

References .. 73

Appendix A Average Discharge Rate and Standard Deviation Data.................................... 75

Appendix B ENCORE Interface Code ... 78

Appendix C Uniform Grid Shader Code ... 80

vi

List of Figures

Figure 1 Technology for Laptop from 1990 to 2001, adapted from [Starner 2003] 1
Figure 2 Ray Tracing Illustration, adapted from [Glassner 1989] .. 4
Figure 3 GPU Growth Rate [Buck 2004].. 6
Figure 4 Purcell's kernels for GPU ray tracing [Purcel et al. 2002].. 8
Figure 5 System Overview.. 12
Figure 6 Triangle-Box Intersection ... 14
Figure 7 Uniform Grid Traversal Illustration.. 16
Figure 8 CPU Memory to GPU Texture ... 17
Figure 9 Kernel Diagram for ENCORE GPU Ray Tracer .. 18
Figure 10 Kd-Tree... 19
Figure 11 Global left/right arrays for Kd-Tree Build.. 22
Figure 12 Kd-Tree Traversal... 23
Figure 13 BVH.. 24
Figure 14 BVH Update Method .. 26
Figure 15 Discharge Rate Graph... 36
Figure 16 Data for Joule per Build with each acceleration structure .. 39
Figure 17 Joule spent per Triangle Versus Model Size .. 42
Figure 18 Energy Usage Reduction for Kd-Tree and BVH.. 43
Figure 19 Total Memory Allocated Chart for Kd-Tree and BVH .. 45
Figure 20 Memory Allocation Request Graph.. 46
Figure 21 Triangle-Box Intersection Versus Energy per Build .. 47
Figure 22 Build Energy versus Build Time .. 49
Figure 23 Energy Comparison Rendering 11k Model at 256x256 Resolution............................. 53
Figure 24 Energy Comparison Rendering 11k Model at 768x768 Resolution............................. 53
Figure 25 Percentage Energy Usage Increase from 256 to 768 Resolution 11k Model 55
Figure 26 Percentage Energy Reduction in Moving Rendering Task to GPU (11k model)......... 54
Figure 27 Energy Comparison Rendering 48k Model at 256x256 Resolution............................. 57
Figure 28 Energy Comparison Rendering 48k Model at 768x768 Resolution............................. 57
Figure 29 Percentage Energy Usage Increase from 256 to 768 Resolution 48K Model 58
Figure 30 Percentage Energy Reduction in Moving Rendering Task to GPU (48k model)......... 57
Figure 31 Average Discharge Rate with 11k Model... 59
Figure 32 Normalized Energy and Time Chart for 11k Model at 256x256 Resolution................ 62
Figure 33 Normalized Energy and Time Chart for 11k Model at 768x768 Resolution................ 63
Figure 34 Normalized Energy and Time Chart for 48k Model at 256x256 Resolution................ 64
Figure 35 Normalized Energy and Time Chart for 48k Model at 768x768 Resolution................ 65
Figure 36 Discharge Rate Comparison for 11k Model Rendered with BVH 66

vii

List of Tables

Table 1 Short hand notations for ENCORE Implementation.. 13
Table 2 Test Scenes... 30
Table 3 Measurement Values.. 38
Table 4 Build Data Standard Deviation, Part 1... 40
Table 5 Build Data Standard Deviation, Part 2... 40
Table 6 Joule per Build for Two Cases of UG-N.. 43
Table 7 Energy Comparsion on Intersection Count .. 48
Table 8 Energy Reduction from Coarser Build for 11k Model... 54
Table 9 Energy Reduction from Coarser Build for 48k Model... 56
Table 10 Rendering Platform Recommendation... 59

1

1 Introduction

1.1 Introduction

Photorealistic images are essential in today's movies; interactivity is also desirable in

applications such as computer games. Combining photorealism with interactivity has been a

challenging research problem in computer graphics. Over the past decade, research has focused

on making global illumination algorithms such as ray tracing, photon mapping, and radiosity, run

at interactive frame rates. New, powerful Graphics Processing Units (GPUs), which can process

billions of triangles per second, provide new processing platforms for global illumination

algorithms. This means interactive global illumination calculation is possible by utilizing GPUs.

The demand for high-quality graphics on mobile devices is growing as well, such as playing 3D

games on cell phones, or allowing real-estate customers to take a virtual tour of a new house.

Although mobile devices are faster and more powerful than in the past, they are resource limited

especially in terms of energy. As shown in Figure 1, the energy capacity has only grown by a

factor of three, while CPU speed, Disk Capacity, and available RAM have grown by factors of

more than a hundred since 1990.

Figure 1 Technology for Laptop from 1990 to 2001, adapted from [Starner 2003]

2

The battery energy density curve from Figure 1 shows that more energy equals heavier

and bigger batteries, which goes against the current trend towards smaller and thinner mobile

devices. Researchers have tried to solve this problem by designing new, smarter CPUs and

GPUs that consume less energy while retaining the relatively same performance compared to

older generations of chips. The introduction of mobile GPUs, such as the GeForce Go series

from nVidia and the Mobility Radeon series from ATI for notebooks, are good examples of

GPUs that feature power management technology to reduce energy consumption. Newer dual-

core CPUs from Intel and AMD also emphasize energy saving features. This shows chip

designers are aware of the energy limitations, and more work is being redirected to address the

energy issue.

Recent work on ray tracing with GPUs and SIMD (Single Instruction, Multiple Data)

CPUs, where ray tracing takes advantage of the SIMD instruction set, allows ray tracing systems

to achieve interactive rendering with shadows, reflections, refractions, motion blur, and more. It

has even been shown that it is possible to ray trace animations at interactive rates. However, can

it be done using less battery energy? Knowing that battery energy will continue to be the

limiting resource for some time in the future, we are interested in finding out the primary

components of ray tracing that consume the majority of energy. We focus our effort on the

acceleration structures used to speed up ray tracing because ray tracing engines typically spend

most of their processing time building, traversing acceleration structures, and calculating

intersections.

1.2 Thesis Goal

Recent work on the CPU and GPU have shown interactive ray tracing is possible. With

the continuous advances in speed of the CPU and GPU, we believe one day that the same

algorithm that today can only achieve five frames per second will eventually be able to run at 30

frames per second or higher, and become a suitable rendering technique for interactive 3D

applications such as video games. The only problem left is energy; the algorithms are more

likely to consume more energy as the processors get faster. We might be able to have interactive

ray traced images, but we will not be able to view them long enough to enjoy them because of

the battery limitation on the mobile devices. Thus, we focus on identifying the major

components in the building of acceleration structures that stress the battery the most.

3

Furthermore, we study the energy consumption of today’s hardware with CPU and GPU ray

tracing rendering of static and dynamic scenes. In doing so, we hope to allow future studies to

improve the energy efficiency of ray tracing.

4

2 Background
In this section, basic ray tracing will be described. After introducing ray tracing, we will

describe GPU-based ray tracing and recent work that has enabled ray tracing to render at

interactive rates for both static and dynamic scenes.

2.1 Ray Tracing

Ray tracing is a global-illumination algorithm that can easily generate physically correct

reflections, refractions, and shadows. The basic idea for global illumination is to capture all the

light properties in the environment. One way to do this is to shoot rays from the lights. If a light

ray hits an object, it will light the object based on its surface properties. A light ray that lands on

that object can bounce off in different directions, creating shadows, reflections, and refractions.

The light ray will eventually end up in the viewer’s eye. At this point, the viewer should see the

color gathered by this light ray, hence the term ray tracing. This approach can be very

computationally intensive because not all the light rays will end at the viewer’s eye and the light

rays can be infinitely long. Therefore, ray tracing usually traces rays from the viewer’s eye to

the lights because only the light rays visible to the viewer are generated. Figure 2 illustrates the

process of ray tracing.

Figure 2 Ray Tracing Illustration, adapted from [Glassner 1989]

The ray coming from the eye, E, is the primary ray. This ray determines the color and

shape of the objects a viewer will see. In Figure 2, the primary ray intersects with a plane with

5

reflective and refractive properties; therefore, reflection and refraction rays are generated,

labeled R1 and T1 in the figure. The reflection ray hits a plane labeled 9, and the refraction ray

hits a ball labeled 6. This means the viewer should see the color of plane 9 reflected on plane 3

and the refracted color from ball 6. In addition, the visibility of the primary ray needs to be

tested by shooting a shadow ray towards the light. The shadow rays are shown as dotted lines in

the figure. If the shadow ray is blocked by another object, the point must be in shadow;

otherwise, the viewer should see the surface with the color gathered from reflection, refraction

and primary rays. This process is repeated for all the visible points from the current viewer’s

viewing angle. Furthermore, the reflection and refraction rays are not limited to one bounce;

they can bounce forever until the viewer is satisfied with the final image. However, the

computational costs grow exponentially as more bounces are allowed.

The process of only shooting the primary rays from the eye into the scene (and not

shooting reflection, refraction, and shadow rays) is called ray casting and it can only produce

direct illumination lighting effects similar to the scan-line algorithm used on commercial

graphics cards. It is the ability to cast additional reflection, refraction, and shadow rays that

makes ray tracing able to produce photorealistic images. Ray tracing can also be easily extended

to produce motion blur, camera lens focal effects, caustics, and more.

Another advantage of ray tracing over the traditional scan-line algorithms is that it is not

limited to trianglular geometries. It can be extended to recognize spheres, planes, tetrahedrons,

and various shapes defined by mathematical equations. This allows more flexibility in

representing models and saves the trouble of approximating analytical objects with triangles.

Ray tracing has traditionally been used as an off-line technique because it has not been

possible to render the images at interactive rates due to the massive number of computations

required. The majority of computations come from ray-triangle intersection tests. This

intersection test reports the location and the object intersected for the ray in question. Knowing

the location of all the intersection points, the algorithm can color the point based on the objects’

surface properties and shoot reflection, refraction, and shadow rays. Given 1,300 triangles in a

scene, drawing this model at a 10242 screen resolution with only primary rays requires 1.3 billion

ray-triangle intersections. With the addition of shadow, reflection, and refraction rays, a total of

5.2 billion ray-triangle intersections are required to finish this image assuming one bounce for

6

reflection and refraction. Assuming each intersection test can be completed in one nanosecond,

the image needs 5.2 seconds to render. Furthermore, this is for a model with only 1,300

triangles. A typical 3D game or animation can contain more than 50,000 triangles in a scene.

This translates to roughly three minutes per frame, an unacceptable time to be considered as

interactive.

One solution for speeding up ray tracing is to use acceleration structures which help by

reducing the number of ray-triangle intersections per ray. In the ideal case, every ray only

performs one ray-triangle intersection, which adds up to one million ray-triangle intersection

tests. If each intersection test can be completed in one nanosecond, the scene with 1,300

triangles can now be completed in 0.5 milliseconds, and the image can be rendered at 2,000

frames per second. Acceleration structures partition the triangles in the scene to help the rays

avoid unnecessary ray-triangle intersection tests, thus boosting ray tracing performance

tremendously. It is typically not possible to build an acceleration structure that achieves one ray-

triangle intersection per ray for all possible geometry arrangements; nevertheless, every

acceleration structure strives to achieve this goal. The most commonly used acceleration

structures are the uniform grid, Kd-Tree and Bounding Volume Hierarchy (BVH). They are

described in more detail in Section 3. Besides acceleration structures, clever implementations

that make efficient use of CPU caches and Single Instruction Multiple Data (SIMD) instructions

have been shown to further improve ray tracing performance [Wald 2004].

2.2 GPU Assisted Ray Tracing

Graphics processing units (GPUs) are the main processing chips residing on commercial

graphics cards. They are designed to process a large number of triangles quickly in parallel to

present interactive 3D images. Graphics cards implement the scan-line algorithm in hardware

and are getting faster every year.

Figure 3 shows that GPUs are faster than CPUs on floating point calculations and that

GPU performance grows by a factor of 30 or more each year. This suggests that the GPU is a

good working platform for floating-point-intensive tasks such as ray tracing where ray-triangle

intersection testing is a floating-point task. Therefore, it is desirable to bring ray tracing onto the

GPU to take advantage of the GPU’s processing power. With the introduction of programmable

7

GPUs, it is now possible to utilize the GPU for non-traditional graphics tasks, with certain

limitations.

Figure 3 GPU Growth Rate [Buck 2004]

The GPU is designed to process batches of data at once, but it processes each individual

data element with similar computations in parallel. This is also known as stream processing.

This means the GPU can only process one “kernel” at a time but many instances of them in

parallel. A kernel represents a set of operations that are identical across each individual data

element. Basically, the GPU provides data parallelism, and is best suited for large data sets with

minimal dependency between data elements that require the same computations with minimal

memory access.

Ray tracing is highly parallel but requires frequent memory accesses. Triangles cannot

be accessed from the traditional geometry pipeline in scan-line algorithms because each pixel

needs to access multiple triangles. The triangles must be packed into textures and accessed in a

random access fashion for GPU ray tracing. This goes against the design philosophy of the GPU

because each pixel requires varying numbers of triangle accesses via textures. The algorithm

cannot guarantee minimal memory access and the GPU texture caches might not be utilized

effectively because triangles are accessed in a random fashion.

Another limitation is that the GPU cannot do complex logic control as well as the CPU.

In fact, earlier GPU models could not do looping at all; they could perform a limited amount of

8

looping by unrolling loops. Recent GPUs can perform loops a limited number of times but still

not very efficiently. Unfortunately, ray tracing requires frequent looping control, therefore,

hindering GPU performance.

The last general limitation is the speed of the traffic between the CPU and the GPU. The

GPU cannot access CPU memory directly and vise versa. Therefore, we must pay the cost of

sending data from CPU memory to GPU on-board memory, and the transfer rate can be limited

by the bus technology on the motherboard. This can become a major bottleneck when the GPU

is not receiving new data fast enough and spends some time idle. Despite these limitations, GPU

ray tracing has been attempted in the past four years and is still viewed as a feasible route for

performing ray tracing.

2.3 Related Work

In this section, we will describe the previous work done on ray tracing on both GPU and

CPU platforms. Some work concentrated on improving ray tracing static scenes and some

looked at dynamic scenes. The work related to rendering dynamic scenes usually focused on the

building of the acceleration structures; they are the driving forces that directed us to concentrate

our experiments on acceleration structures.

2.3.1 GPU-based Ray Tracing

GPU-based ray tracing started in 2002 with the Ray Engine [Carr et al. 2002] and Purcell

et al.’s state-based GPU ray tracer [Purcell et al. 2002]. The Ray Engine had the GPU handle

computationally intensive ray-triangle intersections and the CPU fed buckets of coherent rays

and proximate geometry to the GPU. This division aimed to maximize the advantage of both

processors, but was bottlenecked by the transfer speed over the bus.

This communication bottleneck can be avoided by directly implementing all the stages of

ray tracing on the GPU. Tim Purcell at Stanford University decomposed ray tracing into four

GPU kernels where each kernel is a fragment shading program that handles a different aspect of

ray tracing: generating eye rays, traversal, intersection, and shading. He was able to achieve 114

million intersection tests per second with an ATI Radeon GPU, which outperformed the best

CPU implementation at the time. Figure 4 shows the kernels used for his GPU Ray Tracer. His

approach was innovative but still limited at the time because the GPU was not capable of doing

true looping logic besides loop unrolling, and so could not fully utilize the GPU effectively.

9

Figure 4 Purcell’s kernels for GPU ray tracing [Purcell et. al. 2002]

Nevertheless, Purcell’s result was very promising and showed there is still a lot of room

for improvement. This was in fact the case with the follow up implementation of two GPU-

based ray tracers from two different Masters theses. Christen implemented a GPU ray tracer

using both OpenGL and DirectX to demonstrate the implementation was feasible using different

graphics APIs [Christen 2005]. Karlsson and Ljungstedt implemented a proximity-cloud

uniform grid on the GPU and obtained a 37-50% speed up on some scenes [Karlsson and

Ljungstedt 2004]. Both implementations used a uniform grid because it is the easiest data

structure to implement on the GPU. Furthermore, Purcell suggested the uniform grid is probably

the best acceleration structure on the GPU.

Researchers have also implemented other acceleration structure algorithms on the GPU

such as the Kd-Tree and the BVH. Both the Kd-Tree and the BVH require stack operations on

the CPU; however, it is not feasible to implement a stack on the GPU. Thus, GPU-friendly

traversal algorithms should not rely on the stack. Foley and Sugerman implemented two

stackless GPU Kd-Tree traversal algorithms: kd-restart and kd-backtrack [Foley and Sugerman

2005]. Knowing that the Kd-Tree had been shown to be the best overall acceleration structure for

ray tracing static scenes at the time [Havran et al. 2000], an algorithm to allow the Kd-Tree to

run on the GPU was unavoidable. While their work showed that hierarchy traversals other than a

simple uniform grid were feasible, they did not achieve a performance comparable to an

optimized Kd-Tree CPU implementation. Nevertheless, they demonstrated that the GPU Kd-

Tree implementation outperforms the GPU uniform grid implementation on scenes with high

variation in scene triangle density. Thrane and Simonsen did a performance comparison study of

10

different GPU acceleration structures and implemented the BVH traversal algorithm on the GPU

[Thrane and Simonsen 2005]. They concluded that the BVH was the best acceleration structure

at the time on the GPU, and that the BVH could outperform other acceleration structures by a

factor of nine in some cases. In 2006, Carr et al. implemented a hybrid approach using a BVH

with geometry images on the GPU and demonstrated competitive performance against other

acceleration structures on the GPU [Carr et al. 2006]. Furthermore, Carr’s implementation could

handle deforming models on the GPU.

We based our GPU ray tracer on the related work described above. Our GPU uniform

grid implementation follows Purcell et al.’s paper [Purcell et al. 2002]. The Kd-Tree

implementation is based on Foley’s paper [Foley and Sugerman 2005]. Lastly, we implemented

the GPU BVH traversal according to Thrane’s paper [Thrane and Simonsen 2005] and we

improved our existing GPU implementations with the provided shader code from Thrane’s paper

[Thrane and Simonsen 2005].

2.3.2 CPU-based Ray Tracing

Traditional ray tracing can only perform one ray-triangle intersection test, and traverse a

single acceleration structure node, at a time. With the introduction of packet traversal and

intersection test by Wald in 2004 [Wald 2004], we could traverse several rays in parallel on the

CPU with SIMD instructions. Unlike the GPU, where the usage of complex logic and data

structures is limited, the CPU does not have these limitations, but offers less-powerful parallel

floating-point computation with SIMD instruction sets. Wald’s implementation achieved 92-100

million intersection tests per second with packet ray-triangle intersection tests on the CPU. His

system can render a static scene with 43 thousand triangles at four frames per second, and two

frames per second for a dynamic scene of the same model. Wald continues to work on better ray

tracing systems using both single CPUs and clusters of CPUs. In 2006, Wald published a

coherent grid traversal method which was able to achieve 29 frames per second with pure ray

casting and seven frames per second with full ray tracing effects on an 11,000-triangle, animated

scene at a 10242 screen resolution [Wald et al. 2006]. His approach allowed the uniform grid to

achieve high rendering performance by traversing several rays in parallel into the cells with a

frustum-packet traversal. Since the uniform grid can be rebuilt quickly for all types of models,

11

Wald’s method can adapt to any triangle movements, as well as abrupt changes in the number of

triangles in the scene.

Wald and Havran looked at how the Surface-Area-Heuristic (SAH) Kd-Tree can be built

faster on the CPU. They proposed a method to build the Kd-Tree in O(n log n) time and their

method was faster than the usual O(n log 2 n) or O(n2) implementations [Wald and Havran

2006].

Besides speeding up the Kd-Tree, hybrid tree structures have also been investigated.

Havran presented the H-trees, a combination of the spatial Kd-Tree with bounding volumes, in

his paper [Havran et al. 2006] and showed that H-trees can be built 2.4 to 11.7 times faster than

Kd-Trees, and can perform as well as the Kd-Tree in terms of traversal and intersection testing.

Although a carefully optimized Kd-Tree is the best acceleration structure for static

scenes, it is not the best acceleration structure for dynamic scenes because it cannot be updated

or rebuilt fast enough to maintain adequate performance. On the other hand, the BVH has been

shown to be more adaptable to dynamic scenes with deforming models. Lauterbach et al.

proposed a simple BVH update algorithm that modifies the bounding volume as the triangles

move in dynamic scenes [Lauterbach et al. 2006]. His method will gradually degrade the

performance of the BVH, and he detects the degradation and rebuilds the BVH at that point. His

ray tracing system can render a 40k-triangle dynamic scene at 12 frames per second at a 5122

screen resolution. Wald also proposed a BVH implementation using a variant of SAH to render

deformable models and achieved 8.5 frames per second for a 78k-triangle dynamic scene at a

10242 screen resolution [Wald et al. 2006a].

We were not able to implement all the latest work on acceleration structures because

many of them are so new; however, we implemented the BVH update algorithm based on

Lauterbach et al.’s paper because it is simple to understand. We do not follow his

implementation completely and the differences are discussed in Section 3.3.2. We hope to

incorporate more-recent improvements to acceleration structures in our future work.

12

3 Energy-Conscious Ray Tracing (ENCORE)
In this section, the high level implementation details of ENCORE will be described.

ENCORE was developed with scalability and extensibility in mind, so it is generally not

optimized for speed, and is a ray casting system. The three major components of ENCORE are

the Scene Manager, the Accelerator and the Renderer, as shown in Figure 5.

Figure 5 System Overview

The Scene Manager is responsible for loading 3DS (3D Studio Max file), PLY (a file

format developed by Stanford University for their 3D scan repository), and OBJ files (a file

format developed by Autodesk & Alias for Wavefront's Advanced Visualizer application)

specified in description file (in house format). It stores the geometry data and creates a single list

containing all the triangles in the scene.

The Accelerator is the interface for acceleration structures. Its main job is to provide and

call a virtual build function for all acceleration structures implemented in the system. This

allows new acceleration structures to be added in the future without changing the main system

code. ENCORE currently supports three acceleration structures: uniform grid, Kd-Tree and

BVH. Each acceleration structure queries the scene for changes before rebuilding. If there are

no changes in the scene, the acceleration structure does nothing; otherwise, it requests a new list

of triangles from the scene manager and rebuilds. In addition, all acceleration structures can be

converted into textures which can be used to render on the GPU.

Scene
Manager

3DS,
OBJ,
PLY,
Render-
Setting

Load

Merged triangle
Information Accelerator -

Acceleration Structure
Interface

Renderer –
Ray Tracer
Interface

Request
Build

Built Data

Render
image

Query changes

13

The Renderer is the interface for the rendering algorithm. Its main job is to ensure that

every renderer implemented in the system has a render function. It also passes the triangle list

and the acceleration structure into the renderer using an init function. The interface and virtual

function declarations can be found in Appendix B.

In the following section, the uniform grid, Kd-Tree and BVH implementations will be

explained in detail. The transition from CPU ray tracing to GPU ray tracing will be explained

along with the uniform grid. Since the process is similar for the Kd-Tree and the BVH, only the

uniform grid section contains an explanation of GPU ray tracing. To aid the discussion, Table 1

describes the notation used in the descriptions.

Table 1 Short hand notations for ENCORE Implementation

Short-hand
Notation

Description

#T Number of triangles in the scene
AABB Axis-aligned bounding box
Voxel Individual uniform cell in the uniform grid
Model The geometry that makes up the scene. Scene and model mean the same in the

context of this discussion
BVH Bounding Volume Hierarchy
Texture 2D image to map onto 3D geometry
Grid Short hand for uniform grid

Subscript s Scene bounding box
Subscript t Triangle bounding box

3.1 Uniform Grid

3.1.1 Build

Partitioning the space into uniformly distributed cells is the main idea behind a uniform

grid. The cells in the grid can be uniform in size, same length in x, y, and z axes, or uniform in

number where the number of cells along the x, y, and z axes are the same. The former creates

uniform-sized cells but uneven cell numbers along each dimension. The latter creates non-

uniform length across the different axes, but the cell length along a single dimension is uniform.

The ENCORE implementation uses the later approach. There are numerous ways to determine

the grid division in the x, y, and z directions, and the ENCORE implementation uses the cube

root of #T to determine the number of grid divisions. Given a scene with 7,532 triangles, for

14

example, 3√7,532 = 19.6 ≈ 20 segments, assuming the size of bounding box enclosing the scene

is 100x80x120. This results in a 20x20x20 uniform grid with a cell size of 5x4x6.

The next step is to insert triangle references into the cells containing the triangles. The

bounding regions between triangles and cells can be calculated using algebra. Continuing from

the above example, the scene bounding box has a minimum point at (0,0,0) and maximum point

at (100,80,120). Given a triangle with a bounding box starting at (13,55,30) and end at

(24,60,50), the cell indices that overlap this bounding box can be calculated with the following

equations for each dimension.

Starting x cell index = (x-mint – x-mins) / cell size in x
Ending x cell index = (x-maxt – x-mins) / cell size in x

The numbers are rounded down fractional results. The y and z values can be found by replacing

the x with y or z in the above calculations. This example would yield an x index at (2,4), y index

at (13,15), and z index at (5,8). This method is simple and fast but not entirely accurate. Figure 6

illustrates the reason.

Figure 6 Triangle-Box Intersection

Figure 6 shows that a triangle bounding box can overlap cells not covered by the triangle.

This introduces cells with false triangle references, leading to unnecessary ray-triangle

Triangles are
covered in 9 cells

Triangles are
actually only
covered in 6 cells

15

intersection tests when rendering the uniform grid. The exact triangle coverage in each cell can

be found by performing a triangle-box intersection test outlined by Akenine-Moller [Akenine-

Moller 2001]. Doing the triangle-box intersection test not only produces a more-physically

accurate allocation of the triangles in the grid, it also creates a more-compacted grid that uses

less memory. We started the initial uniform grid implementation using code from Bikker

[Bikker 2005] and modified the implementation. The pseudo-code for the uniform grid build

follows.

1. let bbox = AABB enclosing the scene
2. Divide bbox into M x M x M cells
3. for every triangle
4. count triangles AABB – bbox overlap
5. allocate memory on the number computed in step 4
6. For every triangle
7. Find triangle AABB – bbox overlap
8. For every voxel
9. If triangle-box overlap
10. Insert triangle reference in the voxel

This algorithm still functions if Steps 3 to 5 are removed. Steps 3 to 5 introduce

redundant calculations that calculate the bounding region between triangles and cells because the

bounding region is calculated again in Step 7. The redundant step computes the maximum

memory needed to store all the triangles in the grid. Doing so avoids the usage of dynamic data

structures such as C++ standard template library vector, list, or queue during Step 10. This

algorithm builds faster and produces consistent build times compared to the algorithm using

dynamic data structures. This idea is described by Haines [Haines 1999]. Removing Step 9

increases the build speed by roughly 250% and we name this algorithm the non-triangle-box

intersection build. The energy consumption ratio between this coarser build and an accurate

build (the uniform grid implementation with the triangle-box intersection) allows us to compare

the benefits of triangle-box intersection against the impact on rendering time later on.

3.1.2 Traversal

The goal of an acceleration structure is to reduce the ray-triangle intersection tests by

avoiding them if possible. An acceleration structure does so by replacing the ray-triangle

intersection with the acceleration structure traversal; therefore, the traversal computation needs

to be much cheaper than the ray-triangle intersection to speed up ray tracing. We implemented a

16

fast voxel-traversal algorithm outlined by Amanatides and Woo [Amanatides and Woo 1987].

Figure 6 illustrates the algorithm in 2D.

Figure 7 Uniform Grid Traversal Illustration

A ray enters the middle cell of a uniform grid in Figure 7. Assuming no triangles are in

the first cell, the algorithm calculates the maximum hit time (tMax) for the ray to hit the

boundary of the cell in x and y axes. The smallest tMax is used to determine the cell that the ray

should traverse next. In Figure 7, the smallest tMax lies on the x axis so the ray steps in the x

direction. If there are triangles in the second cell, the algorithm will perform ray-triangle

intersection tests on all the triangles in the cell. If a valid triangle hit is found and the hit time is

smaller than the tMax of current cell’s boundary, the algorithm returns with the hit information.

Otherwise, the algorithm continues the traversal. This algorithm costs six additions and three

multiplications which is much cheaper than the cost of a ray-triangle intersection test. The ray-

triangle intersection test is implemented using Moller and Trumbore. [Moller and Trumbore

1997]. An optimized version of the ray-triangle algorithm can be found in Wald [Wald 2004],

however, his approach requires additional pre-computations for each triangle so we chose not to

implement it. Overall, we found the uniform grid simple to implement and understand; it is an

ideal example for a beginner to learn acceleration structures.

3.1.3 Moving to GPU

Unlike CPUs, GPUs do not have data structures such as arrays, lists, and stacks. Access

to GPU memory is limited, so only viable option for inputting non-vertex information into the

GPU is via textures, because textures can be used as random access memories in the GPU. Each

individual pixel in a texture can be read in random order in GPU shaders, and this enables a

Find tMax at x,y,z
plane for current
cell

Perform ray-triangle
intersection with the
triangles in the cell;
Step in the plane direction
with smallest tMax

17

texture to act as a random access memory. The conventional method of inputting triangle

vertices, normals, and texels into the GPU is not suitable for GPU ray tracing because we need to

access triangles in random order. Therefore, we store the triangles into textures. Figure 8

illustrates the conversion of CPU data into GPU textures. We break a vertex array into three

separate vertex textures, holding the value of first, second and third vertices of the triangles,

respectively. This allows a maximum of 16 million vertices in memory with a maximum texture

size at 40962. The information in the uniform grid must also be translated into a texture. We are

allowed to store a maximum of four values into a texel. Since we cannot use any dynamic data

structures on the GPU, the data in each uniform grid cell needs to be represented in another

fashion. The triangles referenced by the uniform grid are stored in the vertex texture in the order

they appear in the uniform grid. We do not use a triangle index texture to reference repeated

triangles; they are simply stored into the textures again. With the vertex texture set up in this

fashion, the uniform grid texture can store the beginning vertex index in each cell and the

number of triangles in each cell into the R and G components of the texels. We leave the B and

the alpha components empty in the uniform grid texture, but they can be utilized in some way to

maximize texture utilization in future work.

Figure 8 CPU Memory to GPU Texture

V0

Vertices in CPU memory

Triangle index in CPU memory

Vertices in texture (GPU)

V0 V0 V3

V1 V4 V4

V2 V5 V5

Texture 1

Texture 2

Texture 3

V1 V2 V3 V4 V5 V6

Uniform grid in CPU memory

G1

G2

G3

Uniform grid in texture (GPU)

0 2

X value contains index into vertex
texture
Y value contains number of
triangles in this cell

18

Purcell et al. use another level of indirection that requires another texture to represent the

triangle index on CPU [Purcell et al. 2002]. This implementation produces smaller vertex

textures at the cost of an additional texture access. We chose to repeat the triangle data in the

vertex textures to avoid the additional texture access. With the textures set up properly, we could

begin the execution of the ray-tracing shaders. A shader is the execution code for programmable

GPUs. There are three main shaders in ENCORE: the Ray Generator, the Traversal-Intersection

shader, and the Phong-Lighting shader. Figure 9 shows the execution flow of the shaders in

ENCORE. Again, we follow the implementation described Purcell et al. [Purcell et al. 2002].

Figure 9 Kernel Diagram for ENCORE GPU Ray Tracer

The Ray Generator generates eye-ray textures where each ray shoots at a pixel location

on the screen. The Traversal-Intersection shader computes the ray-triangle intersection with the

same algorithm used on the CPU using textures as random access memories. Purcell separated

the uniform grid traversal and the ray-triangle intersection into two different shaders because he

needed to control the looping of shaders with the CPU. With shader model 3.0, programmable

GPUs can perform up to 65,536 iterations in a nested for-loop. Thrane utilized this new feature

to combine the traversal and the ray-triangle intersection shaders into one shader [Thrane and

Simonsen 2005]. His approach eliminates the need to swap shader executions between the

traversal and the ray-triangle intersection, thus improving performance. Ultimately, the

Traversal-Intersection shader produces triangle-hit information at each pixel as a texture and

Ray Generator

Traversal-
Intersection

Phong-
Lighting

Camera
Data

Vertex
Texture
Acc. Structure
Texture

Ray
Texture

Hit Info.
Texture

Final Image

Vertex
Texture
Normal
Texture

19

passes the texture down the pipeline. The Phong-Lighting shader computes the color with the

triangle-hit information texture and displays the image on the screen. The shader code for the

Ray Generator, uniform grid traversal and Phong-lighting are provided in Appendix C. The

shader code for the Kd-Tree and BVH are not included; see Foley and Sugerman [Foley and

Sugerman 2005] and Thrane and Simonsen [Thrane and Simonsen 2005] for more detail.

3.2 Kd-Tree

3.2.1 Build

The Kd-Tree and uniform grid are both spatial subdivision algorithms. A uniform grid

organizes the space into uniformly distributed cells. A Kd-Tree takes a non-uniform approach

and organizes the space into a binary tree (Figure 10). The ENCORE Kd-Tree implementation is

based on Pharr and Humphries [Pharr and Humphries 2004, page 198]. The algorithm builds the

tree in O(n log2 n) time. We changed some parameter values in the algorithm to speed up the

rendering of our test scenes, but their custom memory allocation method is not implemented.

The Kd-Tree stores the split locations in interior nodes and lists of triangles in leaf nodes.

Figure 10 is misleading because the root node actually stores the split location indicated in the

Root

Figure 10 Kd-Tree

20

second box pointed to by the second arrow. However, the arrows in Figure 10 represent the

space corresponding to the nodes and not the data stored in the nodes. The decision of where to

split the space can vastly change the topology of the tree, as well as its ray-tracing performance.

Thus, it is critical to employ a good splitting criterion. The ENCORE Kd-Tree is implemented

using two methods: a Surface-Area Heuristic (SAH) and Spatial Median Split (SMS). SMS is a

very simple approach that always splits the axis in half on the current bounding volume and the

splitting axis is chosen in round-robin fashion. This method can build the tree 2-4 times faster

than the SAH approach, however, it does not always produce a balanced tree.

The SAH uses the area ratio of parent and child nodes to find the best possible splitting

location. Our SAH implementation is outlined in Pharr and Humphries [Pharr and Humphries

2004, page 206] and we will not go into the implementation detail for the SAH. The SAH Kd-

Tree usually produces a fairly balanced tree that speeds up ray tracing performance, however, it

is slower to build.

Besides the split location, it is also important to specify the termination criteria for a

build; otherwise, the build algorithm can go on splitting the space forever. Typical termination

criteria limit the depth of the tree and the maximum number of triangles in the leaf nodes. Pharr

and Humphries set the maximum depth of the tree equal to 8 + 1.3 * log(#T) and the maximum

number of triangles to 16 for leaf nodes [Pharr and Humphries 2004, page 213]. They allow

three retries when a better splitting location is not found by the SAH, and then create a leaf node,

ignoring the triangle count. We use 11 + 1.3 * log(#T) for the maximum tree depth, 10 for the

maximum triangle size in leaf node, and five for the number of retries. If the scene has less than

5,000 triangles, the maximum triangle size for the leaf node is set to two. The pseudo-code for

the ENCORE Kd-Tree follows. The ‘left’ and ‘right’ variables are global arrays allocated to

have size #T in the scene before the build algorithm starts. Build is a recursive function.

Build(id, depth, numRetry, triangle_count, prev_triangle_count)
1. If(prev_triangle_count – triangle_count <= 3)
 numRetry++
2. If (depth >= maxDepth or numRetry >= 5 or triangle_count <= 10)
3. Create a leaf node, return
4. determine the split axis and find the split location
5. If(id equals 0) // indicates this is the root node
6. for each triangle in the scene // all the triangles in the scene

21

7. if (the triangle intersects with the left cell)
8. insert the triangle into left // replace the old value
9. if (the triangle intersects with the right cell)
10. push the triangle into right // append to the old values
11. If(id equals left) // indicate this is for left node
12. for each triangle in left array // only the triangle in left array
13. do step 5-9
14. If(id equals right) // indicate this is for right node
15. for triangle_count triangles on top of right array // only the triangle for the current node
16. do step 5-9
17 If (tree-node array is too small)
18. allocate new array with size = 2 * tree-node array size
19. copy the old array into new array and deallocate old array
20. create parent node
21. build(left, depth+1, numRetry, number of triangles inserted in left, triangle_count)
22. build(right, depth+1, numRetry, number of triangles inserted in right, triangle_count)

The above implementation uses two global arrays to store the triangles. However, a

simpler implementation can eliminate Steps 11 to 16 and create left and right arrays locally using

dynamic data structures. The simpler implementation would also need to pass the local array in

Step 21 and 22. Allocating dynamic data structures slows down the algorithm because new

memory allocations are needed in each recursive build function call. Each leaf node requires a

dynamic allocation to hold the triangle references as well. The use of global left and right arrays

in Step 5 to 16 eliminates the need to allocate more memory to hold the triangle references. It

does not eliminate the need to allocate memory for the leaf nodes. The use of a global array to

avoid memory allocation is not part of Pharr and Humphries [Pharr and Humphries 2004] and we

have yet to read any literature using this technique. A cleaner approach would be the use of a

custom memory pool.

Since the build function always builds left first (Step 21), the left array can be reused on

every recursive call because the triangles in the left array are guaranteed to be redistributed by

Step 11 to 13. The right array is treated like a stack that contains batches of triangles. The top

batch of triangles contains the triangles used by the first build(right) function call. Step 15

shows that the algorithm can only use the number of triangles intended for the working node at

the time. The right array needs to allocate more memory when the array is full because we are

adding the triangle references to the array on every recursive call. It is not reflected in the

pseudo-code, but we use the C++ standard library vector for the right array and we use the

22

reserve function to allocate the desired memory. Figure 11 illustrates the use of global arrays for

the ENCORE Kd-Tree build.

Figure 11 Global left/right arrays for Kd-Tree Build

In Figure 11, the triangles are first split into two sets, 1 and 2. The build(left) function-

call at Step 21 is executed and the left array is used, therefore, set 1 is separated into sets 3 and 4.

Set 3 replaces the original content in the left array, but set 4 is appended on top of the right array.

Assuming the next build(left) function-call produces a leaf node, the algorithm reaches Step 22,

and build(right) is executed. Only the set 4 data in the right array are used in Step 15 and the

new set, 6, is appended on top of the right array again. The build algorithm is 2 to 3 times faster

than the original implementation that used the C++ standard library list to store the triangles. We

expect a greater speed up can be achieved by eliminating the memory allocation in the creation

of the leaf nodes.

The most complex part of the Kd-Tree algorithm is the SAH implementation. Since it is

covered in Pharr and Humphries [Pharr and Humphries 2004] and Wald also goes into extensive

length in describing how to build a good SAH Kd-Tree [Wald 2004], the SAH implementation is

not described in this thesis.

3.2.2 Traversal

The Kd-Tree traversal is much cheaper than the uniform grid traversal. It requires only

one subtraction and one multiplication for each traversal operation. The first step in the traversal

process is determining if the ray hits the bounding box of the scene (Figure 12). The traversal

algorithm is implemented using Pharr and Humphries [Pharr and Humphries 2004, page 215].

total

left

left

left

right

right

left

right

right

6

1

1
2

4

2
3

2
5

4

23

The ray can return immediately if the ray misses the scene completely. The smallest hit time

when the ray entered the scene AABB is recorded in the variable tMin. tMax stores the smallest

hit time when the ray exited the scene AABB. The algorithm starts at the root node and the time

for the ray to hit the split axis (tPlane) is calculated. Furthermore, the ray direction is used to

determine the order of traversal. A positive ray direction means the ray must visit the left node

first then the right node. A negative ray direction means right then left. The algorithm can only

traverse one node at a time. If the ray visited both nodes, the farther node is pushed onto the

stack and the closer node is traversed. The traversal step continues until a leaf node is found and

the algorithm performs ray-triangle intersection tests on all triangles in the node. The algorithm

pops a node off the stack after the intersection tests and continues on.

Figure 12 Kd-Tree Traversal

Figure 12 shows that tPlane can be used to determine the next node for traversal. Similar

to the uniform grid, the Kd-Tree is traversed in front-to-back order, and the triangle hit time can

be returned when the first valid hit is found in a leaf node.

The Kd-Tree is stored into the texture in a similar fashion as the uniform grid. An

interior node is stored with (left child index, split position, none, split axis/leaf node indicator).

A leaf node uses (start index, none, none, triangle count). The traversal on the GPU is similar to

the CPU implementation. The ray traverses down the nodes until a leaf node is found. If the ray

misses all triangles in one leaf node, the tMin and tMax of the ray are moved forward and the ray

tPlane >= tMax
Traverse first
node

Use direction of ray to
determine order of
traversal
+ ray: left, right
- ray: right, left

tPlane <= tMin
Traverse second
node

24

restarts from the root node again. Since the tMin value is moved forward, the ray takes a

different path down the tree and ends up in the next leaf node.

3.3 Bounding Volume Hierarchy (BVH)

3.3.1 Build

Unlike the previous two acceleration structures, the BVH is a geometry-partition

algorithm. The algorithm partitions the geometry and not the space around the geometry (Figure

13). The BVH is also a binary tree structure like the Kd-Tree, but stores the bounding volume

enclosing the triangles in the scene. The bounding volumes are collapsed or expanded to exactly

enclose the triangles in the target area, so the tree will never have a node containing no triangles.

Each triangle is represented only once in the BVH, because every split operation divides the

geometry.

Figure 13 shows the bounding boxes are resized to fit the triangles, even if the split

position leaves some space. The picture also shows that a triangle is not represented in two

nodes if the split location lies in the middle of the triangle. The CPU implementation of the

BVH is based on the description provided by Lauterbach et al. [Lauterbach et al. 2006]. They

Root

Figure 13 BVH

25

uses SMS as the splitting criteria because it is the simplest and fastest approach. They continue

to split the tree until there is only one triangle in all leaf nodes, resulting in a tree with 2*#T – 1

maximum nodes. The tree-node array can be pre-allocated based on this computation. and there

is no dynamic allocation needed for each leaf node because it will always contain exactly one

triangle. This approach is fast to build and can perform as well as a SAH Kd-Tree. We did not

modify any parameters for the BVH. The pseudo-code for the ENCORE BVH follows.

build(id, triangle_count)
1. if(triangle_count equals 2)
2. make 2 leaf nodes // left and right child node of current node
3. return
4. if(triangle_count equals 1)
5. make current node leaf , return
6. choose axis in round-robin fashion and find spatial median as the split location
7. if(triangle bounding box min. point less than the splitting location)
8. insert in the left array
9. else
10. insert in the right array
11. if (left or right is empty) // mean the split can't produce two child at this location
12. try other two axes
13. if(left or right is still empty) // not possible to split them, so force it into two halves
14. insert half of the triangles in the left array
15. insert other half in the right array
16. build(left)
17. build(right)

We used the same memory preallocation technique for the BVH, but it is not shown in

the pseudo-code. Step 13 divides the triangles in the current node in half because the spatial

median split point cannot guarantee the left and right have an equal number of triangles. If the

algorithm used the geometry median, where the split location is the median of the triangles in the

current bounding volume, Step 13 to 15 can be avoid.

3.3.2 Update

Since every leaf node contains only one triangle, we can update the BVH without

rebuilding it from scratch when the triangle locations change (Figure 14). We can loop through

all leaf nodes and check the stored AABB against the corresponding triangle’s AABB when

rendering a dynamic scene. If the AABBs are not the same, the AABB in the leaf node is

updated as well as all its parent nodes. This is the update algorithm proposed by Lauterbach et

al. [Lauterbach et al. 2006].

26

Figure 14 BVH Update Method

This method is surprisingly simple yet effective. The only problem is that the rendering

performance will be degraded if the new triangle location does not fit well with the existing tree

topology. Thus, the BVH needs to be rebuilt when the triangle movement passes beyond some

threshold. We have yet to implement the automatically rebuilt mechanism described by

Lauterbach et al., and it is left as future work. The update method only works on deforming

models, animated models that do not increase in triangle count, and per-frame rebuild is needed

if the testing scene contains non-deforming models.

3.3.3 Traversal

The BVH traversal algorithm is similar to the Kd-Tree, however, it uses two ray-AABB

intersections per node to determine the path to walk down the tree. Since the nodes are not

guarantee to be stored in front-to-back order, early termination is not possible without additional

calculations to insure traversal in front-to-back order. Lauterbach et al. [2006] described a

method to determine ‘near’ and ‘far’ child nodes by storing the maximum distance between the

child nodes. We did not follow the approach because we did not fully understand the algorithm

at the time, and instead use the hit time information returned from ray-AABB intersection to

Root

Triangle moved! Bounding box update
needs to propagate
up to the root

Root
Root

27

determine if the node should be traversed further. When a ray-triangle hit time is found after

examining a leaf node, the value is stored in the variable bestHit. If at tMin, the time when the

ray entered the AABB, is greater than bestHit, we can skip that parent node and its children

completely because all hit times found within that path are behind the bestHit. This method will

not speed up the BVH traversal if the first bestHit found happens to be the farthest triangle in the

scene. The BVH rendered much faster with this approach for all of our test scenes, so we did not

search for better BVH early termination techniques. Our approach is based on our observations

of the behavior of BVH traversal and was not found from any literature. However, we believe

this approach must already have been used in the past. The BVH GPU traversal did not

implement this early termination check.

28

4 Test Environment
The purpose of this thesis is to identify the major elements that stress the battery during

ray tracing. Therefore, the battery discharge rates are measured for a wide range of scenes with

different acceleration structures at different screen resolutions. In this section, we describe the

hardware environment, machine specifications, software settings, and operating system

environment for the tests. The test scenes and the methods used to measure power and time are

presented here as well.

4.1 Hardware Settings

The test machine was a Dell Inspiron 9300 laptop. It had a 1.6GHz Intel® Pentium® M

processor and 1.25GB of RAM. It was equipped with a PCIe x16 nVidia GeForce Go 6800

graphics card with 256 MB of video memory. The stock battery was a Dell rechargeable Li-ion

Type D5318, Rating 11.1V, 4800mAh, with 53WH capacity. For all the tests, the laptop monitor

was set to have 50% brightness to reduce the energy used by the monitor. Doing so allowed

more tests to run to completion before the battery ran down. In addition, on-board network

devices were disabled to reduce energy consumption and unstable battery discharge rates. The

battery was recharged back to 98% or more after each batch of tests (see below).

4.2 Software Settings

The operating system on the machine was Windows XP Professional Version 2002

Service Pack 2. The graphics driver is nVidia ForceWare version 83.60. The ENCORE

executable was built using Microsoft Visual Studio 2003 in release mode. The tests were run

using Windows batch files, where each batch file contained six to nine tests. Several versions of

ENCORE executables were built to allow easier batch file control by changing the executable

names in the batch file.

Each batch file contained a list of statements in of the form: <ENCORE executable>

<description file>. The description file specified the setting for the ENCORE executable. It set

the render screen size, the acceleration structure, the renderer (CPU, GPU, or OpenGL), the

scene files, the maximum running time of the application, the information to print, and the power

measurement setting. We will not go into detail on the content of the description file.

Each test was set to run for three minutes and 10 seconds (see below). A single batch file

executed for 20-30 minutes, leaving the battery life at around 40-60% when the execution ended.

29

At this point, the battery was recharged back to 98% or more before running the next batch file.

We did not wait until the battery was recharged back to 100% because we believe 98% or more

is good enough to be considered fully charged. In addition, we did not run tests until the battery

capacity dropped to 0% because we found the battery tended to discharge faster when it had a

low capacity. The tests conducted with low battery life always had higher discharge rates even

for identical tests. We worked around this issue by recharging the battery back to full before the

battery life drops below 40%. If the battery life was below 40% at the end of a batch file

execution, the last three test data were discarded. The battery was recharged and the last three

tests in the batch file were tested again.

We ran a total of 225 tests and no test was repeated, unless the data seemed unexpected

and we used the second run to double check the data. The data for the repeated run was not

saved; therefore, we do not have variances for each individual test. We do have the variances of

the discharge rates during the execution of each test and these data are in given Appendix A.

The machine was left untouched during the duration of the test. The monitor auto

shutdown option was off and the screen saver was disabled. There was no keyboard or mouse

inputs either. All user-mode background software, such as anti-virus and firewall software, were

shutdown before the test began, and the Windows auto-update option is disabled. We did not

tamper with the system processes, and cannot guarantee that no other system tasks were

scheduled by the operating system during the duration of the test. However, we tried to insure

that all tests ran under the same software conditions.

4.3 Test Scenes

There are 14 scenes that were used for our experiments. Table 2 shows the image, the

name, the number of the triangles, the model file names, the file source, and the test conducted

for all the scenes. Most models are publicly available by going to the source Website. A blank

source means the source is unknown but we can make the model available if needed.

30

Table 2 Test Scenes

Image Detail
Name SingleTri

Model File
Name

SingleTri.ply

Source A (-1,-1,1), (1,1,-1), and (1,-1,1)
triangle made by us

Number of
Triangles

1

Used in
(section)

5.1.1, 5.1.4, 5.1.5

Name Scissors

Model File
Name

Scissors.ply

Source

Number of
Triangles

604

Used in
(section)

5.1.2

Name Wheel

Model File
Name

Steeringweel.ply

Source

Number of
Triangles

1,368

Used in
(section)

5.1.2

31

Name Mug

Model File
Name

Mug.ply

Source

Number of
Triangles

3,450

Used in
(section)

5.1.2

Name Cow

Model File
Name

Cow.ply

Source

Number of
Triangles

5,804

Used in
(section)

5.1.2

Name Porsche

Model File
Name

Big_porsche.ply

Source

Number of
Triangles

10,474

Used in
(section)

5.1.2

32

Name Toaster
Model File
Name

Toasters004.obj

Source The Utah 3D Animation Repository
Number of
Triangles

11,141

Used in
(section)

5.1, 5.2, 5.3

Name Sdragon

Model File
Name

Dragon3.ply

Source The Stanford 3D Scanning Repository

Number of
Triangles

47,794

Used in
(section)

5.1, 5.2, 5.3

Name Bbunny

Model File
Name

Bunny1.ply

Source The Stanford 3D Scanning Repository

Number of
Triangles

69,451

Used in
(section)

5.1.1, 5.1.4, 5.1.5

33

Name Complex

Model File
Name

Urn2.ply, torus.3ds, big_spider.ply
bunny1.ply, big_dodge.ply

Source Stanford 3D Scanning Repository,
RenderMonkey

Number of
Triangles

98,867

Used in
(section)

5.1.1, 5.1.4, 5.1.5

Name 200k

Model File
Name

Dragon2.ply

Source The Stanford 3D Scanning Repository

Number of
Triangles

202,520

Used in
(section)

5.1.1, 5.1.4, 5.1.5

Name 400k

Model File
Name

F000.obj, dragon3.ply, bundha2.ply

Source Stanford 3D Scanning Repository,
Utah 3D Animation Repository

Number of
Triangles

436,942

Used in
(section)

5.1.1, 5.1.4, 5.1.5

34

Name Fairy

Model File
Name

F000.obj, bunny1.ply, dragon2.ply,
galleon.ply, ElephantBody.3ds,
bundha2.ply

Source Stanford 3D Scanning Repository,
Utah 3D Animation Repository,
RenderMonkey

Number of
Triangles

679,531

Used in
(section)

5.1.1, 5.1.4, 5.1.5

Name 990k

Model File
Name

Buddha1.ply

Source The Stanford 3D Scanning Repository

Number of
Triangles

1,087,716

Used in
(section)

5.1.1, 5.1.4, 5.1.5

Some scenes were composed of several models, such as the ‘Complex’ and ‘Fairy’

scenes. The models were chosen based on the number of triangles, but their distribution was not

considered. The camera angle and position were not important for any scenes except the Toaster

and the Sdragon because they were the only two scenes used in rendering tests. The camera had

a 90 degree viewing angle and was stationed at (0, 0, 25) from the origin. The Toaster and the

Sdragon were scaled to cover approximately 70% of the rendering windows during rendering

tests.

4.4 Software Measurement Tool

4.4.1 Power

Power was measured using the CallNTPowerInformation function in the Windows API.

For a detailed description of this function, please see MSDN at http://msdn.microsoft.com/library

35

/default.asp?url=/library/en-us/power/base/callntpowerinformation.asp. We used this function to

retrieve battery information into the SYSTEM_BATTERY_STATE structure. The information

for the structure is referenced in the MSDN Website as well. There are 11 variables in the

structure, however, we only used the information in the Rate and RemainingCapacity variables.

Rate returns the rate of discharge of the battery in milliWatts. RemainingCapacity returns the

estimated remaining capacity of the battery in milliWatthours. The CallNTPowerInformation

function has a limited update rate of 3-6 seconds. If the function is called more often than this,

the variables will not change, which means the information returned is the same when the

function is called a hundred times within one second and when it is called one time within two

seconds. The hundred calls case will simply give us a hundred repeated values. This is

problematic because all our tests can finish execution within one second. The function will

report there are no changes in the discharge rate of the battery because the application does not

run long enough.

To work around this problem, we ran the tests for more than three seconds. In fact, we

had to run the tests much longer than three seconds to gain enough discharge rate samples. The

running length was set to three minutes for all the tests. Three minutes might seem too short

because it only gives us roughly 45 meaningful samples due to the limited power sampling

resolution. A longer testing length was considered and tested. Five minutes of testing was used,

but we found little variance compared to three-minute testing. Therefore, we settled on a three-

minute testing length because shorter running time allowed more tests to complete before the

battery had to be recharged.

4.4.2 Power Test Settings

The CallNTPowerInformation ran in a different thread and the power data was queried

every second. With a sampling rate of 3-6 seconds, we had roughly four repeated samples on

average. The three minute 10 second testing length gave 190 samples and the average discharge

rate was calculated from these samples. The data were output to a comma-separated values

(CSV) file just prior to application termination.

The tests were divided into three major categories, the build test, the static rendering test

and the dynamic rendering test, as explained in Section 5. The build tests and dynamic rendering

tests started after the application loaded the triangles into the system memory. The static

36

rendering tests started after the application built the acceleration structures. The processing

before the testing target is referred to as the preprocess. We wanted to isolate the power used by

the preprocessing from the target so the application was set to sleep for 10 seconds before the

test began, allowing the power draw to drop back down to the idle stage so the preprocessing

power did not show up in the measurement. The power measurement started after the 10-second

sleep. There was another 10-second sleep after the test ended so the fall of the discharge rate

back down to the idle stage can be plotted. This gives us a clear picture of how the discharge

rate rose and fell over the duration of a test. Figure 15 shows a representative test result.

19000

24000

29000

34000

39000

0 50 100 150

Time (second)

D
is
c
h
a
rg
e
 r
a
te
 (
m
W
)

Figure 15 Discharge Rate Graph

Figure 15 shows how the discharge rate rises above 34W in the beginning and drops back

down to 19 W in the end. The tiny plateaus are clear evidence of repeated discharge rate values.

The 10-second sleep time is added to the testing length; therefore, we have a total running length

of 3 minutes and 10 seconds. In addition, the average discharge rate is calculated by removing

the samples below 24W in the CSV file because they represent the power used by the system

when the application was in a sleep state. The average discharge rates and the standard

deviations are reported in Appendix A.

4.4.3 Time

Time was measured with the timeGetTime function in the Windows API. A detailed

description of this function can be found on the MSDN Website as well. The function returns

37

time in millisecond resolution. This function is used to manage all the timers in the application

such as the 10-second sleep and three-minute running length for the power measurement tests. If

the application is in the middle of a loop when the three-minute timer is triggered, it will wait for

the loop to complete before terminating the program. The acceleration structure build time and

the rendering time are calculated by taking the total run time of the application divided by the

number of completed loops where the total run time refers to the running length of the target

operations such as the build or the rendering. When rendering dynamic scenes, the total run time

includes the build time, transfer time from CPU to GPU, and the rendering time.

38

5 Measurement Results and Discussion
In this section, we present three categories of power measurement, power measurement

results for building acceleration structures, rendering results without rebuilding acceleration

structures, and rendering results with acceleration structures rebuilt per frame. They will be

referred to as build results, static rendering results, and dynamic rendering results. Each

category is further broken down into smaller sub-categories which are organized by different

testing parameters.

Table 3 lists all the values gathered or derived from the experiment results. The term

“operation” in this table refers to the targeted energy; if the test is conducted while rendering,

then the operation is rendering. If the test is for building acceleration structures, then operation

refers to build. It is used to aid the explanation of the experiment results in this section.

Table 3 Measurement Values

Name Short Notation Type Unit Equation Note
Triangle # T# Given
Completed
Operations

Loop Measured

Time to
Completion

T Measured Millisecond
(ms)

Discharge Rate Rate Measured milliWatt
(mW)

Malloc Count MC Measured
Malloc Size MS Measured Byte
Triangle-Box
Intersection

 Measured uniform grid

Total Tree Node Measured Kd-Tree, BVH
Total Tree Leaf Measured Kd-Tree, BVH
Standard
deviation

stdev Calculated mW Appendix A

Time/Operation TpO Calculated Ms T/Loop
Energy/Operation EpO Calculated milliJoule

(mJ)
Rate*(TpO/1000)

Energy/Triangle EpT Calculated mJ EpO/T#
Standard Error STDEV Calculated mW
Grid Size Calculated uniform grid

Max. Tree Depth Calculated Kd-Tree, BVH
Total Energy

Loss
EL Calculated milliWatthour

(mWh)
Rate*(T/1000)/3600

5.1 Acceleration Structure Energy Measurement

The energy measurements for building the uniform grid (UG), Kd-Tree (KdT) and

Bounding Volume Hierarchies (BVH) are presented in this section. They are further analyzed by

39

considering model size, memory allocation size, triangle-box intersection counts and build time.

The build energy used by the acceleration structure is very important because it distinguishes a

static rendering task from a dynamic rendering task. The acceleration structure needs to be

rebuilt every frame in the dynamic rendering task and its topology affects the performance of

rendering. Thus, identifying the major elements that stress energy consumption in the building

of the acceleration structure is the goal of this section. We tested nine scenes with a range of one

to one million triangles, which we believe provided enough data samples to demonstrate the

energy usage trend when building acceleration structures.

5.1.1 Model Size

Model size is an important factor to look at because it affects the rendering and building

speed. Building the acceleration structure for larger models can take more time, and they can

have a longer rendering time. Since model size and time have a linear relationship, we were

interested in finding out the relationship between energy and time.

Model Size vs Energy/build

Energy in logarithmic scale

0.1

1

10

100

1000

10000

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

of triangles

E
n
e
rg
y
 (
J
o
u
le
s
)

Uniform Grid

BVH

Kd Tree

Figure 16 Data for Joule per Build with each acceleration structure

Figure 16 shows the energy (Joules) per build data for eight different scenes. The

smallest scene has eleven thousand triangles and the biggest scene has about one million

triangles. The data represented in the diamond markers are the energy measurements of uniform

grid with triangle-box intersection tests. The square markers represent data for Kd-Tree (KdT)

using SAH. The triangular markers are BVH data. The y axis, energy per build, is in

40

logarithmic scale, but the x axis is not in logarithmic scale. Building KdT uses about ten times

more energy than the other two data structures; furthermore, KdT energy usage also increases

more quickly than in the other two data structures. On the other hand, BVH and UG use much

less energy per build. They start off with similar energy usage but UG uses less energy per build

after the model size increases over 100k.

Tables 4 and 5 show the average discharge rates (ADR) and standard deviations

(STDEV) for each test. The singleTri results are not plotted in Figure 16 but it is shown in the

tables. To find the energy (Joules) per build data from these tables, use the equation labeled

Energy/Operation in Table 3.

Table 4 Build Data Standard Deviation, Part 1

 Uniform grid Kd-Tree (SAH) Kd-Tree (median)
 ADR STDEV ADR STDEV ADR STDEV
singleTri 33,119 218 34,901 238 35,176 216
Toaster 33,733 714 34,539 191 35,054 262
Sdragon 33,716 507 34,053 216 34,628 176
Bbunny 34,871 316 33,758 351 34,939 448
Complex 32,801 453 33,068 349 33,926 421
200k 32,786 397 33,848 393 34,446 342
400k 32,351 421 33,135 642 33,917 382
Fairy 33,913 258 35,075 357 35,613 317
990k 34,504 299 33,862 846 34,912 514

Table 5 Build Data Standard Deviation, Part 2

 BVH BVH update
(best case)

BVH update
(average case)

BVH update
(worst case)

 ADR STDEV ADR STDEV ADR STDEV ADR STDEV
singleTri 34,669 332 34,705 265 34,303 1428 34,217 583
Toaster 34,600 288 33,751 346 34,742 295 34,787 374
Sdragon 33,622 275 32,473 390 34,494 289 34,219 413
Bbunny 33,172 302 32,010 329 33,960 389 33,480 364
Complex 31,818 430 30,718 260 32,649 474 32,275 365
200k 33,032 579 32,143 245 34,106 296 33,914 482
400k 32,539 322 31,636 320 33,594 374 33,014 322
Fairy 34,161 469 33,077 296 35,269 288 34,983 400
990k 33,642 523 32,575 180 34,751 342 34,471 342

The data show very little variance in Tables 4 and 5. Their standard deviations are small

and all of them deviate about 1% from their averages, thus, we believe our average data is

accurate.

41

We take another look at the model-size versus energy trend by plotting the energy per

Triangle graph for each acceleration structure. The naïve KdT (KdT with the spatial median split

method) and the BVH update data are added to the graph as well. We are interested in the

amount of energy that can be saved from using the naïve KdT and BVH update when compared

to their complete build counterpart. The BVH update results are further broken down into best,

average, and worst case scenarios. This is necessary because the BVH update algorithm does not

depend on the size of the model, but rather on the amount of bounding volume update due to the

triangle movement. This dependency can be reflected by performing the test on animated

scenes; however, the animation process itself consumes additional energy that we would need to

isolate. This additional energy is the energy used to update the triangles per frame and we do not

wish to include that energy usage in the equation. One solution is that the program can sleep for

few seconds before and after all the triangles updated their positions. The sleep allows the

isolation of the energy on updating the triangles and updating the BVH, so only the data for

updating the BVH is gathered. The second method is to emulate the update dependency with

random number. Each leaf node is assigned a random chance to update, even though the triangle

position does not change. We pick the emulation method because it is easier to control and

produces reproducible results. We plot the best, worst and average cases for the BVH update.

The best case represents the scenario where no update is necessary. This is equivalent of calling

the BVH update on the same set of triangles. The average case has 60% chance that a leaf node

will update itself and its corresponding parent nodes. The worst case is the scenario where all

the triangles in the scene moved and all the BVH nodes have to update their bounding volumes.

42

Model Size VS Energy/Triangle

0.000001

0.00001

0.0001

0.001

0.01

0.1

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

of triangles

E
n
e
rg
y
 (
J
o
u
le
s
)

KdT (sah) KdT (naive)
BVH UG
BVH update (worst) BVH update (average)
BVH update (best)

Figure 17 Energy (Joules) spent per Triangle Versus Model Size

Figure 17 shows energy spent per triangle for eight different scenes. The y axis is in

logarithmic scale. The energy per triangle is plotted instead of the energy per build because we

want to investigate whether the energy per triangle changed as the model size increases. Most of

the lines in the graph are almost horizontal, thus suggesting that the energy spent on each triangle

does not vary as the model size increases. This also means more triangles in the scene equals

more energy per build. The naïve KdT has a disappointing improvement where it used 50% less

energy than the SAH KdT, but still uses more energy than the BVH even though both algorithms

use the median split method. BVH update is the most energy efficient build method in this

graph. Its worst case performance results are similar to the uniform grid energy usage. Its best

case results represent the scenario where no updates are necessary but they still have the

overhead of checking the triangle position at each node. The best case results do not represent

the results of not calling the update algorithm because the algorithm still loops through all the

leaf nodes to check if updating the bounding volumes is necessary. Overall, the BVH update

algorithm uses the least amount of energy per triangle; however, it is not suited for all types of

models. Specifically, the BVH update does not work when the scene suddenly introduces new

triangles. Furthermore, it requires occasional BVH rebuild if the triangles move beyond a certain

threshold in order to maintain a suitable tree for rendering. In comparison, the uniform grid can

43

be built from scratch every time and uses fairly low amount of energy to do so. The uniform grid

is more energy efficient when building without triangle-box intersections (UG-N). We do not

have the complete build data for UG-N but here are two measured energy per build results for

the Toaster and Sdragon scenes.

Table 6 Joule per Build for Two Cases of UG-N

 UG UG-N Worst BVH
update

Average BVH
update

Toaster (11k) 0.7 0.3 0.4 0.2
Sdragon (48k) 2.9 1.1 1.7 0.9

Table 6 shows that UG-N energy consumption lies between the worst and average BVH

update cases. Although this table only represents two data point, we believe this is enough to

make the point that UG-N can be competitive against BVH update in term of energy. The UG-N

requires slightly more energy than the average BVH update method. Future work should include

complete UG-N results on the same test scenes.

5.1.2 Memory Allocation

Memory Allocation was found to affect build speed if handled naïvely as described in

Section 3. The memory allocation issues are briefly discussed here to serve as a reminder. A

typical UG implementation requires dynamic allocation of memory when inserting triangles into

their associated cells. Kd-Tree (KdT) and BVH have recursive build functions that require

memory allocation per function call. Furthermore, each KdT leaf node requires a dynamic array

to hold any triangle references associated with the node. The memory issue can be solved with a

custom memory pool. Doing smart memory allocation speeds the build process up by a factor of

two or more; therefore, it is interesting to see if doing so gives similar benefits in term of energy.

In this experiment, we emulated the benefit of a custom memory pool without

implementing it. A custom memory pool is a memory management class that allocates a large

amount of memory from the system. The class assigns memory via pointer to the application so

no further memory allocation is required from the system. Since we are looping the build

function for three minutes, we can have the program reuse the memory allocated in the initial

loop to avoid further memory allocations. The energy measurement starts after the initial loop

and the measured energy is the build method without memory allocations.

44

The memory allocation experiments were conducted on smaller models. The model size

ranges from ~600 to ~10,000 triangles. The scenes in Section 5.1.1 are not used because we

suspect there is a crossover in the energy usage between BVH and UG when the model size is

small. The result shows there is no crossover; therefore, it is not discussed or graphed. Figure

18 shows the Joule per build before and after the custom memory pool emulation.

Eliminating memory allocation does reduce build energy. The BVH result shows

consistent improvement as the model size increases in Figure 18. The KdT result shows an

irregular energy usage pattern and it does not grow linearly as the model size increases.

Furthermore, the energy reduction is not consistent across different models. The model with

1368 triangles uses a lot less energy after the emulation while the others do not have the same

amount of energy saving. The cause of this irregularity was not investigated and should be

looked at in future work. Nevertheless, both graphs show memory allocation does contribute to

the energy for building the acceleration structure. The average discharge rates and the standard

deviation of the results are in Appendix A. Although the BVH and KdT are both tree structures,

the BVH does not have significant energy saving when compared to the KdT. We believe this is

related to the total memory size allocated so the memory allocation size is graphed in Figure 19.

Figure 18 Energy Usage Reduction for Kd-Tree and BVH

Effect of Memory management on

Kd-Tree

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

636 1368 3450 5804 10474

Model Size

J
o
u
le

Before

After

Effect of Memory management on

BVH

0

0.05

0.1

0.15

0.2

0.25

636 1368 3450 5804 10474

Model Size

J
o
u
le

Before

After

45

Total Memory Allocated in KB

100

200

300

400

500

600

636 1368 3450 5804 10474

Model Size

K
il
o
B
y
te
s

Kd-Tree

BVH

Figure 19 Total Memory Allocated Chart for Kd-Tree and BVH

Figure 19 shows that the BVH allocated less memory than the KdT and this explains why

the BVH does not have significant energy saving with the emulation. The BVH allocated more

memory as the model size increases which explains the linear pattern for the BVH shown in

Figure 18. On the other hand, the KdT does not always allocate more memory as the model size

increases. The model with 1368 triangles allocates 500 KB but the model with 5804 triangles

allocates only 300 KB. Figure 19 suggests that memory allocated size might be the cause of the

irregular energy usage pattern for the KdT; however, it does not answer why the ‘1368 model’

saves the most energy. This issue is discussed further in the following section.

5.1.3 Memory Allocation Test Result Discussion

From Figure 19, the KdT always uses more memory than the BVH. The size of the

memory allocated has been discussed; we now focus on the frequency of memory allocation.

The number of memory allocation function calls might reveal more information about the effect

of removing memory allocation. Figure 20 shows the number of memory allocation function

calls during the building of KdT and BVH. For the purpose of this discussion, malloc will be

used to represent the functions allocating memory from the system.

46

Total Memory Allocated function called

1

10

100

1000

10000

636 1368 3450 5804 10474

Model Size

Kd-Tree

BVH

Figure 20 Memory Allocation Request Graph

From Figure 20, we see that the BVH never uses more than six malloc calls, but the KdT

uses thousands. From Figures 20 and 19, we can conclude that the KdT allocates smaller

memory blocks frequently and the BVH allocates bigger memory blocks only occasionally. This

suggests that eliminating thousands of small malloc calls can lower energy consumption more

effectively than erasing a few large malloc calls where ‘small’ and ‘large’ refer to the size of the

memory allocated.

However, the reason for the significant energy saving from the KdT ‘1368 model’ is still

unanswered. We believe there are other elements that influence the energy savings when

memory allocations are removed from the KdT build. We hypothesize that these could be cache

usage, contingency of the memory allocated, and deallocation which should be investigated

further in future work. Nevertheless, Eliminating or reducing memory allocations does improve

energy efficiency.

5.1.4 Uniform Grid Triangle-Box Intersection

Uniform grid (UG) is not in section 5.1.2 because it already used custom memory pool.

UG build mostly involves computation and the most intensive computation is the triangle-box

intersection test. Section 3.1.1 shows that the triangle-box intersection test is necessary to

produce an accurate UG. Furthermore, running the UG algorithm through a profiler has shown

47

that the most expensive function is the triangle-box intersection. This makes triangle-box

intersection test an important factor to look at when determining the energy per build for the UG.

We hypothesize that if two scenes have the same number of triangle-box intersection tests, they

will have similar energy consumption. Figure 21 graphs the energy per build against the number

of triangle-box intersections per build.

Tri-Box Intersection VS Energy/Build

0

10

20

30

40

50

60

200 400 600 800 1000 1200 1400 1600 1800

of Tri-Box Intersections (thousands)

E
n
e
rg
y
 (
J
o
u
le
s
)

Figure 21 Triangle-Box Intersection Versus Energy per Build

Figure 21 shows a near-linear growth and the energy per build increases as the number of

triangle-box intersection increases. The line has a slope about 3/100,000 and this suggests every

100k intersection equals 3 Joule of energy. The data does not reveal the amount of energy used

by the triangle-box intersection tests and should be included in the future work. There are only

two scenes, Toaster and Sdragon, which have data for non-triangle-box intersection UG build.

The results are in Table 6 and they each show an energy reduction of around 61% and 66%. This

suggests coarser non-triangle-box intersection UG build should be used if the rendering overhead

is smaller than the energy saved from the build.

Finding models that produce the same number of triangle-box intersections is not trivial;

bbuny (69k) and complex (98k) are the only scenes with similar triangle-box intersection counts

48

in our data. They are the two dots overlaying each other near the 200,000 mark on the x axis.

Table 7 shows the two models in more detail.

Table 7 Energy Comparsion on Intersection Count

Model Size Build Time (ms) # of intersections Build Energy (J)
69k 123 13k 4.2
98k 137 12k 4.5

Table 7 shows the 98k model has fewer triangle-box intersections than the 69k model.

The 98k model uses more energy despite the fact that it has fewer triangle-box intersections.

The effect of triangle-box intersection is not as dominant as we had believed because the bigger

model still uses more energy to build. Going from 123 ms to 137 ms is an 11% increase, but 4.2

to 4.5 only represents a 7% increase. Thus, this data suggests the 8% decrease in the number of

triangle-box intersection does lower energy consumption in minor percentage. We are not able

to prove our hypothesis on the triangle-box intersection because we do not have enough samples

and future work should be investigated on more models with the same amount of triangle-box

intersection.

5.1.5 Build Time

It is intuitive to think that less running time equals less energy consumed. Everyone in

the ray tracing community had always tried to minimize the running time and if less time means

less energy; it is another reason to reduce the running time more aggressively. If time does not

relate to energy, it is still a major finding because no one has looked at the energy consumption

for ray tracing before. We expected the graph to come out somewhat linear because the test

results have similar discharge rates and the equation for energy per build is build time multiplied

by the discharge rate for the given operation. Figure 22 is the energy versus time graph.

49

Build Time vs Energy/Build

0.1

1

10

100

1000

10000

10 100 1000 10000 100000

Build Time (ms)

E
n
e
rg
y
 (
J
o
u
le
s
)

Uniform Grid Kd Tree BVH

Figure 22 Build Energy versus Build Time

Both axes are in logarithmic scale in Figure 22. The line has a slope of about 34 J/S

which is the average discharge of the system at 100 % CPU utility when running the build tests.

Figure 22 implies that less time equals less energy because the energy per build increases as the

build time increases. The calculated average discharge rate for all the build tests is 33.6 J/S and

has a standard deviation of 1 J/S. The confidence interval of 95% is 0.25 J/S with 63 samples.

The equation for energy per build is average discharge rate * build time. Since we know the

average discharge rate is 33.6 J/S, it becomes the constant for the equation. The equation

becomes 33.6 * build time. Since the build time is the only variant, it determines the energy per

build.

We were expecting different acceleration structures to have very different discharge rate,

thus they will have different rate of change; however, they turned out to have similar discharge

rates. This suggests that all build algorithms have similar CPU utilization which has a 33.6 ±

0.25 J/S discharge rate on the testing machine.

5.1.6 Build Energy Discussion

The simple relationship between time and energy is surprising. It suggests that work

should be focused on reducing the running time, and that reduction in energy will be an

50

additional benefit. Our original hypothesis states that energy is not directly related to time;

however, we found a strong correlation between energy consumed during the build and build

time. Faster algorithms are not necessarily more complex or use more power. The build

algorithm complexity does not affect the battery discharge rate; therefore, faster algorithms

consume less energy overall.

Looking at acceleration structures in general, they are algorithms that partition data so

that unnecessary triangle-ray intersections can be avoided. This type of algorithm typically

involves the allocation of memory before the algorithm begins. The algorithm does computation

to find the triangle’s corresponding location in the structure and inserts the triangle reference.

The major difference is the amount of energy required during the computation stage to find the

location for each triangle. In another words, we are only comparing the amount of computation

required for each build algorithm. The build algorithms do not fit well with our hypothesis

because they are not complex algorithms that run to completion quickly. The KdT is the most

complex to build but it requires a lot of time to complete. The UG is the simplest and takes little

time to complete. We do not see the real difference between each algorithm, but also fail to

define how the complexity should be measured. It is possible that beyond a certain level of

complexity, the CPU runs at almost 100% utilization. So if two algorithms run at almost 100%

utilization, their battery drain rate will be similar. Since all three build algorithms are

computation intensive algorithms, they can be seen as having the same complexity. Therefore,

they have similar discharge rates. If the build algorithms have different operations, we expect to

see different discharge rates. For example, we can compare a memory allocation heavy

algorithm to a computation intensive algorithm. Our preliminary studies show an algorithm

doing memory allocation and deallocation of 340 KB has a 32.5 J/S discharge rate, while an

algorithm doing two additions and multiplications requires 29 J/S.

Another important concept is that improvements carried out to minimize time tend to

reduce wasted work by avoiding expensive computations and increasing memory efficiency.

Avoiding work means saving the energy required to carry out work. Increasing memory

efficiency means less paging and cache fetches, thus reducing work and wasted energy as well.

The fact that the testing machine has a 33.6 J/S discharge rate is not discouraging. The

energy consumption can be predicted if the build time is known. The 33.6 J/S is the overall

51

discharge rate of the system when running the build algorithms. The energy consumed by the

algorithm alone can be calculated by subtracting the idle discharge rate from 33.6 J/S. The idle

discharge rate is the discharge rate when the system is only running the energy measurement

algorithm and the operating system. The average discharge rate will not be the same if the tests

are conducted on a different machine; however, we believe the following equation will apply by

finding the average discharge rate of any acceleration structure on the machine. The energy per

build can be calculated using the following formula.

EpB = (33.6-IdleB)*bt
where
bt = build time in second.
IdleB = discharge rate in the idle mode
EpB = energy (Joule) per build

To conclude, time is the most dominant factor affecting the build energy. Uniform grid is

the cheapest structure to build in terms of energy and time. It is scalable because it has low

energy consumption per triangle. In addition, it can handle animated scenes that change their

triangle counts per frame. BVH is the best choice when the scene only contains deformable

models because it can update the tree with low cost. It is not suited for all general scenes

because the update algorithm is dependent on the movement of the triangles in the scene. The

Kd-Tree should be avoided if one plan to build the structure repeatedly, and an efficient update

mechanism would does not penalize the rendering performance needs to be investigated. Lastly,

memory allocation and computation reduction should be explored to optimize the energy

consumption of the acceleration structure build algorithm.

5.2 Static Rendering Energy Measurement

Static rendering energy consumption is not the focus of this paper, but the data is

necessary to isolate energy consumption during the dynamic rendering test. The only difference

between dynamic and static rendering is the building acceleration structure step. Dynamic

rendering requires per frame acceleration structure rebuild whereas static rendering does not. In

static rendering, we measure the energy per render of the Toaster (11k) and Sdragon (48k)

scenes. The tests are conducted in two different resolutions: 256x256 and 768x768. Every scene

is rendered using 5 different acceleration structure builds: the naïve Kd-Tree, the SAH Kd-Tree,

the uniform grid with the triangle-box intersection, the uniform grid without the triangle box

52

intersection, and the Bounding Volume Hierarchy. The short notations used for each structure

are the following:

 KDN: Kd-Tree with naïve split (spatial median)
 KDS: Kd-Tree with SAH split (surface area heuristic)
 UGT: Uniform grid with the triangle-box intersection
 UGN: Uniform grid without the triangle-box intersection
 BVH: Bounding Volume Hierarchy

The BVH does not have an alternative build method because the BVH update does not

produce a different structure if the triangles do not move. The alternative build methods for Kd-

Tree and UG produce different topologies of the acceleration structure that are likely to impact

upon the rendering time; therefore, they are included as testing parameters. Furthermore, the

benefit of the coarser builds and the decrease in rendering performance can be compared.

The tests are conducted on both CPU and GPU. CPU represents the algorithm running

completely on the CPU and GPU represents the rendering algorithm running on the GPU. The

results are presented per scene in each sub-section. The average discharge rate and the standard

deviation can be found in Appendix A.

5.2.1 11K Model Results

The 11k model result is the rendering energy consumption of the Toaster scene. The

picture of this model can be found in Section 4.3. The Toaster scene is a box with a few toys

inside. The original coordinate has the box lying flat on the z axis. The test has the camera

rotate around the model as described in Section 4.3. This makes static scene testing non-trivial

because the rendering engine has to generate new eye rays and traverse different paths into the

acceleration structure per frame. Due to the rotating camera, the rendering time per frame is not

the same for every frame and the results have more variance. We believe that a better test

decision would be not to rotate the camera so that a more accurate average discharge rate and

rendering time could be obtained. Figure 23 shows the energy per frame for each acceleration

structure on the CPU and the GPU at 256x256 screen resolution. Figure 24 represents the result

at 768x768 screen resolution.

53

CPU VS GPU, 11k Model

256x256 Screen Resolution

0

2

4

6

8

10

12

14

16

18

KDN KDS UGT UGN BVH

J
o
u
le

CPU

GPU

Figure 23 Energy Comparison Rendering 11k Model at 256x256 Resolution

CPU VS GPU, 11k Model

768x768 Screen Resolution

0

20

40

60

80

100

120

140

160

180

KDN KDS UGT UGN BVH

J
o
u
le

CPU

GPU

Figure 24 Energy Comparison Rendering 11k Model at 768x768 Resolution

The terms lower and higher resolution are used to refer to 256x256 and 768x768 screen

resolutions, respectively, in this section. As shown in Figures 22 and 23, KDS uses the least

amount of energy per frame in the CPU tests; however, KDS perform poorly on the GPU. UG

and BVH use similar energy per frame and they use the least amount of energy on the GPU in

the higher resolution. At the lower resolution, the GPU UG and the GPU BVH only differ from

54

the CPU KDS by 2 Joules. This confirms the effectiveness of GPU ray tracing. The GPU KDN

data are not presented because the algorithm did not render the image correctly due to a

limitation on the number of loop iterations in the shader code that limited the traversal depth;

therefore, the data is removed from all the graphs. Future work should correct this seek ways to

overcome this limitation.

Table 8 Energy Reduction from Coarser Build for 11k Model

 CPU Kd-Tree CPU UG GPU UG
Screen Resolution lower higher lower higher Lower higher
Energy reduction
from coarser build

(Joule)

20.8

0.5

0.5

Energy increased in
rendering (Joule)

2.3 42 0 7.3 0.8 3.6

Total energy saved
(Joule)

18.5 -21.2 0.5 -6.8 -0.3 -3.1

Table 8 shows the benefits of coarser builds and the rendering overhead. The KDN and

the UGN use more energy at higher resolutions. They received no benefit from the coarser build

methods. The CPU KDN and UGN exhibited some energy saving at lower resolutions because

the rendering overheads are minor. The table suggests that a coarser building method is not

beneficial in general; however, more samples are required to confirm this conclusion. Future

work should include more rendering results to verify this.

Figures 23 and 24 do not give a clear picture of the percentage increases when the screen

resolution increases. Figure 25 presents a bar graph with the percentage increase in energy per

frame, comparing the lower resolution to the higher resolution. From Figure 25, we can see that

CPU algorithms adapt poorly as the screen resolution increases. The CPU KDN requires 12

times more energy and the CPU UGT needs 10 times more. The higher resolution requires 9

times more pixels to be painted than the lower resolution. The CPU rendering algorithms grows

linearly as the screen resolution increases. On the other hand, the GPU algorithms only use 3 to

5 times more energy. This results show that the GPU was not fully utilized at the lower

resolution. Overall, the GPU is more adaptable to screen resolution changes.

55

Percent Improved, CPU to GPU

768x768 Resolution

11kModel

-0.5

0

0.5

1

Im
p
ro
v
e
m
e
n
t
R
a
ti
o

Percentage Increrease

256x256 => 768x768

11k Model

0%

200%

400%

600%

800%

1000%

1200%

1400%

KDN KDS UGT UGN BVH

P
e
rc
e
n
ta
g
e
 I
n
c
re
a
s
e

CPU

GPU

Figure 25 Percentage Energy Usage Increase from 256 to 768 Resolution 11k Model

Knowing that the GPU is more efficient at higher resolutions, we want to know how

much improvement in energy the GPU can provide at the same resolutions. Figure 26 shows the

percentage of energy saved from moving CPU rendering into the GPU.

Figure 26 shows that the Kd-Tree does not benefit from the GPU and its performance is

better than that of the CPU. On the other hand, UG and BVH reduce their energy consumption

about 40 percent with the GPU in the lower resolution and 80 percent in the higher resolution.

Percent Improved, CPU to GPU

256x256 Resolution

11k Model

-1.5

-1

-0.5

0

0.5

Im
p
ro
v
e
m
e
n
t
R
a
ti
o

KDS UGT

UGN BVH

Figure 26 Percentage Energy Reduction in Moving Rendering Task to GPU (11k Model)

56

Nevertheless, the GPU has been shown to be a good platform for ray tracing. It is scalable in

terms of screen resolutions and it requires less energy to render a frame with the UG and the

BVH. CPU does better on the lower resolution and KDS can render an image with the least

amount of energy.

5.2.2 48K Model Results

In this section, the Sdragon scene (48k model) results are presented. The same sets of the

graphs similar to Section 5.2.1 are drawn. Table 9 shows the benefit of the coarser builds for the

Sdragon scene.

Table 9 Energy Reduction from Coarser Build for 48k Model

 CPU Kd-Tree CPU UG GPU UG
Screen Resolution lower higher lower higher lower higher
Energy reduction
from coarser build

(Joule)

73

1.8

1.8

Energy increased in
rendering (Joule)

3.1 26.9 0 2.9 1.2 4.4

Total energy saved
(Joule)

69.9 46.1 1.8 -1.1 0.6 -2.6

Unlike in the 11k results, the Kd-Tree benefits from the coarser KDN build for the 48k

model in both screen resolutions. The coarse UG build still consumes more energy in the higher

resolution setting. The trade off between the coarse build and rendering performance is

interesting and remains a question for future work.

Figure 27 shows the energy per frame for each acceleration structure on the CPU and the

GPU with 256x256 screen resolution. Figure 28 is the result with 768x768 screen resolution.

57

CPU VS GPU, 48k Model

256x256 Screen Resolution

0

5

10

15

20

25

30

35

40

KDN KDS UGT UGN BVH

J
o
u
le

CPU

GPU

Figure 27 Energy Comparison Rendering 48k Model at 256x256 Resolution

CPU VS GPU, 48k Model

768x768 Screen Resolution

0

50

100

150

200

250

KDN KDS UGT UGN BVH

J
o
u
le

CPU

GPU

Figure 28 Energy Comparison Rendering 48k Model at 768x768 Resolution

Not surprisingly, the KDS is very efficient in terms of energy; however, the BVH

actually use least amount of energy for the 48k model. Similar to the 11k model result, the GPU

UG and the GPU BVH use the least amount of energy at the higher resolution. The major

difference between the 11k result and 48k result is that CPU BVH is as energy efficient as its

GPU counterpart.

58

Figures 29 and 30 do not exhibit significant differences when compared with the 11k

model results; thus Figures 29 and 30 are not discussed.

Percentage Increrease

256x256 => 768x768

48k Model

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

KDN KDS UGT UGN BVH

P
e
rc
e
n
ta
g
e
 I
n
c
re
a
s
e

CPU

GPU

Figure 29 Percentage Energy Usage Increase from 256 to 768 Resolution 48K Model

5.2.3 Static Rendering Discussion

From the data, we can say the static rendering energy consumption depended on both the

acceleration structure (AC) used to render and the screen resolution (SR). Rendering a model

with the wrong AC will cost more energy. Even though there is no universal AC that always

Figure 30 Percentage Energy Reduction in Moving Rendering Task to GPU (48k Model)

Percent Improved, CPU to GPU

256x256 Resolution

48k Model

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Im
p
ro
v
e
m
e
n
t
R
a
ti
o

KDS UGT

UGN BVH

Percent Improved, CPU to GPU

768x768 Resolution

48k Model

-1

-0.5

0

0.5

1

Im
p
ro
v
e
m
e
n
t
R
a
ti
o

59

gives the best rendering performance, the data show that SAH Kd-Tree is a good choice on the

CPU platform. This confirms the statement from Wald in his PhD dissertation [Wald 2004] that

a good SAH Kd-Tree is generally the best acceleration structure for static scenes. Unfortunately,

the SAH Kd-Tree does not have the same performance on the GPU cases. The BVH and UG do

much better on the GPU. The GPU BVH outperforms every other AC and it does almost as well

as the CPU KDS at the lower resolution. Table 10 summarizes these findings. It is important to

realize that these are just general guidelines, as there are always models that will heavily favor a

particular AC. This only applies to single-ray ray tracing.

Table 10 Rendering Platform Recommendation

 Best Combination
Low Resolution CPU-KDS or GPU-BVH
High Resolution GPU-BVH

The rendering data with CPU has an average discharge rate of 34.6 J/S ± 0.4 J/S. The

confidence interval is calculated with 95% confidence and 20 samples. The GPU data has an

average discharge rate of 40.2 J/S ± 0.8 J/S. The confidence interval is calculated with 95%

confidence and 16 samples. The data can be reproduced using the average discharge rates and

the standard deviations for the static rendering result in Appendix A. The GPU rendering

algorithms have much higher variance. Figure 31 demonstrates the average discharge rate for

each acceleration structure when rendering the 11k model. KD represents Kd-Tree in Figure 31.

Rendering Discharge rate

11k Model

30000

32000

34000

36000

38000

40000

42000

44000

CPU KD CPU UG CPU BVH GPU KD GPU UG GPU BVH

D
is
c
h
a
rg
e
 R
a
te
 (
m
W
)

256x256 Resolution

768x768 Resolution

Figure 31 Average Discharge Rate with 11k Model

60

Figure 31 shows that BVH and Kd-Tree use 40-42 J/S when rendering but UG requires

only 38 J/S. The GPU average discharge rates exhibit greater variance, suggesting that the GPU

is not utilized to its full capacity. Future work could focus on improving the efficiency of the

GPU algorithms. The difference in the GPU average discharge rate suggests that the GPU

rendering cases do not have the same rate of energy growth. If all three acceleration structures

can complete a model in the same amount of the time, the results should show that the GPU UG

uses the least amount of energy. The GPU UG does match up closely with the energy

consumption of the GPU BVH in Figure 23, 24, 27 and 28. Knowing that the UG is the cheapest

acceleration structure to build, GPU UG might be the best method for rendering most dynamic

scenes.

5.3 Dynamic Rendering Energy Measurement

Dynamic rendering tests use scenes, screen resolutions and acceleration structures from

static rendering tests. The two models are the Toaster model from the Utah Animation

Repository and the Dragon model from the Stanford 3D Scanning Repository. Dynamic scenes

have a typical execution cycle consisting of updating the triangles, building the acceleration

structure and rendering. These models are not animated, and the triangles do not update from

frame to frame. The acceleration structures are set to rebuild per frame even if there are no

changes in the scene. This emulates the effect of running an animated scene without the

overhead of updating all the triangles. We do this to avoid adding the energy used to update the

triangles into the energy measurement, as it will be hard to distinguish the energy used to update

the triangles from the build and rendering. Also, the amount of energy used to update the

triangles is small when compared to the build and the rendering. Finally, identifying the energy

used to update the triangles is not likely to result in additional information. Therefore, the

method of forcing the acceleration structure to rebuild is chosen to represent the dynamic

rendering energy.

Like the static rendering tests, the tests were divided into GPU and CPU rendering tests.

They are further divided into 6 tests with different acceleration structures. The following is a list

of all the acceleration structures with their short-hand notations and descriptions:

UG-A – Uniform grid with the triangle-box intersection.

61

UG-N – Uniform grid without the triangle-box intersection.
KD-M – Naïve Kd-tree (spatial median split)
KD- S – SAH Kd-tree
BV- F – BVH that rebuild per frame
BV- U – BVH that updates every node and does not rebuild

BV-U represents the BVH update worst case scenario from Section 5.1. It forces all leaf

nodes to execute the update function. Since the triangles in the scene do not move, BV-U will

not produce a different tree topology. The acceleration structure will always rebuild itself and

the rendering algorithm will always traverse the same structure. The camera is set to rotate

around the model. As discussed in Section 5.2.1, the camera should be fixed to generate a more

accurate energy measurement. Since the resolution of the energy measurement function is 3-5

seconds, the camera should not rotate before the energy sampling function samples the energy at

a particular camera angle for more than 5 seconds. Future work using the same energy sampling

function should take this into consideration.

We hypothesize that the dynamic rendering energy on the CPU will represent the

addition of the build and the static rendering energy. The energy per frame on the GPU, on the

other hand, will not be equal to this simple addition because GPU rendering ray tracer requires

an additional process before the GPU can render the image, specifically, the translation of data in

array format into texture. Described in Section 3.1.3, the triangles and the acceleration structures

need to be converted into texture so the GPU algorithm can use the textures as random access

memory. In addition, textures are not created in the GPU memory, and therefore need to be

copied from the CPU memory to the GPU memory. This step requires additional time and

energy. The translation into texture and the transfer of the texture into the GPU memory will be

referred as the transfer in the following section. The energy and time used by the transfer will

be referred as transfer energy and transfer time. We hypothesize that the transfer process can

become a major bottleneck, causing additional energy usage when rendering with the GPU.

The average discharge rate of dynamic rendering is measured by looping the build and

static rendering functions. The energy per frame is calculated by the multiplication of the

average discharge rate and the time per loop. The energy per build found in section 5.1 is

subtracted from the energy per frame, meaning that the remainder is the energy per rendering.

The transfer energy can be obtained with subtraction as well.

Transfer energy per frame = energy per frame – energy per build – energy per render

62

The equation to determine transfer energy only applies to the GPU data. Rendering on

the CPU does not require the transfer step. The accuracy of this simple subtraction can be

checked by adding the energy found in build tests (section 5.1) to that found in the static

rendering tests (section 5.2). We found the measured and the calculated results to be similar but

not the same. This is expected because we are using averages. The standard deviations and

average discharge rates for the dynamic rendering test can be found in Appendix A.

5.3.1 11K Model Measurement Results

The data is normalized to the worst data, the data with biggest energy per frame, across

the screen resolutions. Figures 32 and 33 provide the data for the 11k model in two screen

resolution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C-

KD-M

C-

KD-S

C-

UG-A

C-

UG-N

C-

BV-F

C-

BV-U

G-

KD-M

G-

KD-S

G-

UG-A

G-

UG-N

G-

BV-F

G-

BV-U

N
o
rm

a
li
z
e
d
 E
n
e
rg
y
 &
 T
im
e

256x256 Energy Distribution per Frame with 11k Model

Build Energy Render Energy Transfer Energy

Build Time Render Time Transfer Time

Figure 32 Normalized Energy and Time Chart for 11k Model at 256x256 Resolution

63

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C-

KD-M

C-

KD-S

C-

UG-A

C-

UG-N

C-

BV-F

C-

BV-U

G-

KD-M

G-

KD-S

G-

UG-A

G-

UG-N

G-

BV-F

G-

BV-U

N
o
rm

a
li
z
e
d
 E
n
e
rg
y
 &
 T
im
e

768x768 Energy Distribution per Frame with 11k Model

Build Energy Render Energy Transfer Energy

Build Time Render Time Transfer Time

Figure 33 Normalized Energy and Time Chart for 11k Model at 768x768 Resolution

The stack represents data with the following order from top to bottom: transfer, render

and build. The CPU results do not include transfer energy and time so there are only two stacks.

The dotted bar represents time and the solid bar represents energy. From Figures 31 and 32, it

can be seen that the time and energy columns are parallel, suggesting that energy increases as

time increases. From Section 5.2.3, we know that rendering on the GPU has a higher discharge

rate. This is reflected here again because the GPU energy bars are usually higher than the time

bars, whereas the CPU energy bars have same height as the time bars. This suggests if both CPU

and GPU rendered a scene in the same amount of time, the CPU would use less energy than the

GPU.

Kd-Tree is not the best option on the CPU platform because of the high build energy

requirement; however, it is still the best CPU option at the 768x768 screen resolution where the

rendering energy is significantly higher than the build energy for all CPU tests. The transfer

process does not have a significant impact on the GPU energy consumption as we had

hypothesized. It uses some additional energy but not enough to penalize the GPU performance

on all the GPU tests. Overall, GPU-BVH and GPU-UG are the best combination in rendering

the 11k model with per frame acceleration structure rebuilds.

64

From Figures 32 and 33, we can see that build energy contributes to less than 20% of the

energy when rendering a dynamic scene. The majority of the energy and time are used to render

the image. The only exception is Kd-Tree where the build takes more energy and time than

rendering the image at the 256x256 screen resolution. This suggests that balancing the energy

used to build the acceleration and the rendering is important. Attempting for an extreme amount

of power conservation on one end of the scale can cause more energy consumption on the other

end. The Kd-Tree data for 256x256 screen resolution is a good example of this. It is reflected in

Table 8 in Section 5.2.1, where the coarse KD-M build shows an energy saving of 18.5 Joules

per frame. Figure 32 confirms this because KD-M uses less energy per frame than KD-S.

5.3.2 48K Model Energy Measurement Results

The results are normalized to the highest energy per frame across both screen resolutions

for the 48k model. Figures 34 and 35 represent the results for the 48k model.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C-

KD-M

C-

KD-S

C-

UG-A

C-

UG-N

C-

BV-F

C-

BV-U

G-

KD-M

G-

KD-S

G-

UG-A

G-

UG-N

G-

BV-F

G-

BV-U

N
o
rm

a
li
z
e
d
 E
n
e
rg
y
 &
 T
im
e

256x256 Energy Distribution per Frame with 48k Model

Build Power Render Power Transfer Power

Build Time Render Time Transfer Time

Figure 34 Normalized Energy and Time Chart for 48k Model at 256x256 Resolution

65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C-

KD-M

C-

KD-S

C-

UG-A

C-

UG-N

C-

BV-F

C-

BV-U

G-

KD-M

G-

KD-S

G-

UG-A

G-

UG-N

G-

BV-F

G-

BV-U

N
o
rm

a
li
z
e
d
 E
n
e
rg
y
 &
 T
im
e

768x768 Energy Distribution per Frame with 48k Model

Build Energy Render Energy Transfer Energy

Build Time Render Time Transfer Time

Figure 35 Normalized Energy and Time Chart for 48k Model at 768x768 Resolution

In term of the 256x256 resolution, the CPU BV-U uses the least amount of the energy per

frame. Unlike the 11k model result, the BVH build for this model is more expensive and needs

more energy than the rendering on the lower resolution. Despite this, BVH still uses the least

amount of energy overall in both screen resolutions. The KD-M uses less energy than the KD-S

in both resolutions, verifying the finding in Table 9.

There is no all-round best acceleration structure for the CPU when rendering a dynamic

scene. The 48k data shows that CPU BVH uses the least amount of energy while the 11k model

performs best using the CPU Kd-Tree. The CPU UG looks promising at the lower resolution but

does not scale well on the higher resolution. GPU BVH and GPU UG remains the most scalable

solution with consistent performance. GPU BVH can usually finish a frame faster with the

updating algorithm. Thus, we conclude that GPU BVH is the best choice for single-ray ray

tracing on dynamic scenes in general.

5.3.3 Dynamic Rendering Energy Measurement Discussion

The average discharge rate for all the CPU dynamic rendering results is 34.2 J/S ± 0.37

J/S. This discharge rate is the same as the static rendering results in Section 5.2.3 because their

confidence intervals overlap. The average discharge for all the GPU results is 39.1 J/S ± 0.97

J/S. The discharge rate for the GPU has a larger variant because of the large difference in

66

discharge rates between the build and the GPU rendering. Figure 36 provides a graph of the

dynamic rendering discharge rate for BVH at 256x256 screen resolution.

BVH Discharge Rate with 11k model

256x256 Screen Resolution

20

25

30

35

40

45

50

1 21 41 61 81 101 121 141 161 181

Time (ms)

D
is
c
h
a
rg
e
 R
a
te
 (
W
a
tt
s
)

Combined

Render Only

Build Only

Figure 36 Discharge Rate Comparison for 11k Model Rendered with BVH

Figure 36 shows that the discharge rate of the dynamic test is between the build and the

render discharge rates. We suspect that the combined discharge rate is the addition of render and

builds at different biases. GPU BVH in Figure 36 spends 200 ms on rendering and 100 ms on

building and the combined discharge rate is closer to the rendering line. This leads us to believe

that the combined average discharge rate is biased towards rendering because the rendering takes

more time. If this is true, the discharge rate when rendering a dynamic scene with the GPU can

be approximated with the following equation:

The average discharge rate = cpuJ*Bt/(Bt+Rt) + gpuJ*Rt/(Bt+Rt)
where
Bt = build time, Rt = render time
cpuJ = build discharge rate, gpuJ = render discharge rate

The above discharge rate approximation ignores transfer power. A more accurate method

should incorporate the discharge rate and run time during the transfer process. Further tests are

needed in future work to confirm this discharge rate approximation for the GPU.

Rendering with the GPU requires additional energy for the GPU to complete its

execution of the shaders. As a result, more energy was used, and the uneven column between

67

time and energy on the GPU bars in Figure 33 are good evidence of this. It might be intuitive to

think that using additional energy to drive more devices on a PC consumes more energy;

however, it is shown that even with additional energy fed into the GPU, it is still more energy

efficient to render a single-ray ray traced scene with the GPU because the benefit of a shortened

runtime outweighs the increase in discharge rate.

5.4 Discussion of System and Experiment Limitations

The experiment results suggest that energy increases as running time increases. This is

reasonable because less work equals less energy. However, we feel that the results do not reveal

the true energy consumption in the algorithms at which we have looked. The data reveal the

average discharge of the algorithm but do not disclose the energy usage trends during the

execution of the algorithm. We do not know which parts of the operation inside the algorithm

use more or less energy. Since the CallNtPowerInformation function offers limited resolution,

we cannot obtain energy consumption information for each individual component of the

algorithm. An energy measurement tool with a finer resolution is required if we are to further

understand energy behavior when the system executes an algorithm.

Another way to solve this problem would necessitate finding the energy expands of

different CPU operations individually. The base case is the energy needed when running the

empty loop. Each individual operation in an algorithm can then be added gradually to observe

the changes in the discharge rate.

The results in the static rendering and the dynamic rendering sections are interesting, but

more data is needed to verify the finding. We only have data for two different models in two

different resolutions. More models need to be tested to confirm that GPU BVH is really the best

overall rendering method for dynamic scene. Furthermore, the testing scenes need to include

more models. Real world 3D applications typically have more than ten models on the screen at

once. It is more meaningful to test scenes that match closely with real world scenes than

rendering a single complex model. In the experiment, each test runs once for three minutes and

we do not run the test again. The same test should run multiple times so that the information on

the variance between each run can be gathered.

Another possible error is the rotating camera. Mentioned in Section 5.2 and 5.3, the

camera should be kept still for the rendering test. The rotating camera introduces more variance

68

to the rendering energy because each frame is not rendered in the same amount of time after the

camera position changes. The variance in the rendering energy per frame causes inaccuracy in

the calculation for transfer energy because the transfer energy is derived from the rendering

energy. Figures 32, 33, 34 and 35 show the transfer energy; however, we cannot derive too

much information from the data because we suspect that they do not correctly represent transfer

energy. We will only mention on the trend that suggests that transfer energy does not

significantly increase the energy usage on the GPU.

Lastly, the rendering data discussed in this paper only applies to traditional single-ray ray

tracing. Our implementation is not the fastest, but it is sufficient for energy measurement

purposes. The SIMD implementations published in recent papers will likely speed up the

rendering process. Utilizing SIMD instructions on the CPU might produce a different discharge

rate, and this is an interesting topic for future work.

69

6 Modeling Energy Usage
Knowing that time can translate directly to energy, we can predict the energy

consumption during ray tracing if the average discharge rate is known. Assuming the

algorithms, both build and rendering, have similar CPU utilization, the average discharge rate

and the frame per second of the ray tracing application are enough to predict the energy per

frame. The following is an example of the process:

Assuming the following data is gathered when running dynamic scenes.
Let CJ = current battery capacity in Joule
cpuJ = discharge rate of CPU at 100% utilization
gpuJ = discharge rate of GPU when running shaders
tranJ = discharge rate when transferring data to GPU
Bt = build time, Rt = render time, Tt = transfer time
Fps = frame per second
Fpj = frame per Joule
Jpb = joule per build
Jpr = joule per render

When rendering on the CPU:
Bt and Rt are measured in seconds.
Fps = 1/(Bt+Rt)
Jpb = cpuJ*Bt, Jpr = cpuJ*Rt
Fpj = 1/(Jpb+Jpr) = 1/(cpuJ*(Bt+Rt)) = Fps * 1/cpuJ = Fps/cpuJ

The frame per Joule is simply the frame per second divided by the average discharge rate.
We used CPU UG data with the 11k model data rendered at 256x256 screen resolution to verify
this equation.

Measured variables:
Bt = 0.02s, Rt = 0.4s
cpuJ = 34 Watts

Derived values:
Fps = 2.38
Fpj = 2.38 / 34 = 0.07

CPU UG needs 14.3 Joule per frame and the calculated value is 1/0.07 = 14.28 J, which

is fairly close to the measured value. The maximum number of frames that a system can render

with its current energy is CJ*Fpj. If the confidence interval is known for the average discharge

rate, this can be used to derive the interval for the calculated Joule per frame.

70

The energy needed when rendering on the GPU can be calculated with the frame per

second divided by the average discharge rate as well. This is not as accurate as the CPU because

the GPU discharge rate has a larger variance. The calculation for the average discharge rate is

more involved but more error prone in the GPU case. The average discharge rates for the build,

GPU rendering and transfer data to the GPU need to be measured. Their corresponding runtimes

are required as well. Knowing these values, we can extend the equation in Section 5.3.3 to

include the transfer energy and time. The equation is as follows:

average discharge rate = Rate = cpuJ*Bt/(Bt+Rt+Tt) + gpuJ*Rt(Bt+Rt+Tt) + tranJ*Tt(Bt+Rt+Tt)
and Fpj = Fps/Rate

The equation calculates the overall system energy consumption and it does not take into

account the other miscellaneous tasks running on the system. The equation will likely fail if

there are other applications sharing resources with the ray tracer application.

Lastly, the equation is a hypothesis and needs to be validated on different models and on

different machines. We do not validate the equation in this paper but this is a necessary

experiment in future work.

71

7 Conclusion and Future Work

7.1 Conclusion

After testing the energy usage of three popular acceleration structures for ray tracing, and

the energy usage when rendering dynamic scenes using the CPU and the GPU as rendering

platforms, we found time to be the dominant factor affecting energy usage, and the trend is that

energy increases as time increases. We have shown rendering on the GPU with the BVH uses

the least amount of energy in most of our test cases. We found that dynamic scenes are mostly

bottlenecked by rendering performance. However, balancing the build time and the render time

is essential for saving energy. The Kd-Tree is not well suited for rendering dynamic scenes

because the building of the Kd-Tree is not fast enough. We show that the GPU can render

scenes faster than the CPU with less energy at higher screen resolution. However, a good

acceleration structure on the CPU is comparable to the GPU implementation at lower screen

resolutions. In addition, we found that our GPU implementations do not fully utilize the GPU,

and that more work can be done to improve the efficiency of our GPU algorithm. With this

finding, we firmly believe that the GPU will continue to play an important role in boosting

global-illumination algorithm performance and extending the battery life on mobile devices in

the future.

7.2 Future Work

We feel more work can be added to extend our work. First, we will discuss topics that

will make our work more complete. Second, we will talk about ray-tracing implementation

improvements, and lastly, other possible future work. In our experiments, we did not have

enough data samples for build-energy measurement for the non-triangle-box uniform grid; this

should be included in the future to complete the build data. The GPU Kd-Tree is not

implemented fully, as it is not able to render every scene correctly, and it should be fixed in the

future. The equation in Section 6 needs to be validated through further data collection, and we

hope to include this verification in the future. As mentioned in Section 6, we do not have enough

data samples for the static and dynamic rendering tests and more samples are needed to validate

our claim. More samples are needed for the uniform grid triangle-box intersection test as well.

More samples should make the result statistically more accurate.

72

The implementation can be improved to better utilize the CPU and the GPU. We feel the

ENCORE implementation is not complete, as it can only do ray casting, and the ability to render

reflections, shadows and refractions should be added. The CPU ray tracer can be improved by

implementing the SIMD traversal and SIMD ray-triangle intersection testing to speed up the

rendering. In addition, the rending image should be broken up into smaller tiles to allow better

cache efficiency on both the CPU and GPU. We can possibly speed up the building by

incorporate threading [Lauterbach et al. 2006]. There are also papers looking at hybrid

approaches to building the Kd-Tree [Havran et al. 2006]. Coherent ray tracing, supporting

multiple rays per pixel, or multi-level ray tracing is also interesting future work.

In terms of energy measurements, a more-accurate measurement might be obtainable

through a programmable multimeter that can record data through a USB port to a PC. With the

aid of profilers, we can look at different elements, such as cache usage, memory allocation

patterns, and CPU-instruction usage to aid in the understanding of energy behavior. Each

acceleration structure can be examined in more detail by comparing the data structure topology,

triangle density in the scene, and triangle access patterns. We can test other acceleration

structures such as hierarchical uniform grids and octrees. Scenes more closely resembling

commercial 3D applications could be used in addition to our simple ones. The energy

consumption of a multithreaded SIMD ray tracing algorithm running on a dual-core CPU is

interesting as well. The list of possible future work is infinite, but we hope our work inspires

new research and continued interest in ray tracing and energy aware computing.

73

References

Akenine-Moller, T. 2001. Fast 3D triangle-box overlap testing. J. Graph. Tools 6(1), 29-
33.

Amanatides, J. and Woo, A. 1987. A Fast Voxel Traversal Algorithm for Ray Tracing. In
Eurographics ’87. Eurographics Association, 3-10.

Bikker, J. 2005. “Raytracing: Theory & Implementation Part 4, Spatial Subdivisions”,
www.devmaster.net/articles/raytracing_series/, 2005. (Accessed Feb 21 2006).

Buck, I. 2004. “Brook for GPUs”, SIGGRAPH 2004, talk slides.

Carr, Nathan A., Hall, Jesse D. and Hart, John C. 2002. The Ray Engine. Proc.
Graphics Hardware 2002, Sep. 2002

Carr, Nathan A., Hoberock, J., Crane, K. and Hart, John C. 2006. Fast GPU Ray
Tracing of Dynamic Meshes using Geometry Images, In Proc. Graphics Interface, 2006.

Christen, M. 2005. Ray Tracing on GPU, Masters thesis, University of applied sciences,
Basel, 2005.

Foley, T. and Sugerman, J. 2005. KD-tree acceleration structures for a GPU raytracer,
in Proc. SIGGRAPH/Eurographics Workshop on graphics hardware 2005, pp. 15-22.

Glassner, Andrew S. 1989. An Overview of Ray Tracing. An Introduction to Ray
Tracing. Morgan Kaufmann.

Haines, E. 1999. Quicker Grid Generation via Memory Allocation, Ray Tracing News,
Volume 12, Number 1, 1999

Havran, V., Prikryl, J., Purgathofer, W. 2000. Statistical comparison of ray-shooting
efficiency schemes, Tech. report TR-186-2-00, Institute of Computer Graphics, Vienna
University of Tech, July 2000.

Havran, V., Herzog, R. and Seidel, H.-P. 2006. On Fast Construction of Spatial
Hierarchies for Ray Tracing. Submitted to RT'06, 2006.

Karlsson, F. and Ljungstedt, Carl J. 2004. Ray tracing fully implemented on
programmable graphics hardware, masters thesis, Chalmers university of technology,
2004.

Lauterbach, C., Yoon, S.-E., Tuft, D. and Manocha, D. 2006. RT-DEFORM: Interactive
Ray Tracing of Dynamic Scenes using BVHs. University of North Carolina at Chapel
Hill, 2006

Moller, T. and Trumbore, B. 1997. Fast, minimum storage ray triangle intersection. JGT
2(1), 21-28.

74

Pharr, M. and Humphreys, G. 2004. Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann, 2004.

Purcell, Timothy J., Buck, I., Mark, William R., and Hanrahan, P. 2002. Ray Tracing on
Programmable Graphics Hardware, in Proc. SIGGRAPH 2002, 703 - 712.

Starner, Thad E. 2003. ”Powerful change part 1: batteries and possible alternatives for
the mobile market”, IEEE Pervasive Computing, Vol 2, No. 4, Oct.-Dec. 2003 Pages:86
- 88.

Thrane, N. and Simonsen, Lars O. 2005. A Comparison of Acceleration Structures for
GPU Assisted Ray Tracing, Masters thesis, University of Aarhus, 2005.

Wald, I. 2004. Realtime Ray Tracing and Interactive Global Illumination, PhD thesis,
Saarland University, 2004.

Wald, I. and Havran, V. 2006. On building good kd-trees for ray tracing, and on doing
this in O(N log N). Tech. Rep. UUSCI-2006-009, SCI Institute, University of Utah.

Wald, I., Ize, T., Kensler, A., Knoll, A. and Parker, Steven G. 2006. Ray Tracing
Animated Scenes using Coherent Grid Traversal, in ACM Transactions on Graphics,
2006, 485 – 493.

Wald, I., Boulos, S. and Shirley, P. 2006a. Ray Tracing Deformable Scene using
Dynamic Bounding Volume Hierachies. ACM Transactions on Graphics (conditionally
accepted, to appear).

75

Appendix A

Average Discharge Rate and Standard Deviation Data

ADR = average discharte rate (mW)
STDEV = standard deviation for ADR

Table – build standard deviation, part 1
 Uniform grid Kd-Tree (SAH) Kd-Tree (median)
 ADR STDEV ADR STDEV ADR STDEV
singleTri 33119 218 34901 238 35176 216
Toaster 33733 714 34539 191 35054 262
Sdragon 33716 507 34053 216 34628 176
Bbunny 34871 316 33758 351 34939 448
Complex 32801 453 33068 349 33926 421
200k 32786 397 33848 393 34446 342
400k 32351 421 33135 642 33917 382
Fairy 33913 258 35075 357 35613 317
990k 34504 299 33862 846 34912 514

Table – build standard deviation, part 2
 BVH BVH update

(best case)
BVH update
(average case)

BVH update
(worst case)

 ADR STDEV ADR STDEV ADR STDEV ADR STDEV
singleTri 34669 332 34705 265 34303 1428 34217 583
Toaster 34600 288 33751 346 34742 295 34787 374
Sdragon 33622 275 32473 390 34494 289 34219 413
Bbunny 33172 302 32010 329 33960 389 33480 364
Complex 31818 430 30718 260 32649 474 32275 365
200k 33032 579 32143 245 34106 296 33914 482
400k 32539 322 31636 320 33594 374 33014 322
Fairy 34161 469 33077 296 35269 288 34983 400
990k 33642 523 32575 180 34751 342 34471 342

M – no memory pool emulation is done. The data structures calls malloc function or new
operator when new memory is needed and releases them when deleted.
N – memory pool emulation is in effect. The data structures reuse previous allocated spaces.

Table – memory test build standard deviation
 Kd-Tree (M) Kd-Tree (N) BVH (M) BVH (N)
 ADR STDEV ADR STDEV ADR STDEV ADR STDEV
Scissor 32902 382 33078 1180 34131 354 34535 495
Wheel 34886 332 34051 478 33803 240 34003 273
Mug 34406 395 33699 279 33497 293 33757 293

76

Cow 34270 238 33477 667 32968 310 33255 306
Porsche 32646 365 32090 299 32617 493 32940 308

C-KD-M = CPU Kd-Tree with median split
C-KD-S = CPU Kd-Tree with SAH split
C-UG-A = CPU uniform grid with triangle-box intersection test
C-UG-N = CPU uniform grid without triangle-box intersection test
C-BV-F = CPU BVH without update
C-BV-U = CPU BVH update
G- = GPU

Table – Build Data for Combine Test
 C-KD-M C-KD-S C-UG-A C-UG-N C-BV-F C-BV-U

ADR 33806 33838 33838 32820 35560 34553

11k

STDEV 226 1342 131 335 417 346

ADR 34250 34371 34770 33803 35920 34973

48k

STDEV 433 412 246 260 434 282

Table – Render Data for Combine Test, CPU
 C-KD-M C-KD-S C-UG-A C-UG-N C-BV-F C-BV-U

ADR 34037 35256 35304 33770 32731

256x256
11k

STDEV 321 167 384 264 362

ADR 34380 35662 35430 34537 33059

256x256
48k

STDEV 265 303 398 591 152

ADR 34068 34971 34927 34219 34722

768x768
11k

STDEV 293 253 298 435 523

ADR 34448 35275 34868 34319 35168

768x768
48k

STDEV 280 209 153 279 201

Table – Render Data for Combine Test, GPU
 G-KD-M G-KD-S G-UG-A G-UG-N G-BV-F G-BV-U

ADR 40387 37475 38282 40693

256x256
11k

STDEV 1305 906 845 1089

ADR 41788 38280 39938 41258

256x256
48k

STDEV 2777 712 873 2908
 768x768

11k ADR 40659 38001 39561 42450

77

STDEV 1090 484 839 1146

ADR 41716 39269 41016 42540

768x768
48k

STDEV 1380 1022 1678 1030

Table – Combine Test Data, CPU
 C-KD-M C-KD-S C-UG-A C-UG-N C-BV-F C-BV-U

ADR 33559 33784 33852 33915 34609 31512

256x256
11k

STDEV 339 431 361 227 404 497

ADR 34493 34387 34064 34242 35391 32654

256x256
48k

STDEV 361 508 357 418 590 326

ADR 35739 34245 34215 33918 34807 33783

768x768
11k

STDEV 315 331 339 389 689 356

ADR 35970 34501 34315 34276 35276 34393

768x768
48k

STDEV 520 410 334 578 719 585

Table – Combine Test Data, GPU
 G-KD-M G-KD-S G-UG-A G-UG-N G-BV-F G-BV-U

ADR 36894 39428 39575 36919 37950

256x256
11k

STDEV 2822 912 1376 1352 1025

ADR 36254 39869 39878 34663 37029

256x256
48k

STDEV 1783 1998 1416 988 1503

ADR 38617 42627 39362 40944 41242

768x768
11k

STDEV 2611 1509 581 1792 2744

ADR 36763 42478 40018 39306 42158

768x768
48k

STDEV 3012 2040 968 3122 1565

78

Appendix B

ENCORE Interface Code

Only the interfaces for acceleration structure (AccelerationStructure) and renderer are included.
The implementation files (.C files) are not shown for these header files

/***************
* AccelerationStructure Class
***************/
class AccelerationStructure
{
public:

 virtual ~AccelerationStructure() {}

 // usage:
 // prints out the options that the AccelerationStructure can read from
 the config file
 virtual void usage(void) = 0;

 // configure:
 // set of options that are read in from the config file
 virtual void configure(Options* l_pOptions) = 0;

 // build:
 // builds the AccelerationStructure from the Scene
 virtual void build(std::list<IModel*> &modelList) = 0;

 // update:
 // implement this if the AC can update itself
 // otherwise, this method simply call build method
 virtual void update(std::list<IModel*> &modelList);

 // buildGPU:
 // builds the accelerationStructure into the GPUAccelerationStructureData
 reference
 virtual void buildGPU(std::list<IModel*> &modelList, std::list<Triangle*>
 &triangleList, GPUAccelerationStructureData& l_pASD) = 0;

 // setGPUParameters
 // set the shader parameters that the accel struct needs to pass in
 virtual void setGPUParameters(CShader& l_Shader,
 GPUAccelerationStructureData& l_ASD) = 0;

 // intersect:
 // returns the HitInfo of the first successful intersection
 // of the ray with the Primitives in the AccelerationStructure
 virtual HitInfo intersect(Ray& l_Ray) = 0;

 // keyboard:
 // defines how the AcceleratioStructure should react to keyboard input
 virtual void keyboard(unsigned char key) = 0;
};

79

/***************
* Renderer Class
***************/
class Renderer
{
public:

 Renderer();
 virtual ~Renderer();

 // usage:
 // prints out the options that the Renderer can read from the config file
 virtual void usage(void) = 0;

 // init:
 // uses the Scene and the Camera to build the AccelerationStructure
 // along with any data structures needed for the renderer
 virtual void init(Scene* l_pScene, AccelerationStructure*
 l_pAccelStruct, Camera* l_pCamera) = 0;

 // configure:
 // a map of options and values that are read in from the config file
 virtual void configure(Options* l_pOptions) = 0;

 // render:
 // renders the scene
 virtual void render(void) = 0;

 // deinit:
 // removes any AC that were built during the running of the Renderer
 // turns off any OpenGL options that were needed to render
 virtual void deinit(void) = 0;

 // keyboard:
 // defines how the Renderer should react to keyboard input
 virtual void keyboard(unsigned char key) = 0;

protected:
 Scene* m_pScene;
 Camera* m_pCamera;
};

80

Appendix C

Uniform Grid Shader Code

The shader code for Traversal and intersection is shown below. The shader codes for eye ray
generation and Phong light are omitted.

// voxel .w : 0 mean keep going, 1 mean done
// hitinfo : x = t, y = u, z = v, w = index
struct stepinfo
{
 float4 hitinfo : COL0;
 float4 voxel : COL1;
 float4 tMax : COL2;
};

//code adapted from thrane’s thesis paper
// determine if the ray-box intersect
bool ray_box_intersect(float3 rayD, float3 gmin, float3 gmax, float3 eyePos,
out float t_hit)
{
 float3 tmin, tmax;

 tmin = (gmin-eyePos)/rayD;
 tmax = (gmax-eyePos)/rayD;

 float3 r_min = min(tmin, tmax);
 float3 r_max = max(tmin, tmax);

 float minmax = min(min(r_max.x, r_max.y), r_max.z);
 float maxmin = max(max(r_min.x, r_min.y), r_min.z);
 t_hit = maxmin;
 return minmax > maxmin;
}

// return correct voxel index in the correct range
float3 getvoxelindex(float3 p, float3 gmin, float3 gridsize, float3 len)
{
 return clamp(floor((p-gmin)/len),float3(0.0,0.0,0.0), (gridsize-
 float3(1.0,1.0,1.0)));
}

// return the voxel intersect by the ray
stepinfo getvoxel(float3 rayD, float3 gmin, float3 gmax, float3 eyePos,
float3 cell_width, float3 resolution, out float time)
{
 stepinfo o;
 float t;
 float3 gridOrig = eyePos;
 o.tMax = float4(INF(),INF(),INF(), 1);

 // if the ray hit a cell in the grid
 if(ray_box_intersect(rayD, gmin, gmax, eyePos, t))
 {

81

 gridOrig = time > 0.0f ? eyePos+rayD*t : gridOrig;
 o.voxel.xyz = getvoxelindex(gridOrig, gmin, resolution, cell_width);
 o.voxel.w = 0;
 }
 else
 {
 // ray outside of box, so it'll never intersect
 o.tMax.w = -1;
 }

 time = t > 0.0f ? t : 0;
 float3 cell_min, cell_max;

 cell_min = gmin+cell_width*o.voxel.xyz;
 cell_max = cell_min + cell_width;

 float3 t1 = (cell_min-gridOrig)/rayD;
 float3 t2 = (cell_max-gridOrig)/rayD;

 float3 p = sign(rayD.xyz) == float3(1,1,1);
 float3 n = sign(rayD.xyz) == float3(-1,-1,-1);

 // calculate tMax for the intersected cell
 o.tMax.xyz = t1*n + t2*p;

 if(rayD.x < EP && rayD.x > -EP) o.tMax.x = INF();
 if(rayD.y < EP && rayD.y > -EP) o.tMax.y = INF();
 if(rayD.z < EP && rayD.z > -EP) o.tMax.z = INF();

 // add the time from ray origin to the uniform grid
 o.tMax.xyz += time;

 return o;
}

// v0, v1, v2 = 3 vertex of triangle
// rayD, rayStart is self explain
// lasthit is a hit from last intersect that is valid
// index is index of this triangle
// adapted from thrane’s thesis paper
float4 intersect(float3 v0, float3 v1, float3 v2, float3 rayDir, float3
rayStart, float4 lasthit, float index)
{
 float3 edge1, edge2;
 float3 pvec, tvec, qvec;
 float det, inv_det, t, u, v;

 edge1 = v1 - v0;
 edge2 = v2 - v0;

 pvec = cross(rayDir, edge2);
 det = dot(pvec, edge1);
 bool isHit = det > EP;

 inv_det = 1/det;

 tvec = rayStart - v0;

82

 u = dot(pvec, tvec)*inv_det;

 qvec = cross(tvec, edge1);
 v = dot(qvec, rayDir)*inv_det;
 t = dot(qvec, edge2)*inv_det;

 isHit = (u >= 0) && (v >= 0) && (u+v <= 1.0)
 && (t > 0.0) && (t < lasthit.x) ;

 return isHit ? float4(t,u,v,index) : lasthit;
}

// cell_info contain index to triangle, number of triangle, 0 ,0
// voxel status: 2 mean there is a hit, 0 mean has not been traversed at all,
1 mean its out of bound, dont check
stepinfo main(
 uniform samplerRECT rayDirMap,
 uniform samplerRECT rayStartMap,
 uniform samplerRECT cellData0,
 uniform samplerRECT hitInfoMap,
 uniform samplerRECT trav0Map,
 uniform samplerRECT trav1Map,
 uniform samplerRECT v0t,
 uniform samplerRECT v1t,
 uniform samplerRECT v2t,
 uniform float len,
 uniform float gridsize,
 uniform float gmin,
 uniform float gmax,
 uniform float maxloop,
 float2 texc : TEXCOORD0)
{
 stepinfo o;

 float4 timeInfo = texRECT(trav1Map, texc);
 // x = tMax x
 // y = tMax y
 // z = tMax z
 // w = -1: finished
 // 0: initial state
 // 1: traversing or intersecting

 // finished, then don't process
 if (timeInfo.w == -1)
 discard;

 // get some information
 float3 rayD = texRECT(rayDirMap, texc).xyz;
 float3 resolution = float3(gridsize,gridsize,gridsize);
 float3 cell_width = float3(len,len,len);

 // figure out step direction and boundary
 float3 eyePos = texRECT(rayStartMap, texc).xyz;
 float3 step = sign(rayD);
 float3 delta = abs(cell_width/rayD);
 if(rayD.x < EP && rayD.x > -EP) delta.x = INF();
 if(rayD.y < EP && rayD.y > -EP) delta.y = INF();

83

 if(rayD.z < EP && rayD.z > -EP) delta.z = INF();
 float t;

 // if first pass, then generate some data
 if (all(timeInfo == float4(0,0,0,0)))
 {
 o = getvoxel(rayD, gmin, gmax, eyePos, cell_width, resolution, t);
 }
 else
 {
 // read it in from textures
 o.tMax = timeInfo;

 o.voxel = texRECT(trav0Map, texc);
 // x = voxel x
 // y = voxel y
 // z = voxel z
 // w = 0 : initial state (traversing)
 // 1+: intersecting with index w-1 triangle
 }

 // hit information is always read in from texture
 o.hitinfo = texRECT(hitInfoMap, texc);

 float maxloops = 2500;
 float3 v0,v1,v2;
 float2 index;

 while(o.tMax.w != -1 && maxloops > 0)
 {
 // find the correct texture index
 index.x = o.voxel.x + o.voxel.y*gridsize +
 o.voxel.z*gridsize*gridsize;
 index.x = modf(index.x*0.000244140625, index.y)*4096;

 // format : triangle index, triangle count,0,0
 float4 info = texRECT(cellData0, index);

 // if there are triangles in this voxel
 // then intersect with them
 float start = info.x + o.voxel.w;
 float end = info.x+info.y;
 while(start < end && maxloops > 0) // start intersect test
 {
 index.x = modf(start*0.000244140625, index.y)*4096;

 v0 = texRECT(v0t, index).xyz;
 v1 = texRECT(v1t, index).xyz;
 v2 = texRECT(v2t, index).xyz;
 o.hitinfo = intersect(v0,v1,v2,rayD,eyePos,o.hitinfo,start);
 start++;
 maxloops--;
 } // end intersect test

 // do we still have loops left?
 if (maxloops > 0)
 {

84

 float tMin = min(o.tMax.x, min(o.tMax.y, o.tMax.z));

 // we have a hit
 if (o.hitinfo.w >= 0)
 {
 // did not check against the tMax in the cell
 // possible to return incorrect hit time but rare
 o.tMax.w = -1; // for now indicate we are done
 }

 //traverse
 float3 mask = float3(tMin, tMin, tMin) == o.tMax.xyz;

 // update voxel and t value
 o.voxel.xyz = o.voxel.xyz + step*mask;
 o.tMax.xyz = o.tMax.xyz + delta*mask;

 // find out if we stepped outside the grid
 float3 lt = o.voxel.xyz >= resolution;
 float3 gt = o.voxel.xyz < float3(0.0,0.0,0.0);
 if(any(lt) || any(gt))
 o.tMax.w = -1;
 }

 maxloops--;
 }

 return o;
}

