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ABSTRACT 

In this work an innovative wavelet packet based sifting process for signal decomposition 

has been developed and its application for health monitoring of time-varying structures is 

presented. With the proposed sifting process, a signal can be decomposed into its mono-

frequency components by examining the energy content in the wavelet packet 

components of a signal, and imposing certain decomposition criteria. The method is 

illustrated for simulation data of a linear three degree-of-freedom spring-mass-damper 

system and the results are compared with those obtained using the empirical mode 

decomposition (EMD) method.  Both methods provide good approximations, as 

compared with the exact solution for modal responses from a conventional modal 

analysis. Incorporated with the classical Hilbert transform, the proposed sifting process 

may be effectively used for structural health monitoring by monitoring instantaneous 

modal parameters of the structure for both, cases of abrupt structural stiffness loss and 

progressive stiffness degradation.  The effectiveness of this method for practical 

application is evaluated by applying the methodology for experimental data and the 

results obtained matched with the field observations. The proposed methodology has 

shown better results in a comparison study which is done to evaluate performance of the 

proposed approach with other available SHM techniques, namely EMD technique and 

Continuous Wavelet Transform (CWT) method, for cases characterized by different 

damage scenarios and noise conditions.  
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1. INTRODUCTION 

1.1 STRUCTURAL HEALTH MONITORING (SHM) OVERVIEW: 

Structural health monitoring has become an evolving area of research in last few decades 

with increasing need of online monitoring the health of large structures. The damage 

detection by visual inspection of the structure can prove impractical, expensive and 

ineffective in case of large structures like multistoried buildings and bridges. This 

necessitates the development of structural health monitoring system that can effectively 

detect the occurrence of damage in the structure and can provide information regarding 

the location as well as severity of damage and possibly the remaining life of the structure. 

The SHM system analyzes the structural response by excitation due to controlled or 

uncontrolled loading. The controlled loading may be attributed to impulse excitation 

whereas the uncontrolled loading may be attributed to the excitation by automobiles on 

bridge, and a random excitation due to wind loads or an earthquake excitation. 

1.1.1 Types of Damage: 

Damage phenomena in a structure can be classified as linear damage and non-linear 

damage. Linear damage is a case when the initially linear-elastic structure remains linear-

elastic after damage (Doebling et al, 1996). This is a case when the structure is subjected 

to a sudden damage of lower intensity. The modal parameters change in this case but the 

structure still exhibits linear motion after damage. This facilitates to form a simple model 

of the structure and to derive equations of motion based on an assumption of linear 

structural properties.  
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Non-linear damage is a case when the initially linear-elastic structure exhibits 

non-linear behavior after damage. A fatigue crack initiated in shaft subjected to cyclic 

loading can be called as a non-linear damage case. The crack opens and closes during 

every cycle exhibiting non-linear stiffness of the shaft. Most of the damage detection 

techniques assume linear damage while forming a model of the structure.         

1.1.2 Types of Damage Detection Techniques:    

Current damage detection methods can be mainly categorized into local damage detection 

methods and global damage detection methods. In case of local damage detection 

methods, the approximate location of damage in structure is known and it analyzes the 

structure locally to detect the damage on or near the surface. The region of the damaged 

structure needs to be easily accessible to effectively detect the exact location and severity 

of damage. Some of the examples of the local damage detection techniques are eddy 

current technique, acoustic or ultrasonic damage detection technique and radio graph 

technique.       

  Contrary to the local damage detection methods, global methods do not require 

prior knowledge of the location of damage in the structure to be analyzed. Global 

methods monitor the changes in the vibration characteristics of the structure to detect the 

location and severity of damage. The changes in dynamic properties of the structure may 

be attributed to the damage occurrence in the structure as the modal parameters 

comprising natural frequencies, mode shapes and damping ratio are the functions of the 

physical properties(mass, damping and stiffness) of the structure. Any change in the 

physical properties results change in the modal parameters. 
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1.1.3 Levels of Structural Health Monitoring:   

Various global damage identification techniques have been developed till date. The 

effectiveness of each method can be evaluated by the extent of the information obtained 

about damage. Rytter (1993) proposed a system of classification for damage-

identification techniques which defined four levels of damage identification as follows: 

Level 1: Determination that damage is present in the structure 

Level 2: Determination of the geometric location of the damage 

Level 3: Quantification of the severity of the damage 

Level 4: Prediction of the remaining service life of the structure 

 Damage identification techniques used in industrial machinery may be limited to 

Level 1 technique and is commonly known as fault identification technique, but most of 

the damage detection techniques implemented in the SHM systems of civil infrastructures 

are Level 3 or Level 4 techniques. 
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1.2 DAMAGE IDENTIFICATION TECHNIQUES: 

Different types of damage identification methods based on the measurement of the 

dynamic properties of the structure have been developed till date. These methods can be 

categorized depending upon the type of data collected from the structure, the parameters 

monitored to identify damage or technique implemented to identify damage. Some of the 

methods to quote are methods monitoring changes in modal parameters, matrix update 

methods, neural network based methods, pattern recognition methods, Kalman filter 

based methods and methods based on statistical approach. This section summarizes all of 

the above stated methods. 

 

1.2.1 Change in Modal Parameters: 

Any change in dynamic properties of structure cause change in modal properties of the 

structure including change in natural frequencies, mode shapes and modal damping 

values. These values can be tracked to get information about damage present in the 

structure.  

1.2.1.1 Change in Natural Frequency 

Natural frequency of a structure is the function of stiffness and mass of the structural 

members. Any damage occurred in the structure causes loss of stiffness whereas the mass 

of the structural members remains the same resulting in the loss of the natural frequency 

of the structure. Thus a loss in a natural frequency of the structure can be used as an 

indicator of damage in the structure.     

 The damage identification with this technique is implemented with two types of 

approaches. One of the approach models damage mathematically and predicts a natural 
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frequency of structure. The predicted natural frequency is compared it with the measured 

natural frequency and damage is identified. This approach was implemented to identify a 

presence of damage in the structure. Application of this approach for offshore platforms 

is studied in Osegueda, et al (1992) while Silva & Gomes (1994) demonstrated use of this 

approach for detecting crack length. 

 The second approach calculates damage parameters like crack length and location 

from the frequency shifts thus measure intensity and location of damage in addition to 

just damage identification as observed in the first approach. Brincker, et al. (1995a) 

measured resonant frequencies and damping present in a concrete offshore oil platform 

by applying auto-regressive moving average (ARMA) model to measured acceleration 

response. 

 As a natural frequency of a structure is the global property of structure, it cannot 

give spatial information about damage in the structure and thus only indicate the 

occurrence of damage and only can be used as a level 1 damage detection technique. 

Exception to this is a modal response at higher natural frequencies as the mode shapes are 

associated with local responses at higher modal frequencies.   

1.2.1.2 Change in Mode Shapes 

Mode shape information can be utilized to locate damage in the structure and this 

technique can be implemented as Level 3 damage detection technique. Damage present in 

structure causes change in a mode shape and relative change in the mode shape can be 

graphically monitored to locate damage in the structure. The mode-shapes need to be 

normalized in order to effectively find the location of damage. Apart from graphical 
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monitoring of relative change in mode shape, Modal Assurance Criteria (MAC) can be 

utilized to track the location of damage in the structure as described in West (1984).  

1.2.2 Methods Based on Dynamic Flexibility Measurements 

These methods use the dynamically measured stiffness matrix in order to detect damage. 

The flexibility matrix of the structure is defined as an inverse of stiffness matrix and each 

column of the flexibility matrix of the structure corresponds to the displacement pattern 

of the structure when subjected to unit force at a particular node. The flexibility matrix 

can be derived by calculating mass-normalized mode shapes and natural frequencies. In 

case of structure having large number of degrees of freedom (DOF), due to limitations in 

calculation of all mode shapes and natural frequencies, only significant low- frequency 

modes and their corresponding natural frequencies are considered.  

 While implementing this technique, damage is detected by comparing a calculated 

flexibility matrix obtained by using the modes of the damaged structure to the flexibility 

matrix obtained with the modes obtained from the undamaged structure. Sometimes, for a 

comparison of flexibility matrices, a flexibility matrix obtained with Finite Element 

Model (FEM) of the undamaged structure may be used instead of a measured flexibility 

matrix of the undamaged structure. This technique can be used as a Level 3 damage 

detection technique. More information and applications of this technique can be found in 

Pandey & Biswas (1994, 1995) and Salawu & Williams (1993).  

1.2.3 Model Update Methods 

This type of techniques uses a structural model and the structural model parameters i.e. 

mass, stiffness and damping, are calculated from the equations of motion and the 
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dynamic measurements. The matrices for mass, stiffness and damping in the model are 

formulated in such a way that the model response will be almost similar to the measured 

dynamic response of the structure. The matrices are updated with new dynamic 

measurements and the updated stiffness as well as damping matrix can be compared to 

the original stiffness and damping matrix respectively to detect the location and intensity 

of damage in a structure. 

 Various methods have been developed each with different approach for model 

updating. Those can be classified in different categories depending on the objective 

function for minimization problem, constraints placed on the model or numerical method 

used to accomplish the optimization. For more information about model update methods, 

reader is referred to Smith & Beattie (1991a) and Zimmerman & Smith (1992).  

1.2.4 Neural Network (NN) based Methods 

Neural Network, a concept developed as generalization of mathematical models of 

human cognition or neural biology, has proven to be an efficient technique for damage 

detection. According to Haykin(1998), a neural network is a massively parallel 

distributed processor made of simple processing units, which has a natural propensity for 

storing experimental knowledge and making it available for use.  With its capacity of 

performing accurate pattern recognition and classification, adaptivity, modeling non-

linearity, and learning capabilities, neural networks can be used for SHM in different 

ways: 

1. to model the dynamic behavior of a system or part of the system under control 

(Chen et al, 1995, and Adeli, 2001)  
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2. to model the restoring forces in civil structures ( Liang et al, 1997 and Saadat, 

2003)  

3. to carry out pattern recognition for fault detection in rotating machinery e.g. gear 

box failure (Dellomo, 1999), turbo-machinery (Kerezsi & Howard, 1995), and 

bearing fault detection (Samanta et al,  2004). 

Application of neural network model for SHM can also be found in Saadat (2003), where 

the author used an “Intelligent Parameter Varying” (IPV) technique for health monitoring 

and damage detection technique that accurately detects the existence, location, and time 

of damage occurrence without any assumptions about the constitutive nature of structural 

non-linearity.  

The technique in Saadat(2003) was based on the concept of “gray box”, which 

combined a linear time invariant dynamic model for part of the structure with a neural 

network model, used to model the restoring forces in a non-linear and time-varying 

system. The detailed information about the technique can be found in Nelles(2000). 

 Even if good results obtained with NN techniques, one of the challenges in 

implementing it for a practical application in SHM is training the network. Recent work 

in integration of NN with other computational techniques to enhance their performance 

can be found in Adeli (2001).  

1.2.5 Pattern Recognition Techniques  

Damage present in the structure causes change in the modal parameters which in turn 

causes change in the pattern of the structural response. This pattern can be monitored to 

detect the time, location and intensity of damage. Hera & Hou (2001) successfully 

detected sudden damage in ASCE benchmark structure by monitoring spikes present in 
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the higher level details of the acceleration response. A motivation behind this approach 

was that a sudden damage in structure causes singularity in the acceleration response and 

this singularity results in a spike in higher level details of the wavelet transform of the 

signal.  

 Another pattern recognition method proposed by Los Alamos National 

Laboratory, NM is based on statistical considerations. It proposed a statistical pattern 

recognition framework which consists of the assessment of structure’s working 

environment, the acquisition of structural response, the extraction of features sensitive to 

damage and the development of statistical model which is used for feature discrimination. 

More information and application of this method can be found in Sohn & Farrar (2001), 

Sohn et al. (2001a & 2001b), Worden (2002) and Lei et al (2003).  

1.2.6 Kalman Filter Technique 

Kalman filter technique is the model based technique which implements an optimal 

recursive data processing algorithm to estimate structural parameters necessary to 

identify damage in the structure. The parameters with which damage in a structure can be 

identified (stiffness and damping of the structure) can not be measured directly and in a 

general practice, acceleration, velocity or displacement of the structure is measured. The 

Kalman filter technique use a set of equations of motion which relate structural properties 

with the measured parameters. It works in a predictor-corrector manner i.e. it estimates 

the value of structural parameter based on the dynamic model and previous 

measurements and then optimizes the estimated value by comparing it with the value 

obtained by a measurement model and actual measurements. The optimization of the 

estimated value is done to minimize the square of the difference between the estimated 
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and measured value. This technique accounts for the effect of noise introduced during 

measurement as well as the effect of modeling errors. Kalman filter has been applied for 

damage detection such as in Lus et al (1999).         

1.2.7 Statistical Approach 

This new developed technique is fundamentally based on Bayesian approach, a well 

known theorem in statistical theory. An important advantage of Bayesian approach is that 

it can handle the non-uniqueness of the model that can appear in the cases with 

insufficient number of measurements. In order to take care of uncertainties, Beck and 

Katafygiotis (1998) developed a Bayesian statistical framework for system identification 

and structural health monitoring. The statistical model was developed to take care of 

uncertainties introduced due to incomplete test data as a result of limited number of 

sensors, noise contaminated dynamic test data, modeling errors, insensitiveness of modal 

parameters to the changes in stiffness, and to describe the class of structural models 

which include as much prior information as possible to reduce the uncertainties and 

degree of non-uniqueness.     

 The method can be used for updating the system probability model to account for 

above-mentioned uncertainties, and to provide a quantitative assessment of the accuracy 

of results. The applications of the approach for modal identification can be found in Yuen 

et al (2002), and Yuen & Katafygiotis (1998), whereas application for ASCE benchmark 

SHM problem can be found in Yuen et al (2002), and Lam et al (2002).  
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1.3 SIGNAL PROCESSING METHODS 

A signal collected from the accelerometers mounted on a structure can not be analyzed 

directly to draw useful conclusions about damage unless the damage intensity is very 

high. It needs to be processed in order to extract useful information about the structural 

parameters and damage. The signal is often transformed to different domains in order to 

better interpret the physical characteristics inherent in the original signal.  The original 

signal can be reconstructed by performing inverse operation on the transformed signal 

without any loss of data. The popular methods in signal processing for SHM applications 

include Fourier Analysis, Wavelet Analysis and Hilbert-Huang Analysis. All of these 

methods can be distinguished from each other by a way in which it maps the signal and 

have advantages over one another in terms of applicability for analyzing specific data 

type. A brief introduction of each method is given below. 

1.3.1 Fourier Analysis 

Fourier analysis of a signal converts the signal from time domain to frequency domain. 

Mathematically the Fourier transform of a signal ‘f(t)’ can be represented as  

( ) ( ) tH f t e ωω
∞

−

−∞

= ∫ dt  (1.1)

Where ‘ ( )H ω ’ is the Fourier transform of a signal ‘f(t)’. Fourier transform represents the 

signal in frequency domain and useful information about the frequency content in the 

signal can be extracted. The plot of the power of Fourier transform versus frequency 

exhibit peaks at the dominant frequencies present in the signal and the amplitude of the 

power indicates intensity of the frequency component.     
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 Note here that the Fourier transform of a signal integrates the product of the signal 

with a harmonic of infinite length and the time information in the signal may be lost or 

become implicit. If the signal to be analyzed is a non-stationary signal i.e. if the 

amplitude or frequency is changing abruptly over time, then with the Fourier transform of 

the signal , this abrupt change in time spread over the whole frequency axis in ‘ ( )H ω ’. 

Thus the Fourier transform is more appropriate to analyze a stationary signal. 

 To cope up with a deficiency of losing time information in Fourier transform, a 

Short-Time-Fourier-Transform (STFT) was developed. STFT uses a sinusoidal window 

of fixed width to analyze the signal and it shifts along the data to be analyzed in order to 

retain the time information in the signal. Thus in contrast to only frequency 

representation ‘ ( )H ω ’ as in case of Fourier transform, STFT employs a time-frequency 

representation ‘ ( ,H )ω τ ’of the signal ‘f(t’) as in the following equation 1.2. 

*( , ) ( ) ( ) tH f t g t e ωω τ τ −= − dt∫  (1.2)

where g(t-τ) is a window function.  Once the window width is chosen, then the time-

frequency resolution obtained remains fixed over entire time-frequency plane and one 

can either get good time resolution or good frequency resolution in the analysis but not 

both. More information about the STFT can be found in Allen & Rabiner (1977) and 

Rioul & Vetterli (1991). 

  Because of its ability to identify the frequency content and intensity of the 

frequency component of a signal, significant information about the modal parameters i.e. 

natural frequency, mode shapes and damping can be extracted from the Fourier transform 

of the structural response. Various methods of fault diagnosis and damage detection 
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based on the Fourier transform of the vibration response of the structure can be found in 

Chiang et al (2001).  

1.3.2 Wavelet Analysis 

Analyzing the response data of general transient nature without knowing when the 

damage occurred, inaccurate results may be presented by the traditional Fourier analysis 

due to its time integration over the whole time span.  Moreover, damage could develop in 

progressively such as stiffness degradation due to mechanical fatigue and chemical 

corrosion and a change in stiffness might never been found.  As an extension of the 

traditional Fourier analysis, wavelet analysis provides a multi-resolution and time-

frequency analysis for non-stationary data and therefore can be effectively applied for 

structural health monitoring. 

1.3.2.1 Continuous Wavelet Transform (CWT) 

The Continuous Wavelet Transform (CWT) of a signal f(t), Wf(a,b) , is defined as 

W a b
a

f t t b
a

dtf ( , ) ( ) * ( )=
−

−∞

∞

∫
1

Ψ  (1.3)

Here ‘Ψ ’ is the conjugate of a mother wavelet function ‘Ψ ’, ‘a’ and ‘b’ are called as 

the dilation parameter and the translation parameter, respectively. Both of the 

parameters are real and ‘a’ must be positive. The mother wavelet ‘ ’ needs to satisfy 

certain admissibility condition in order to ensure existence of the inverse wavelet 

transform. 

Ψ

 The dilation parameter ‘a’ and the translation parameter ‘b’ are also referred as 

the scaling and shifting parameters respectively and  play an important role in the wavelet 

analysis. By varying the value of translation parameter ‘b’, a signal is examined by the 
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wavelet window piece by piece localized in the neighborhood of ‘t=b’ and so the non-

stationary nature of the data can be examined which is similar to the Short Time Fourier 

Transform (STFT). By varying the value of dilation parameter ‘a’, the data portion in the 

neighborhood of ‘b’ can be examined in different resolutions and so a time varying 

frequency content of the signal can be revealed by this multi-resolution analysis, a feature 

the STFT doesn’t have. The continuous wavelet transform maps the signal on a Time-

Scale plane. The concept of scale in Wavelet analysis is similar to the concept of 

frequency in Time-Frequency analysis. The scale is inversely proportional to the 

frequency.  Performing the inverse wavelet transform on the wavelet transform of a 

signal, the original signal can be reconstructed without any loss of data. For detailed 

information of wavelet transform, readers are referred to Rioul & Vetterli (1991) and 

Daubechies (1992). Early applications of wavelets for damage detection of mechanical 

systems were summarized in Staszewski (1998). 

1.3.2.2 Discrete Wavelet Transform (DWT) 

The computational cost of performing continuous wavelet transform is reduced by 

implementing Discrete Wavelet Transform (DWT).  In DWT the dilation parameter ‘a’ 

and the translation parameter ‘b’ are discretized by using the dyadic scale i.e. 

a = 2j  b = k.2j     j k z, ∈  (1.4)

Here z is the set of positive integers. 

 In the case of DWT, the wavelet plays a role of dyadic filter. The DWT analyzes 

the signal by implementing a wavelet filter of particular frequency band to shift along a 

time axis. The frequency band of the filter depends on the level of decomposition and by 

shifting it in the time domain, the local examination of the signal becomes possible. As a 
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result, the signal can be decomposed into a tree structure with wavelet details and wavelet 

approximations at various levels as follows  

f t D t A ti j
i

i j

( ) ( ) )= +
=

=

∑
1

(
 

(1.5)

where  denotes the wavelet detail and  stands for the wavelet approximation 

at the jth level, respectively. A graphical representation of DWT of a signal is shown in 

Figure 1.1.  

)(tD j )(tAj

 
Figure 1.1 Discrete Wavelet Transform Decomposition Tree 

The DWT decomposition of the signal with each level of decomposition results in 

halving the time resolution and doubling the frequency resolution.  The signal can be 

easily reconstructed as the dyadic wavelet filter family forms an orthonormal basis 

(Daubechies, 1999). Recent applications of discrete wavelet transform for structural 

health monitoring can be found in Hou et al. (2000) and Hera and Hou (2003).  
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1.3.2.3 Wavelet Packet Transform 

As a result of decomposition of only the approximation component at each level using the 

dyadic filter bank, the frequency resolution in higher-level e.g. A1 and D1. DWT 

decompositions in a regular wavelet analysis may be lower. It may cause problems while 

applying DWT in certain applications, where the important information is located in 

higher frequency components. The frequency resolution of the decomposition filter may 

not be fine enough to extract necessary information from the decomposed component of 

the signal. The necessary frequency resolution can be achieved by implementing a 

wavelet packet transform to decompose a signal further (Goswami & Chan, 1999). The 

wavelet packet analysis is similar to the DWT with the only difference that in addition to 

the decomposition of only the wavelet approximation component at each level, a wavelet 

detail component is also further decomposed to obtain its own approximation and detail 

components as shown in Figure 1.2. 

 
Figure 1.2 Wavelet Packet Decomposition Tree 
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Each component in this wavelet packet tree can be viewed as a filtered component with a 

bandwidth of a filter decreasing with increasing level of decomposition and the whole 

tree can be viewed as a filter bank. At the top of the tree, the time resolution of the WP 

components is good but at an expense of poor frequency resolution whereas at the bottom 

of the tree, the frequency resolution is good but at an expense of poor time resolution. 

Thus with the use of wavelet packet analysis, the frequency resolution of the decomposed 

component with high frequency content can be increased.  As a result, the wavelet packet 

analysis provides better control of frequency resolution for the decomposition of the 

signal.   

1.3.3 Hilbert-Huang Analysis 

NASA Goddard Space Flight Center (GSFC) has developed a signal analysis method, 

called as the Empirical Mode Decomposition (EMD) method, which analyzes the signal 

by decomposing the signal into its monocomponents, called as Intrinsic Mode Functions 

(IMF) (Huang et al, 1998). The empirical nature of the approach may be partially 

attributed to a subjective definition of the envelope and the intrinsic mode function 

involved in its sifting process. The EMD method used in conjunction with Hilbert 

Transform is also known as ‘Hilbert-Huang Transform’ (HHT). Because of its 

effectiveness in analyzing a nonlinear, non-stationary signal, the HHT was recognized as 

one of the most important discoveries in the field of applied mathematics in NASA 

history. By the EMD method, discussed in more details later in ‘Section 1.4’, the original 

signal ‘f(t)’ can be represented in terms of IMFs as: 

f t c t ri n
i

n

( ) ( )= +
=
∑

1  
(1.6)
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where C i (t) is the  ith Intrinsic Mode Function and rn is the residue. 

 A set of analytic functions can be constructed for these IMFs.  The analytic 

function ‘z(t)’ of a typical IMF ‘c(t)’ is a complex signal having the original signal ‘c(t)’ 

as the real part and its Hilbert transform of the signal as its imaginary part.  By 

representing the signal in the polar coordinate form one has 

[ ] ( )( ) ( ) ( ) ( ). j tz t c t jH c t a t e φ= + =  (1.7)

where ‘a(t)’  is the instantaneous amplitude and ‘Ø(t)’ is the instantaneous phase 

function. The instantaneous amplitude ‘a(t)’ and is the instantaneous phase function 

‘Ø(t)’ can be calculated as 

{ } { }2 2( ) ( ) [ ( )]a t c t H c t= +  (1.8)

1 [ ( )]( ) tan
( )

H c tt
c t

φ −  
=  

 
 (1.9)

The instantaneous frequency of a signal at time t can be expressed as the rate of change 

of phase angle function of the analytic function obtained by Hilbert Transform of the 

signal (Ville, 1948). The expression for instantaneous frequency is given in equation 1.10 

( )( ) d tt
dt
φω =  (1.10)

Because of a capability of extracting instantaneous amplitude ‘a(t)’ and instantaneous 

frequency ‘ ( )tω ’ from the signal, this method can be used to analyze a non-stationary 

vibration signal. In a special case of a single harmonic signal, the phase angle of its 

Hilbert transform is a linear function of time and therefore its instantaneous frequency is 

constant and is exactly equal to the frequency of the harmonic. In general, the concept of 

instantaneous frequency provides an insightful description as how the frequency content 

of the signal varies with the time. The method can be used for damage detection and 
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system identification and the relevant applications can be found in Vincent et al (1999), 

Yang & Lei (2000), Yang et al (2003a, 2003b, 2004). 
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1.4 MOTIVATION 

The Empirical Mode Decomposition (EMD) method proposed by Huang et al (1998) 

decomposes a signal into IMFs by an innovative sifting process. The IMF is defined as a 

function which satisfy following two criterion 

(i) The number of extrema and the number of zero crossings in the component 

must either equal or differ at most by one 

(ii) At any point, the mean value of the envelope defined by the local maxima and 

the envelope defined by local minima is zero.  

A sifting process proposed to extract IMFs from the signal process the signal iteratively 

in order to obtain a component which satisfies above mentioned conditions. An intention 

behind application of these constraints on the decomposed components was to obtain a 

symmetrical mono-frequency component to guarantee a well-behaved Hilbert transform. 

It is shown that the Hilbert transform behaves erratically if the original function is not 

symmetric with X-axis or there is sudden change in phase of the signal without crossing 

X-axis (Huang et al, 1998).  

 Although the IMFs are well behaved in their Hilbert Transform, it may not 

necessarily have any physical significance. For example, an impulse response of a simple 

linear damped oscillator, which is physically mono-component with a single frequency, 

may not be necessarily fit the definition of the IMF and envelope function as illustrated in 

the comparison study shown in Section 2.4. Moreover the empirical sifting process does 

not guarantee exact modal decomposition. The EMD method proposed in Huang et al 

(1996) may lead to mode mixture and the analyzing signal needs to pass through a 

bandpass filter before analysis by EMD method (Appendix A). 
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 The sifting process separates the IMFs with decreasing order of frequency i.e it 

separates high frequency component first and decomposes the residue obtained after 

separating each IMF till a residue of nearly zero frequency content does not obtained. Till 

date, there is no mathematical formulation derived for EMD method and the studies done 

in order to analyze the behavior of this method in stochastic situations involving 

broadband noise shows that the method behaves a dyadic filter bank when applied to 

analyze a fractional Gaussian noise (Flandrin et al, 2003). In this sense, the sifting 

process in the EMD method may be viewed as an implicit wavelet analysis and the 

concept of the intrinsic mode function in the EMD method is parallel to the wavelet 

details in wavelet analysis. 

  The wavelet packet analysis of the signal also can be seen as a filter bank with 

adjustable time and frequency resolution. It results in symmetrical orthonormal 

components when a symmetrical orthogonal wavelet is used as a decomposition wavelet. 

As a signal can be decomposed into symmetrical orthonormal components with wavelet 

packet decomposition, they also guarantee well behaved Hilbert transform. These facts 

motivated to formulate a sifting process based on wavelet packet decomposition to 

analyze a non-stationary signal, and it may be used as a damage detection technique for 

structural health monitoring.  
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2. A WAVELET PACKET BASED SIFTING PROCESS 
 

2.1 MATHEMATICAL BACKGROUND 

This section briefly describes the mathematical theory behind the terminology used in the 

development of wavelet packet based sifting process.  

2.1.1 Wavelet Packet Transform 
 
A wavelet packet is represented as a function, ,

i
j kψ , where ‘i’ is the modulation parameter, 

‘j’ is the dilation parameter and ‘k’ is the translation parameter. 

/ 2
, ( ) 2 (2 )i j i j

j k t t kψ ψ− −= −  (2.1)

Here i = 1,2…jn and ‘n’ is the level of decomposition in wavelet packet tree. The wavelet 

iψ  is obtained by the following recursive relationships: 

2 1( ) ( ) ( )
22

i i

k

tt h k kψ ψ
∞

=−∞

= −∑  

 
(2.2)

2 1 1( ) ( ) ( )
22

i i

k

tt g k kψ ψ
∞

+

=−∞

= −∑  (2.3)

Here  is called as a mother wavelet and the discrete filters h k  and 1( )tψ ( ) ( )g k  are 

quadrature mirror filters associated with the scaling function and the mother wavelet 

function (Daubechies, 1992).  

The wavelet packet coefficients ,
i
j kc corresponding to the signal f(t) can be obtained as,  

, ,( ) ( )i i
j k j kc f t tψ

∞

−∞

= ∫ dt  (2.4)

provided the wavelet coefficients satisfy the orthogonality condition. 

The wavelet packet component of the signal at a particular node can be obtained as  
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, ,( ) ( )i i i
j j k j k

k
f t c tψ

∞

=−∞

= ∑ dt  (2.5)

After performing a wavelet packet decomposition up to jth level, the original signal can be 

represented as a summation of all wavelet packet components at jth  level as shown in 

Equation 2.6 

2

1
( ) ( )

j

i
j

i
f t f

=

=∑ t  (2.6)

 

2.1.2 Wavelet Packet Node Entropy and Entropy Index 

The entropy ‘E’ is an additive cost function such that E(0)=0. The entropy indicates the 

amount of information stored in the signal i.e. higher the entropy, more is the information 

stored in the signal and vice-versa. There are various definitions of entropy in the 

literature (Coifman and Wickerhauser, 1992).  Among them, two representative ones are 

used here i.e. the energy entropy and the Shannon entropy.  The wavelet packet node 

energy entropy at a particular node ‘n’ in the wavelet packet tree of a signal is a special 

case of P=2 of the P-norm entropy which is defined as 

, ( 1
Pi

n j k
k

e c P )= ≥∑  (2.7)

where ,
i
j kc  are the wavelet packet coefficients at particular node of wavelet packet tree.  It 

was demonstrated that the wavelet packet node energy has more potential for use in 

signal classification as compared to the wavelet packet node coefficients alone (Yen and 

Lin 2000).  The wavelet packet node energy represents energy stored in a particular 

frequency band and is mainly used to extract the dominant frequency components of the 

signal. The Shannon entropy is defined as 
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2 2
, ,( ) log ( )i i

n j k j
k

e c c k = −  ∑  (2.8)

Note that one can define his/her own entropy function if necessary. Here the entropy 

index (EI) is defined as a difference between the number of zero crossings and the 

number of extrema in a component corresponding to a particular node of the wavelet 

packet tree as 

. . _ _ _ _ _E I No of zero cross No of extrema= −  (2.9)

Entropy index value greater than 1 indicates that the component has a potential to reveal 

more information about the signal and it needs to be decomposed further in order to 

obtain simple frequency components of the signal.      

 
2.2 METHODOLOGY 
 
The proposed wavelet based sifting process starts with interpolation of data with cubic 

spline interpolation. The interpolated data increases the time resolution of the signal 

which will in turn increase the regularity of the decomposed components. The cubic 

spline interpolation assures the conservation of signal data between sampled points 

without large oscillations.    

 The interpolated data is decomposed into different frequency components by 

using wavelet packet decomposition. A shape of the decomposed components by wavelet 

analysis depends on the shape of the mother wavelet used for decomposition. A 

symmetrical wavelet is preferred as a mother wavelet in the process to guarantee 

symmetrical and regular shaped decomposed components. Daubechies wavelet of higher 

order and discretized Meyer wavelet shows good symmetry and leads to symmetrical and 

regular shaped components.   

 24



In case of the binary wavelet packet tree, decomposition at level ‘n’ results in 2n 

components. This number may become very large at a higher decomposition level and 

necessitate increased computational efforts. An optimum decomposition of the signal can 

be obtained based on the conditions required to be an IMF.  A particular node (N) is split 

into two nodes N1 and N2 if and only if the entropy index of the corresponding node is 

greater than 1 and thus the entropy of the wavelet packet decomposition is kept as least as 

possible. Other criteria such as the minimum number of zero crossings and the minimum 

peak value of components can also be applied to decompose only the potential 

components in the signal.  

 Once the decomposition is carried out, the mono-frequency components of the 

signal can be sifted out from the components corresponding to the terminal nodes of the 

wavelet packet tree.  The percentage energy contribution of the component corresponding 

to each terminal node to the original signal is used as sifting criteria in order to identify 

the potential components of the signal. This is obtained by summing up the energy 

entropy corresponding to the terminal nodes of the wavelet packet tree of the signal 

decomposition in order to get total energy content and then calculating the percentage 

contribution of energy corresponding to each terminal node to the total energy. Higher 

the percentage energy contribution, more significant is the component. Note that the 

decomposition is unique if the mother wavelet in the wavelet packet analysis is given and 

the sifting criteria are specified. 

2.3 VALIDATION OF THE WAVELET PACKET BASED SIFTING PROCESS 

This section validates the proposed wavelet packet based sifting process by analyzing an 

acceleration response of a three storied structure. A simulation model consisting a linear 
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3 degree of freedom (DOF) spring-mass-damper system has been used for this purpose 

and the results have been compared to the analytical results as well as to the results 

obtained by Empirical Mode Decomposition method.  

2.3.1 Simulation Model 

A linear 3 DOF spring-mass-damper system used to validate a wavelet packet based 

sifting process is shown in Figure 2.1. 

 
 

Figure 2.1 3DOF mass-spring-damper system used in the simulation study 
 
The three storied structure is modeled as 3 lumped masses ‘M1, M2 and M3’ and the 

ground connected with each other by springs of stiffness ‘ K1, K2 and K3’ and viscous 

dampers ‘ C1, C2 and C3’. The structure is excited by applying a forcing function F1 at 

mass M1 which results in displacement of masses M1, M2 and M3 denoted by X1, X2 and 

X3 respectively.  

 The equations of  motion of this structure in a matrix form can be written as 
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( ) ( ) ( ) ( )MX t CX t KX t F t+ + =&& &  (2.10)

Here M, C and K are mass, damping and stiffness matrices of the structure, respectively 

where 

1 1 2 2 1 1

2 2 2 3 3 2 2

3 3 3

0 0 0 0
0 0 , ,
0 0 0 0

M K K K C C C2

3 3

3 3

M M K K K K K C C C C C
M K K C C

+ − + −    
    = = − + − = − +    
    − −    


− 



   

A subscript indicates mass number. In Equation 2.10, F(t) is a force function matrix 

whereas X(t), ( )X t&  and ( )X t&&  are displacement, velocity and acceleration response 

matrices where 

1 1 1 1

2 2 2

3 33 3

( ) ( ) ( ) ( )
( ) ( ) , ( ) ( ) , ( ) ( ) , ( ) ( )

( ) ( )( ) ( )

X t X t

2

X t F t
X t X t X t X t X t X t F t F t

X t FX t X t

      
      = = = =      
               
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
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

m

 

This system of linear ordinary differential equations (ODE) can be solved analytically or 

numerically in order to get a response of the structure at every mass when subjected to an 

excitation force F(t). Various ODE solvers, such as ‘ode23s’, are available in the 

commercial software ‘MATLAB’ to solve a system of linear ODEs.  

2.3.2 Model Parameters 

The values of structural parameters i.e. mass, stiffness of each element chosen for this 

study are 

1 2 3

1 2 3

300

100,000 /

M M M kg

K K K N

= = =

= = =
 

The system damping is represented by a Rayleigh damping matrix proportional to the 

stiffness matrix. To demonstrate the basic concepts, zero damping is assumed here 
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without loss of generality i.e. value of proportionality factor is zero. The system natural 

frequencies are 1.29, 3.62 and 5.23 Hz. An impact force of intensity 1000 N is applied at 

first mass (M1) to excite the structure and the dynamic response data is numerically 

simulated by subroutines in the commercial software MATLAB. The data is sampled at a 

rate of 100Hz in order to simulate a data collected from an ordinary accelerometer. 

2.3.3 Validation 

Acceleration response signal at the second mass element ‘ 2 ( )X t&& ’ is selected to illustrate     

the concept and accuracy of the proposed approach. The time resolution of the 

acceleration signal is increased by using a spline interpolation for interpolating the signal 

data with finer increment of 0.0005sec from 0.01sec. Wavelet ‘DB36’ is used as the 

analyzing mother wavelet to carry out a wavelet packet decomposition and by applying 

the proposed wavelet packet based sifting process in Section 2.1, the second floor 

acceleration signal is decomposed into three dominant components corresponding to 

three modes of the system as shown in Figure 2.2.  
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Figure 2.2 Decomposition of an acceleration response signal of a linear 3DOF system by 

the proposed wavelet-packet sifting process. 

The top plot is the second floor acceleration signal whereas the bottom three plots are its 

dominant components sifted by the proposed approach. 

 The energy contribution of individual decomposed component is used to sift out 

the modal components of the signal. Table 2.1 shows the percentage energy contribution 

of the sifted dominant frequency components to the original acceleration signal at M2 and 

it illustrates that by evaluating the percentage energy contribution of the decomposed 

components, potential components of the signal thus can be sifted out.  

Table 2.1 Percentage Energy Contribution 

Mode No. Wavelet Packet 
Node No. 

Percentage Contribution of Energy in  
Wavelet Packet Tree (%) 

1 (9,0) 4.19 
2 (9,1) 10.00 
3 (8,1) 83.82 
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The wavelet packet node number in Table 2.1 is denoted as (x,y) where ‘x’ stands for a  

level of decomposition and ‘y’ stands for a position of the node at level ‘x’ when counted 

from left to right of the level and starting from ‘0’ in a wavelet packet tree.  

 In order to check accuracy of the sifting process, frequency content in the 

dominant components as well as the original signal is compared by calculating the 

Fourier transform of respective components. Figure 2.3 shows Fourier spectra of the 

components and the original signal. The peak frequencies observed in the Fourier spectra 

of the components, as shown in the Figure 2.3 are almost equal to the natural frequencies 

of the system calculated analytically. This shows that the proposed sifting process 

successfully sifted out modal components present in the acceleration response of the 

structure.   

 

Figure 2.3 Fourier spectra of the original signal and its decomposed components 
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In order to check the completeness of the sifting process, the original signal is 

reconstructed by adding the three sifted components. Figure 2.4 shows very small error 

between reconstructed signal and original signal over a period of time.   

 
Figure 2.4 Error between the Reconstructed Signal and the Original Signal  

Error at the start and end of the signal is about 0.1 m/sec2 which decrease rapidly to the 

order of 0.01 m/sec2 and it is less than 1% of the original signal amplitude. The relatively 

greater values at the start and the end region of the signal may be attributed to the well-

known end effects observed in wavelet analysis.     

 The results obtained from the proposed sifting process are compared with the 

results obtained by applying EMD method.  Figure 2.5 shows the comparison results of 

these two methods when applied to the acceleration signal data from second mass of the 

linear undamped 3DOF structure. Exact modal responses obtained by carrying out 

classical modal analysis are also plotted as a benchmark in Figure 2.5.  

 31



 
Figure 2.5 Comparison of modal responses obtained from wavelet packet sifting process 

with the results obtained by EMD method and modal analysis 
  
As seen in Figure 2.5, there are no significant differences between the results obtained 

from the EMD method and the proposed sifting process. In case of first and third 

component, results obtained from all three methods are exactly same whereas in case of 

the second component, there are slight differences between the results obtained from all 

three methods. Note here that the results are shown for a short time span for zoom-in 

clarity and same results are observed for rest of the time span. 

2.4 COMPARISON OF EMD METHOD AND WAVELET PACKET SIFTING 

PROCESS 

As seen in the previous section, a wavelet packet sifting process shows comparable 

results as given by EMD method. In order to further explore the effectiveness of the 

proposed sifting method, the method is applied for different test signals and the results 
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are compared with the those obtained with the EMD method. The similarities and 

differences between the EMD method and the proposed wavelet packet sifting process 

are studied by applying these methods for two test signals: (1) a linear chirp signal, (2) 

the impulse response of a linear single degree of a freedom spring-mass-damper system.  

A linear chirp signal, also called as sweeping frequency signal, is a sinusoidal 

signal whose frequency is zero at start of the signal and increases linearly till the end. The 

chirp signal used for testing is of amplitude 2 units with a sample rate of 100 Hz that 

starts at DC (??) and reaches linearly to 31Hz in 19.75 sec. Both of the methods give 

same results as shown in Figure 2.6 and Figure 2.7.  

 
Figure 2.6 Decomposition of a chirp signal by the EMD method   
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Figure 2.7 Decomposition of a chirp signal by the propose sifting process  

In case of the EMD method, the chirp signal already satisfies the conditions necessary to 

be an IMF and therefore does not decompose further resulting in single component 

decomposition as shown in Figure 2.6. In case of wavelet packet sifting process, the 

original signal already satisfies the stopping criteria of the proposed sifting process i.e. 

the value of entropy index is less than 1 here and thus does not decompose further 

resulting in single component as shown in Figure 2.7. 

 Figure 2.8 shows the decomposition results obtained by the EMD method for the 

acceleration response from a linear SDOF damped system subjected to impact loading.  

The signal is physically a monocomponent having a frequency equal to the damped 

natural frequency of the system. However, this acceleration signal does not fit in a 

definition of the IMF due to existence of damping.  The EMD method results into three 

IMFs having different frequency contents. In contrast to the EMD method, the proposed 

wavelet packet sifting process has resulted into only one single-frequency component 
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having its frequency equal to the damped natural frequency of the system, as shown in 

Figure 2.9. 

 
 

Figure 2.8 Decomposition of an impulse acceleration response signal  
of a SDOF linear damped system by the EMD method. 

 

 
Figure 2.9 Decomposition of an impulse acceleration response signal of 
a linear SDOF system by the proposed wavelet packet sifting process. 
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Thus the proposed wavelet packet based sifting process can decompose the signal 

into monocomponents and give meaning results. In the case of sweeping frequency 

signal, the proposed sifting process showed similar results as EMD method, whereas for a 

vibration response of SDOF system, it worked better than EMD method. Thus the 

proposed sifting process may serve as a better signal analysis method than the EMD 

method.        
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3. APPLICATION FOR STRUCTURAL HEALTH MONITORING 

 
Structural health monitoring is defined as the process of detecting damage in a structural 

or mechanical system. Damage in a system causes a change in dynamic properties of a 

system which in turn affect the system modal parameters. Thus system modal parameters 

i.e. the natural frequency and mode shape can be monitored in order to detect the time 

and severity of damage. When a vibration signal is decomposed into its mono-

components by the proposed wavelet packet sifting process, these components often 

represent modal responses associated with the system natural frequencies. The 

instantaneous modal parameters of the structure are defined in the following paragraph. 

 

Instantaneous Modal Parameters: 

The free vibration response of a time varying system can be decomposed into a number 

of instantaneous vibration modes having variable frequency content and a slow time 

varying amplitude. One of the limiting cases is when the system is time invariant where 

the decomposition results in the modal decomposition of the response. The concept of 

instantaneous natural frequency and normalized instantaneous mode shape is briefly 

described herein. The dynamics of a time-varying system can be described by: 

{ } { } { } { }( ) ( ) ( )dM t C t K t        + + =&& &x x x F         (3.1)

where {x} is the response vector and {F} is the vector of external excitation,  [M(t)], 

[K(t)] and [Cd(t)] are the time-dependent mass, stiffness and damping matrices of the 

system, respectively. In the present study the free vibration response due to an impact 

loading is studied.     
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The system response can be written in a form similar to the modal decomposition for 

time invariant systems as: 

( )∑
=

Φ=
N

i

iii ttAtt
1

)()()( )(cos)()()( Xx  
        (3.2)

where X(i)(t), A(i)(t), Φ(i)(t) are continuous functions of time. By applying similar analogy 

of the modal parameters in case of a time invariant system, we define instantaneous 

modal frequency and normalized instantaneous mode shape vector. Their expressions can 

be found in Equation 3.3 and 3.4. 
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dt ii Φ=ω          (3.3)
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X
X  

        (3.4)

Where  is the instantaneous frequency of the ith mode and X  is the ith normalized 

instantaneous mode shape. In case of a system without damage these parameters are 

constant over a period of time and correspond to the damped natural frequency and mode 

shape vector. A change in these instantaneous measures indicates change in system 

parameters which may be a result of structural damage. These parameters are monitored 

for the purpose of damage identification in the structure.  

( ) ( )i tω ( )i
norm

 The application if the proposed approach is first evaluated for simulation data 

where different damage cases in different noise environment are considered, and in the 

later part of the section, the methodology is applied for damage detection by analyzing 

experimental data. 
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3.1 NUMERICAL STUDIES:    

In this study the same 3DOF structural model in Figure 2.1 is employed.   A proportional 

damping is employed here and a damping matrix is proportional to the stiffness matrix 

with a proportionality factor of 0.0002.  Structural damage is simulated by linearly 

reducing the stiffness of spring K2 up to certain extent.  By selecting the rate of change in 

stiffness reduction, both cases of damage i.e. sudden stiffness loss and progressive 

stiffness degradation are simulated.  Ideally sudden damage happens at a particular 

instant and stiffness of the structure decreases instantly at this moment.  However, in a 

practical case, damage occurring in a fractions of second is considered as a sudden 

damage, therefore in the numerical simulation, a sudden damage is simulated by 

considering stiffness loss in a sufficiently small time period i.e. five time steps. For both 

cases, the proposed wavelet packet based sifting process is first applied to the simulated 

response data to sift out the dominant components and the Hilbert transform is then 

applied to investigate their transient frequency characteristics for the purpose of structural 

health monitoring.   

The performance of the proposed approach in presence of measurement noise is 

evaluated for one of the cases by adding noise to all vibration acceleration responses. The 

measurement noise is simulated as a Gaussian white noise process with zero mean and 

RMS value of 5% of the RMS value of third floor acceleration signal.  The 5% noise 

level is justified with the fact that in case of an earthquake excitation, as the ground 

acceleration is very high and the measuring instrumentation is very sturdy, the 

measurement noise is of a fairly low level in comparison to the measured signal. 
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3.1.1 Case Study 1: Detection of Sudden Damage 

In the case study of detection of sudden damage, a sudden stiffness loss is introduced at 

t=15sec by linearly reducing stiffness of the middle spring, i.e. K2 by 10% in a short time 

interval from t=15sec to t=15.05sec.  Damage in such a small time interval may be 

reasonably considered as sudden.  In a practical application, measurement data are 

collected with certain sampling rate and so a sudden stiffness loss may be treated as 

linear reduction between two sampling points. Without loss of generality only the 

dominant component of acceleration response data of M2, which is obtained by the 

proposed sifting process and corresponds to the highest mode of the healthy system, is 

selected for the analysis.   

 Figure 3.1 plots the component and the associated instantaneous frequency 

history; the latter was obtained by Hilbert transform. An exact solution for the 

instantaneous frequency is also presented for comparison. A sudden change in the 

instantaneous frequency can be observed at t=15 sec, implying some sudden damage has 

occurred at that moment.  The amount of frequency drop provides a global measure of 

damage severity due to a local stiffness loss.  Data analysis of other dominant 

components has lead to the similar conclusions.  It should be pointed out that numerical 

differentiation of the phase curve of Hilbert transform of a signal may generally produce 

fluctuated instantaneous frequency history. The associated variance is reduced in this 

study by filtering the phase angle curve. 

 A normalized mode shapes at mass M2 and M3 associated with the highest 

frequency mode are shown in Figure 3.2. An exact solution for normalized mode shape is 

also shown as a dotted line in figure for comparison. The change in normalized mode 
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shape at t=15sec clearly indicates damage in the system. 

 
Figure 3.1 Results from a case study for sudden damage using a free vibration signal 

 

            
Figure 3.2 Instantaneous normalized 3rd mode shape at M2 and M3 

indicating sudden damage at t = 15sec 
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3.1.1.1 Effect of Measurement Noise: 

The effects of measurement noise in the signal on results are evaluated by adding ‘5%’ 

random noise to the vibration response of each floor. The results obtained for 

instantaneous third mode frequency and normalized mode shape are shown in Figure 3.3 

and Figure 3.4 respectively. It can be observed that while the results obtained for 

instantaneous natural frequency remains unaffected, the mode shape results get affected. 

This is evident, as the normalized mode shape is calculated as a ratio of amplitudes of 

two signals and with the presence of noise, the results get deteriorated. Moreover, the 

SNR is smaller in the later part of the signal, which reflects in the deviation of results 

from corresponding theoretical values.   

 
Figure 3.3 Sudden damage detection in presence of measurement noise  
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Figure 3.4 Instantaneous normalized 3rd mode shapes at M2 and M3 

In presence of measurement noise 

3.1.1.2 Forced Vibration Response: 

Effectiveness of the proposed sifting process for damage detection is also examined for 

the same 3DOF spring-mass-damper system subjected to a harmonic force with the   

frequency of 2.4 Hz.   To simulate the real-life conditions, measurement noise with a 

standard deviation of 0.03 m/sec2 is added to the acceleration signal shown in Figure 3.5.  

A sudden damage is introduced in the system by linearly reducing the stiffness of second 

spring (K2) by 20% in a time interval of 15 -15.05 sec. The highest contributed mode, 

shown in Figure 3.5, is separated from the signal by applying the proposed wavelet 

packet based sifting process. The transient frequency of this component is calculated with 

the help of Hilbert transform of the sifted component. 
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Figure 3.5 Sudden damage detection using a forced vibration signal with  

random noise of 0.03 standard deviation. 

It can be observed in Figure 3.5 that the associated instantaneous frequency is reduced 

permanently at t =15sec indicating an occurrence of the damage in the system. It should 

be pointed out that in order to use a forced vibration signal for health monitoring, 

information of the corresponding healthy system or measurement data of loading history 

may be needed for reference.   For this lightly contaminated signal, the proposed 

approach provides a good result for damage detection.  It is expected that the clarity of 

the damage detection will decrease for a higher-level measurement noise and a smaller 

stiffness loss.  Noise effects on effectiveness of the proposed approach are further 

investigated in Section 4.2.  

3.1.1.3 Effect of Damage Severity: 

Figures 3.6 and 3.7 provide a comparison of the instantaneous frequency and the 

instantaneous mode shapes of the system for three different levels of damage, i.e. 5%, 

10%, and 15% sudden local stiffness loss of K2, respectively, at t=15 seconds. 
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Figure 3.6 Comparison of instantaneous frequency of 3rd mode for detection  

of damage of 5%, 10%, and 15% sudden stiffness loss of K2. 
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Figure 3.7 Comparison of normalized instantaneous modal shapes of the 3rd mode  

for detection of damage of 5%, 10%, and 15% sudden stiffness loss of K2. 

The results in Figure 3.6 present change in the damped natural frequency of the highest 

mode, obtained by sifting the acceleration response of M2.  In all three cases, the sudden 
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damage can be clearly identified by sudden changes of these instantaneous frequencies.  

Note that the 5%, 10%, and 15% stiffness of K2 cause 1.4%, 2.8%, and 4.1% reduction in 

frequency, respectively.  In general, more severe damage is easier to detect.  It is 

expected that the abrupt change in the instantaneous frequency becomes less and less 

recognized for smaller local stiffness loss.    

 Figure 3.7 shows the normalized modal shape of the highest mode. Note that the 

absolute values of the amplitude ratio of M2 and M3 with respect to M1 are used for 

convenience.  Sudden damage at t=15 seconds are successfully detected.  The 5%, 10%, 

and 15% stiffness losses of K2 result in 7.3%, 14.5%, and 21.6% change in the modal 

shape, respectively. In general, the instantaneous modal shape is more sensitive to a small 

local stiffness loss.  It can be shown that a local stiffness loss is of order of ε may result in 

change in the natural frequency of order ε2 and change in the modal shape of order ε.  

Therefore, the modal shape is a more sensitive index for structural damage.  However, 

measurement data at multiple locations must be available if the instantaneous modal 

shape is to be traced. 

3.1.2 Case Study 2: Detection of Progressive Damage 

To model a progressive stiffness degradation, the value of K2 is reduced linearly by 10% 

from t=15sec to t=45sec. The acceleration signal from the middle mass is selected for 

analysis, as shown in upper part of the Figure 3.8.  The highest-mode component of the 

signal obtained by the proposed sifting process and the associated instantaneous 

frequency are shown in the middle and bottom parts respectively of Figure 3.8.  A 

gradual change in the instantaneous frequency is clearly observed in the same time 

interval as specified for the progressive damage in the data simulation. The trend and 
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amount of change in instantaneous frequency provide valuable information as how 

stiffness degradation is developed.  Note that despite of the same trend, the change in the 

instantaneous frequency in Figure 3.8 is not linear. 

 
Figure 3.8 Results from a case study for Monitoring Progressive Damage 

The results for instantaneous 3rd mode shape at M2 and M3 normalized with respect to M1 

are shown in Figure 3.9. It can be observed that the normalized mode shape follows the 

same trend as of stiffness and the nature of damage can be estimated with this method.     

 47



 
Figure 3.9 Normalized 3rd mode shape results for monitoring progressive damage 

 
 

3.2 EXPERIMENTAL VALIDATION 

From the damage detection results obtained in numerical studies, it is seen that by 

incorporating wavelet packet sifting process with Hilbert Transform, sudden as well as 

gradual damage can be successfully identified. In order to evaluate the potential of the 

methodology in practical applications, the methodology is applied for experimental data 

obtained in a shaking table test, described below. 

3.2.1 Shaking Table Test 

The shaking table test was performed at the Disaster Prevention Research Institute 

(DPRI), Kyoto University, Japan.  In the test, a two-storey full-size wooden frame, shown 
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in Figure 3.10 was excited by the NS component of 1940 El Centro earthquake and the 

acceleration signal data was collected at each floor of the structure. 

 

Figure 3.10 Two-story wooden structure (left) and observed damage (right) 

The test was characterized by several test runs and at each test run the structure was 

excited with a normalized ground excitation targeted at a definite intensity in increasing 

order. The test was carried out until the structure lost its load carrying capacity. The 

structure was excited at increasing load levels of 1 m/s2, 1.5 m/s2, 2 m/s2, 2.5 m/s2, 3 

m/s2, 3.5 m/s2, 4 m/s2, 6 m/s2 and 8 m/s2. Various types of damages were observed in the 

structure at different load levels. A detailed description about the test can be found in 

Shimizu et al (2001) and Hou (2001).   

3.2.2 Methodology 

As mentioned earlier, in order to identify the natural frequency and mode shape, it is 

necessary to sift out, from the measured response data, a component signal that 

corresponds to the vibration mode of interest. This can be accurately done in the case of a 

free vibration response, since each modal response can be described as a signal with 

mono-frequency content. Thus the modal components can be completely sifted out and 

 49



the instantaneous natural frequency and normalized mode shape can be accurately 

identified and monitored for SHM (Hera et al., 2004).     

However, when a structure is subjected to a non-stationary excitation, e.g. 

earthquake excitation, the separation of each modal component in the vibration response 

is not as evident as in case of free vibration response. Moreover, if some damage 

happened in the system during this excitation period, due to the time varying structural 

properties, the classical Fourier transform based deconvolution technique can not be 

applied to deconvolve the impulse response from the vibration response. This fact rules 

out the possibility of obtaining impulse response of a structure to accurately calculate the 

instantaneous modal parameters. However, in case of a structure subjected to a seismic 

excitation, the energy in the vibration response is concentrated in frequency bands 

corresponding to the instantaneous natural frequencies of the structure.  This property is 

further used to sift out the signals of interest by a wavelet packet sifting (WPS) technique.   

The methodology can be illustrated in a better way by representing the signal 

energy in time-scale (frequency) domain.  The signal energy is graphically shown with 

help of the CWT maps. Details regarding CWT can be found in (Mallat, 1999) or any 

other reference on the wavelet transform.  

Without loss of generalization, the methodology is explained for a linear 3DOF 

system sketched in Figure 2.1, subjected to the El-Centro earthquake excitation.  The 

structural response is simulated for a case of no stiffness loss.  The CWT map of the 

excitation is presented in Figure 3.11, whereas Figure 3.12 shows the CWT map of the 

acceleration response (with respect to ground) at location M1. It can be observed that the 

energy is concentrated in the frequency bands corresponding to the natural frequencies of 
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the structure. Thus the natural frequency of the components corresponding to these 

frequency bands can be monitored to assess structural health. 

 
 

Figure 3.11 CWT map of the El Centro earthquake signal. 
 

 
 

Figure 3.12 CWT map of the acceleration response measured at M1. 

 s(2)

 s(3)

 fa(1) 

 fb(1) 

 s(1)
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The propo ined by a 

shaking table test. 

3.2.3 Results for Experimental Data and Discussion 

The acceleration signal data at nominal load levels of 1m/s2, 2m/s2, 3m/s2, 4m/s2, 6m/s2 

and 8m/s2 are considered in this study. The acceleration signals at first floor as well as the 

corresponding excitation signal at the base were decomposed by using the wavelet packet 

sifting process. Db36 was used as an analyzing wavelet because of its regularity and 

symmetrical properties. By implementing the methodology described in section 3, the 

fundamental frequency component was sifted out from the acceleration signal collected 

from the accelerometer mounted on the first floor. The node corresponding to the 

fundamental frequency component in the wavelet packet tree can be easily identified by 

comparing the energy contribution associated with that node and the corresponding node 

of excitation signal wavelet packet tree. The percentage energy contribution of 

fundamental frequency component in the excitation and structural response wavelet 

packet trees for different load levels is shown in Table 3.1.  

Table 3.1. Percentage Energy Contribution at Various Load Levels 

Percentage Contribution of Energy in 

Wavelet Packet Tree (%) 

sed methodology is applied for a set of experimental data obta

Signal No. 
Load Level 

(m/s2) 

Wavelet Packet 

Node No. 
Excitation Signal First Floor Signal 

1 1 (11,2) 12.10 50.57 

2 2 (12,7) 3.60 27.87 
3 3 (13,12) 7.39 31.59 
4 4 (12,2) 7.05 35.37 
5 6 (13,6) 3.71 40.15 
6 8 (13,2) 1.16 19.85 
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The wavelet packet node number is denoted as (m,n) where ‘m’ is a level of 

for rest of the load levels. The phase angle curve 

decomposition and ‘n’ is a node number at level ‘m’ in the wavelet packet tree when 

counting from left to right. Table 3.1 clearly demonstrates that the percentage energy 

contribution of the lowest fundamental frequency component to the acceleration response 

in its wavelet packet tree is significantly larger than the percentage energy contribution to 

the excitation signal of the component corresponding to the same node number in the 

wavelet packet tree of the excitation signal. Thus the lowest natural frequency component 

in the acceleration response can be easily identified by calculating and comparing the 

percentage energy contribution of decomposed components of both signals. The 

excitation signal, the corresponding acceleration response signal of the first floor, and the 

sifted component with the fundamental frequency for the first floor response for a load 

level of 1m/s2 is shown in Figure 3.13. 

 Similar test results are obtained 

for corresponding fundamental frequency components can be computed by taking the 

Hilbert transform of the components as described in the previous sections. The phase 

angle curve calculated for above listed load levels is shown in Figure 3.14. Note here that 

the phase angle variation at each load level is calculated over a 20 sec time interval from 

5-25 sec as the signal strength is lower in rest of the part of a signal. For a presentation 

purpose, the origin of phase angle curve at each load is changed to match the last value 

for previous load level. 

 53



 

Figure 3.13 Excitation signal, first-floor acceleration signal and its natural frequency 
component at load level of 1m/s2 

 

 

Figure 3.14 Phase angle variation at different load levels 
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The instantaneous frequency at each load level can be calculated by carrying out a 

numerical differentiation of the phase angle curve with respect to time. A direct numerical 

differentiation of the phase curve of Hilbert transform of a signal produces fluctuated 

results of instantaneous frequency. The associated variance is reduced by fitting a 

quadratic polynomial through phase curve in a least-square sense. The instantaneous 

natural frequency variation of the structure calculated for various load levels is shown 

Figure 3.15.   

 
Figure 3.15 Instantaneous frequency variation at different load levels 

It can be observed in Figure 3.15 that the instantaneous natural frequency of the structure 

is decreasing with time. The gradual decrease in natural frequency is attributed to the 

gradual stiffness degradation of the structural members. Note here that the instantaneous 

frequency curves of adjacent load levels are discontinuous at the end points because only 

the part of a signal is selected for the analysis and the acceleration signal data for 
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intermediate load levels is not considered in this study. It would be a nearly continuous 

curve if data for the intermediate levels were used for analysis. For illustration, 

instantaneous frequency variation of the structure calculated at load levels of three 

consecutive levels of 3m/s2, 3.5m/s2, 4m/s2 is shown in Figure 3.16. It can be observed 

that the instantaneous frequency curve is nearly continuous and the instantaneous 

frequency of the structure is continuously decreasing.  

 
Figure 3.16 Instantaneous frequency variation at consecutive load levels 

A sudden damage is characterized by sudden stiffness loss which may result in sudden 

change in instantaneous natural frequency. Because of polynomial curve fitting in order 

to smooth out the phase curve, a sudden damage in the structure could not be located in 

the current study. Note here that the decomposed component is a convolution integral of 

an excitation signal and structural response. In order to locate a sudden damage with non-
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stationary forced excitation signal, a structural response must be deconvolved from the 

acceleration signal collected at different floors of the structure.  

 The results obtained in numerical as well as experimental studies proves that the 

wavelet packet sifting process in conjunction with Hilbert transform can be implemented 

to assess structural health condition. The modal components can be sifted out by using 

wavelet packet sifting process and, the instantaneous frequency and normalized mode 

shape information can be obtained from the modal components sifted out with help of 

Hilbert Transform. The instantaneous frequency and normalized mode shape changed 

when damage was introduced in the structure.       
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4. COMPARISON STUDY 

This section presents a comparative study of the effectiveness of the proposed wavelet 

packet based damage detection methodology with other two popular damage detection 

techniques namely Continuous Wavelet Transform (CWT), and Empirical Mode 

Decomposition (EMD) method. In all of these techniques, a structural health condition is 

assessed by monitoring a change in natural frequencies and normalized mode shapes. 

CWT method can be used to identify these instantaneous modal parameters by the 

wavelet ridges whereas using the EMD method, intrinsic mode functions (IMF) can be 

sifted from a vibration signal. Instantaneous modal information can be extracted by 

incorporating the EMD method with the Hilbert Transform. These techniques are 

illustrated for simulated vibration data from a three-degree-of-freedom system subjected 

to (i) sudden damage and (ii) progressive damage. The aspects related to the 

implementation algorithms, sensitivity to damage type and the robustness issues in case 

of noisy data are discussed.  

4.1  METHODOLOGY 

This section presents a brief background of the methodology behind the techniques of 

interest in the study.   

4.1.1 Continuous Wavelet Transform Method 

In CWT technique, the wavelet ridges are used in order to identify the normalized 

instantaneous mode-shapes and instantaneous natural frequencies. Each ridge on the map 

of the modulus of CWT corresponds to an instantaneous vibration mode. The mother 

wavelet chosen in the present study is the complex Morlet wavelet which has a Gaussian 
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window in both time and frequency domains. Its parameters are the center frequency Fc 

and the bandwidth parameter Fb.  

The identification procedure is summarized as follows. The relevant details can be 

found in (Hera and Hou, 2004).   First one needs to identify the ith ridge aridge(t) which 

corresponds to the ith time-varying vibration mode.  The instantaneous damped natural 

frequency ( )tω  can be calculated by Equation 4.1. 

2( )
( )
c

ridge

Ft
a t
πω =  (4.1)

Finally, the normalized instantaneous mode shape is calculated by Equation 4.2. 

( )
( ( ), )

( ) , 1
( ( ), )

x j ridgei
norm

x p ridge

W a t t
t j

W a t t
= ± = LX N

)

 (4.2)

( ( ),x j ridgeW a t t  represents the wavelet coefficients on the ith ridge of the CWT of the signal 

xj.  Note that in Equation 4.2, the plus sign is selected if the denominator and the 

numerator are in phase and vice versa.   

4.1.2 Wavelet Packet based Sifting Process 

The methodology explained in Section 2.2 is used to separate the modal components and 

corresponding modal information for structural health monitoring. The instantaneous 

frequency and normalized mode shapes are calculated by using the equation 3.3 and 3.4 

respectively.  

4.1.3 Empirical Mode Decomposition Technique  

The EMD method decomposes the vibration response into intrinsic mode functions, 

which are mono-frequency components. The sifting process implemented to sift out these 
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IMFs is well described in (Huang et al, 1996). Of the interest in present study are the 

time-varying modal parameters of the system, such as the instantaneous natural frequency 

and normalized instantaneous mode shape, so in order to extract the modal information, 

the analytic function is constructed.  

The analytic function z(t) of a signal s(t) is a complex signal having the original 

signal s(t) as its real part and Hilbert transform of the original signal as its imaginary part, 

expressed as follows: 

( )( ) ( ) [ ( )] ( ) i tz t s t jH s t a t e φ= + =  (4.3)

Here a(t) is the instantaneous amplitude and Ø(t) is the instantaneous phase function.  

The instantaneous frequency can be calculated by differentiating Ø(t) as    

( )( ) d tt
dt
φω =  (4.4)

The normalized instantaneous mode shape at location ‘j’ with respect to location ‘p’ is 

obtained by calculating the amplitude ratio a  where aj(t) and ap(t) are  the 

amplitude of the analytic signal of the mono-frequency  component extracted from the 

free vibration response at location “j” and “p”, respectively.  

)(/)( tat pj

4.2 RESULTS 

The instantaneous frequency and normalized mode shape results under different damage 

scenarios and noise conditions are shown here.  

4.2.1 Simulation Setup 

In the present study, a three-degree-of-freedom system as shown in Fig. 2.1 is employed.   

The system is excited by a ‘1*dt’ impact force of magnitude 1000N applied at mass M3. 
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The acceleration response at each mass is measured. Two damage cases, as shown in Fig. 

4.1, are considered herein: 

Case 1: - gradual stiffness degradation. The stiffness of spring K1 was reduced by 

40% during a time interval of 10 to 30s.  

Case 2: - sudden damage, simulated by an abrupt reduction of 40% in the spring 

stiffness K1 at t = 10s. 

The natural frequencies of the healthy system are 1.29, 3.62, 5.23 Hz which reduced to 

1.10, 3.35, 5.14 Hz respectively after a 40% stiffness loss of spring K1. The fairly large 

change in stiffness value is employed here in order to have a clear perspective of the 

methods compared.   

The measurement noise is simulated as a Gaussian white noise process with a 

zero mean and standard deviation equal to a certain percentage of the root mean square 

(RMS) value of the acceleration response at M3 over the whole time interval.  

 

Figure 4.1 Stiffness history for: a) damage scenario 1, b) damage scenario 2 
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4.2.2 Implementation of the Methods 

 normalized center frequency Fc=5, and 

 was used as the analyzing mother wavelet in data 

decomp

 by EMD method, 

a siftin

, while computing the 

instanta

4.2.3 Simulation Results 

thod the instantaneous frequencies and normalized 

graph.  

For CWT, the complex Morlet wavelet with

normalized bandwidth parameter Fb=1 was chosen as mother wavelet. The scale range 

employed was from 10 to 500.  

In case of WPS, db36

osition. Each sifted mono-frequency component was transformed into an analytic 

signal in order to identify the instantaneous frequency and amplitude.  

In order to obtain the physically meaningful modal components

g algorithm defined in (Huang et al, 1996) is used in conjunction with a band pass 

filter technique illustrated in (Yang et al, 2004). The necessity of incorporating a band 

pass filter with the sifting process is discussed in Appendix- A.    

In case of gradual damage, the oscillations introduced

neous frequency and amplitude results obtained with all these methods, are 

smoothed out by a filtering technique. However, in order to keep the essence of the 

abrupt change, in case of a sudden damage this smoothing technique is not applied to the 

modal parameter data.  

By implementing each me

instantaneous mode shape vectors are calculated. The normalization is done with respect 

to the component corresponding to mass M1, therefore the normalized mode shape 

component for M1 have a constant unity value over the whole time interval. For a 

comparison purpose all of the results obtained with different methods are plotted on same 
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  For validation of the results, the modal parameters obtained by solving the 

associated eigen-value problem at each time step are plotted as reference and denoted by 

“M  

Fig. 4.2 plots the instantaneous normalized mode shape components corresponding to 

4.3 illustrates the instantaneous natural frequency 

end effects observed in relevant 

method

high damping ratio this mode decays very fast and practically the associated 

modal 

A” on the plots. Since the change of system parameters is relatively slow with respect 

to the natural frequencies of the system in case of progressive damage, while in case of a 

sudden damage the system is piecewise time invariant, the reference parameters 

calculated by solving an eigen-value problem at each time step are justified.  

4.2.3.1  Progressive Damage 

mass M2 and M3, while Fig. 

corresponding to the first vibration mode. The same set of data corresponding to the 

second vibration mode is presented in Fig. 4.4 and 4.5.  

All results are in good agreement with the reference normalized mode shape and 

frequency values, except in the end regions due to the 

s. 

In this study, the third vibration mode is not utilized for identifying damage, as 

due to its 

information can not be employed for damage identification.  
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Figure 4.2  The normalized instantaneous mode shape for the first vibration mode, damage 

scenario 1, no measurement noise. 

 

Figure 4.3 The instantaneous damped natural frequency for the first vibration mode, 

damage scenario 1, no measurement noise. 
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Figure 4.4  The normalized instantaneous mode shape for the second vibration mode, 

damage scenario 1, no measurement noise. 

 

Figure 4.5  The instantaneous damped natural frequency for the second vibration mode, 

damage scenario 1, no measurement noise. 
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4.2.3.2 Sudden Damage 

The results for the instantaneous modal parameters corresponding to the first vibration 

mode in case of sudden damage are shown in Fig. 4.6 and 4.7.  

 

Figure 4.6  The normalized instantaneous mode shape for the first vibration mode, damage 

scenario 2, no measurement noise. 

 66



 

Figure 4.7  The instantaneous damped natural frequency for the first vibration mode, 

damage scenario 1, no measurement noise. 

The WPS technique could effectively identify the abrupt change in the system parameters 

and the results are well localized on time axis. The HHT method could monitor the 

change in modal parameters but observed to be less effective in time localization. In case 

of CWT method, at the scales corresponding to the first vibration mode the size of the 

wavelet is larger and therefore CWT method gradually adapts to the changes.  

4.2.4 Damage Detection in Presence of Measurement Noise 

The effectiveness of each method in presence of measurement noise is illustrated in Fig. 

4.8 and 4.9 for monitoring gradual damage and in Fig. 4.10 and 4.11 for a case of sudden 

damage. The simulated acceleration signals were contaminated by a 5% measurement 

noise. As can be seen, there is not much difference in the instantaneous frequency results 

but normalized mode shape results show small deviations from the reference values.  
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Figure 4.8 The normalized instantaneous mode shape for the first vibration mode, damage 

scenario 1, measurement noise level=5%. 

 

Figure 4.9  The instantaneous damped natural frequency for the first vibration mode, 

damage scenario 1, measurement noise level=5%. 
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Figure 4.10  The normalized instantaneous mode shape for the first vibration mode, 

damage scenario 2, measurement noise level=5%. 

 

Figure 4.11  The instantaneous damped natural frequency for the first vibration mode, 

damage scenario 2, measurement noise level=5%. 
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4.3 DISCUSSION  

4.3.1 Interpretation of the Methods 

In case of CWT, a one-dimensional signal in time domain is represented in a two 

dimensional space of time and scale.  For a given mother wavelet, the transformation is 

done under a well established mathematical formulation.  Then, the useful modal 

information is extracted from the modulus and phase maps in the time-scale domain. For 

a selected mother wavelet, e.g. the Morlet wavelet in this paper, there is mathematical 

relationship between the wavelet ridges on the map and the instantaneous natural 

frequency and normalized mode shape.  

In case of the WPS method, the time varying mono-frequency components of the 

signal are reconstructed based on a wavelet packet sifting process. Once, the analyzing 

mother wavelet is selected this decomposition is unique. The time varying modal 

components of the signal are characterized by high energy content. By combining it with 

the Hilbert transform, this technique can be used to track the instantaneous modal 

parameters.  

The EMD method consists of a sifting process to decompose a signal into a set of 

the IMFs. The sifting process is based on subjective criteria such as envelope definition 

and stopping criteria. Because of the absence of the mathematical formulation of this 

method, one cannot guarantee that the IMFs obtained are the same as the modal 

components of the signal. In order to obtain the mono-frequency components 

corresponding to each vibration mode in the sifting procedure a band-pass filtering needs 

to be implemented in the original sifting process. However, for time varying systems, the 
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selection of the bandwidth should be made carefully in order to prevent a leakage of 

modal components and possibility of false interpretation of damage.  

4.3.2  Robustness to Noise 

CWT map comprises a lot of redundant data which emphasize the information of interest 

in the signal. With an efficient method for ridge detection the method seems to be very 

robust to noise. WPS method shows very good results for abrupt damage in this study, 

however in case of high intensity noise, the results for modal parameters need a filtering 

which may reduce the time localization capability of this method.  In case of EMD 

method, the band pass filtering is a part of the sifting process which makes the method 

tolerant to high noise levels.   

Figures 4.8 and 4.10 show the deviation of computed normalized instantaneous 

mode shapes from the reference values. This may be attributed to the loss of information 

regarding the modal parameters results while filtering.  As a general conclusion, due to its 

redundant nature, the CWT method could give better results in case of noisy 

measurements. 

The instantaneous natural frequency results remained unaffected with noise as 

seen in Figure 4.9 and 4.11 in case of each method. It is evident that the measurement 

noise affects the normalized mode shape results whereas shows comparatively small 

effect on the natural frequency results.  

4.3.3 Sensitivity to the Damage Type 

WSP approach gives good results in both damage cases, and time localization in case of 

sudden damage is better than the results obtained with CWT and EMD method. The WPS 
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method identifies the abrupt changes quite effectively, as long as the CWT requires a 

long time to accommodate the changes due to its limited time resolution. For lower 

frequencies, in other words at high scales, the wavelet window is large, which in turn 

limits the time localization.  Changing the mother wavelet parameters, e.g. the center 

frequency and the bandwidth parameter, should be done carefully as long as a good 

frequency localization implies a poor time localization and vice a versa. In case of sudden 

damage, EMD partly looses its capability to monitor abrupt change in system parameters 

as seen in the Fig. 4.6 and 4.7. This is due to the band pass filtering introduced in the 

sifting process in order to improve the effectiveness of the method for identifying the 

modal components of the signal.  

In case of gradual damage, as a rate of change of stiffness is very slow, all 

methods could successfully monitor the change in modal parameters.   

In conclusion, all three methods, CWT, WPS, and EMD/HHT with band-pass 

filter, were successfully applied for detecting both sudden and progressive damage and 

comparable results were obtained in the present study.  It is found that the wavelet ridge 

function in CWT, the dominant mono-frequency components in WPS, and the IMF in 

EMD have similar properties in the frequency domain and their inherent connection is 

under investigation.  Based on this similarity, EMD/HHT technique might be viewed as 

an implicit wavelet analysis and if this view holds the three methods, in fact, provides 

alternative ways to implement wavelet filters. 

However, some differences between these three techniques were observed in this 

simulation study. For sudden damage case, WPS works better than EMD method, 

whereas CWT results in poor time localization of damage. For a gradual damage, all 
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methods performed effectively in monitoring modal parameters. In a situation involving a 

high level measurement noise, CWT may be a better choice among these methods.   

Factually, CWT and WPS are backed up by the well-established mathematical theory of 

wavelet analysis and wavelet packet analysis, which facilitates their implementation and 

physical interpretation of the results obtained.  In contrast, a direct EMD provides an 

efficient and robust procedure to decompose a signal into its IMFs, whose physical 

significance is sometimes difficult to interpret, as reported in the literature.  This may be 

partially attributed to the empirical nature of the procedure and subjective definition of 

IMFs and envelopes involved.  Other techniques such as filters need to be incorporated 

with it to improve the performance for SHM applications.  

For a practical application, selection among these methods should be based on the 

damage type and the noise level involved.  A robust framework for damage detection 

may be developed either by making a parallel use of these methods or by implementing a 

methodology incorporating all these methods in an efficient way.  
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5. CONCLUSION 

The proposed wavelet packet based sifting process can successfully decompose a signal 

into components with simple frequency content. By choosing a regularized analyzing 

wavelet and appropriate decomposition criteria, the sifting process decomposes the 

vibration response into physically meaningful monocomponents. The sifting process 

shows comparable results as EMD method and performs better in certain cases analyzed. 

 This sifting process can be used for assessing health of a time-varying structure 

by monitoring instantaneous modal parameters of the corresponding structure. When 

applied for a free vibration response of a structure, the proposed sifting process results 

into modal components.  The instantaneous modal information i.e. natural frequency and 

instantaneous mode shape can be extracted from the decomposed modal components with 

help of Hilbert Transform. The methodology can be effectively used for detecting sudden 

damage as well as gradual stiffness degradation. The instantaneous natural frequency and 

normalized mode shape change its value when damage occurs and the change is in 

proportion to the damage severity. 

The experimental results showed that the method can be effectively used for 

assessing structural health where the instantaneous natural frequency of the wooden 

structure decreased gradually with increasing load levels. The information about sudden 

damage was lost because of curve fitting but idea about damage in structure could be 

obtained.        

 The comparison study showed that for sudden damage case, the proposed method 

works better than CWT and EMD technique, whereas for a progressive damage case, all 

methods showed similar results. The method also effectively detected both types of 
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damages in presence of measurement noise and showed robustness in case of noisy 

measurement data. The EMD method has to be modified to effectively use for SHM. 

 In conclusion, the proposed wavelet packet based sifting process showed its 

effectiveness for signal decomposition and its application for SHM by successfully 

detecting both, sudden as well as gradual stiffness degradation, even in presence of 

measurement noise, in numerical as well as experimental studies.     
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6. FUTURE WORK 

In this work it is shown that in case of structure subjected to impulse as well as harmonic 

excitation, if the modes are well separated, the natural frequency as well as normalized 

mode shapes can be accurately calculated. But in case of earthquake excitation, when the 

structure is subjected to a non-stationary base excitation and the structure is a time-

varying system, the free vibration response of the structure is difficult to be extracted 

from the transient response signal and exact monitoring of natural frequency and 

normalized mode shape becomes difficult. Due to the time-varying system, the classical 

Fourier based deconvolution can not be applied to deconvolve the free vibration response 

from the structural response. A non-stationary deconvolution method can be developed 

which may help to accurately monitor the instantaneous modal parameters. 

 The methodology is applied for a numerical as well as experimental data. More 

experiments can be conducted to evaluate the effect of damage intensity and 

measurement noise level. The effectiveness of the method can be further evaluated by 

applying it for a real seismic response data of structures measured during an earthquake 

event. 

 As the method is developed for a non-stationary signal analysis, the effectiveness 

of the proposed method can be further improved by combining it with other adaptive 

signal analysis techniques e.g. Adaptive Kalman Filter technique and Adaptive Neural 

Network technique.          
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APPENDIX A - THE MODIFIED EMD METHOD 

With the EMD method, because of a lack of mathematical formulation, one can not 

guarantee that the sifting process will decompose the vibration response into its modal 

components. Figure A-1 illustrates the fact where the EMD method applied to the 

vibration response at location M1 (Figure 2.1) resulted in IMFs characterized by a 

combination of different modes whereas ideally it should result in three distinct modal 

components. The IMF1 obtained is a combination of second and third mode components 

whereas IMF2 is a combination of first and second mode. A part of first mode can be 

seen in IMF3.  

In order to obtain the physically meaningful modal components by EMD method, 

a sifting algorithm defined in is used in conjunction with a band pass filter technique 

described in Yang et al (2003). The results obtained by employing band-pass filters with 

the EMD method are shown in Fig. A-2, where the method successfully decomposed the 

same signal into three distinct modal components. IMF1, IMF2 and IMF3 corresponds to 

the third, second and first vibration mode respectively.  

It illustrates the fact that the band-pass filter must be incorporated with the EMD 

method for SHM applications based on monitoring the system modal parameters.   
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Figure A1  Decomposition results obtained by EMD method 

 

 
Figure A2  Decomposition results obtained by modified EMD method 
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