Modular Package for Autonomous Driving (MPAD)
PublicDownloadable Content
open in viewerThere have been major advances in autonomous vehicles through recent years. Features such as adaptive cruise control, emergency braking, lane assistance, and automatic parking have become standard in most new vehicles. There exist cars nearing level 5 autonomy where the vehicle can operate without a driver and under any condition. As self-driving technology cements itself in our society, this package turns a normally trivial task into a display of modern technology. Developing a car with these capabilities requires computer vision and a variety of sensors to recognize its surroundings and navigate obstacles. Due to their size and scope, Radio Controlled (RC) cars are a great way for prospective engineers to learn real-world technical skills. The low cost and turnaround time allows for rapid development and testing, which can effectively teach many of the same principles as real cars. Autonomous driving is the most ideal way to test a custom RC car’s mechanical integrity to avoid human driving bias. Current self driving RC car modules, such as Donkey Car, SunFounder PiCar and Deep Pi Car, require hours of setup configurations and course-specific training before driving autonomously. Even after training, most modules do not provide the capability to avoid obstacles or traverse non-standard terrain. An ideal self-driving module must be capable of being downloaded and installed onto an RC car regardless of dimensions. Since this project’s audience is typically Mechanical Engineers with little computer science and electrical engineering experience, having controls and driving data be easily accessible in a website would prove to be extremely beneficial. Hence, we developed the Modular Package for Autonomous Driving (MPAD). This project will demonstrate how techniques in computer vision and sensors are used to create a truly modular package. MPAD allows Mechanical Engineering students to test their work in a complete system, without requiring a coding or electrical design background. MPAD began with an axiomatic design of the project, to lay out the steps for design and guarantee an efficient final product. The development boards used were the Raspberry Pi 4 8GB and Elegoo Mega 2560. The sensors are connected to the Elegoo, which then connects to the Raspberry Pi. The sensor package uses a Raspberry Pi camera for lane recognition and seven ultrasonic sensors for obstacle avoidance. Along with the ultrasonic sensors, the final sensor package includes an inertial measuring unit (IMU), two temperature sensors, an hall-effect sensor, and a battery sensing circuit. All of the sensors went through rigorous accuracy testing. The package is specifically designed to be easily transferable from one RC car to another. The self driving software uses computer vision to navigate a course without any prior training. The angles of the wheels are calculated using the coordinates of the pixels in the camera input along with the readings from the ultrasonic sensors. Testing revealed that autonomous driving was able to do U-turns as well as perform better at high speeds. While driving alone is visually interesting, engineers need something concrete: data. Everything the car is reading can be seen on a web portal in real time. Through customizable sensor graphs and camera views, the car can be highly configured and tested. If the students choose not to touch the program, they can rest assured knowing the web controller will quickly and reliably connect them to their car across any number of devices. As a result, we have designed a modular self driving package so Mechanical Engineers can bring their designs to life. MPAD was implemented in the Introduction to Engineering Design (ME2300) course at Worcester Polytechnic Institute (WPI). Eight teams of mechanical engineering students each received documentation in the form of two guides to create their own version of MPAD. The integration was successful and the students were able to fully utilize MPADs capabilities with their own RC car design.The paper also discusses the implementation, testing details, and future work for a self driving modular package.
- This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review.
- Creator
- Subject
- Publisher
- Identifier
- E-project-050721-091224
- 23456
- Advisor
- Year
- 2021
- UN Sustainable Development Goals
- Date created
- 2021-05-07
- Resource type
- Major
- Rights statement
- Last modified
- 2021-08-29
Relations
- In Collection:
Items
Items
Thumbnail | Title | Visibility | Embargo Release Date | Actions |
---|---|---|---|---|
MPAD Final Report (1).pdf | Public | Download |
Permanent link to this page: https://digital.wpi.edu/show/mp48sg60t