Student Work

 

Exploring Machine Learning Methods for Nuclear Export Sequence Identification Public

Downloadable Content

Download PDF

The goal of this project is to design and implement a user-friendly machine learning tool that can be applied to the classification of polypeptides to find functional nuclear export sequences (NESs). This tool incorporates an API that takes advantage of support vector machines and can be expanded to include other models. Because NESs have been found to have consistent structure, structural data is incorporated into the model to increase confidence. This report is accompanied by a manual that instructs users on how to use the tool.

Creator
Publisher
Identifier
  • E-project-051520-181059
Advisor
Year
  • 2020
Date created
  • 2020-05-15
Resource type
Major
Rights statement
License

Relationships

In Collection:

Items

Permanent link to this page: https://digital.wpi.edu/show/db78tf48x