Etd

Mechanism of Reversal of Alzheimer's Disease A-beta Induced Neuronal Degeneration in Cultured Human SHSY Cells Using A Neurotrophic Ependymin Mimetic.

Público

Contenido Descargable

open in viewer

Alzheimer’s disease (AD) is a neurodegenerative disorder that leads to dementia in adults. The mechanism of neurodegeneration is thought to involve the extracellular production of a highly toxic A-beta peptide that engages cell surface receptors to induce cellular oxidative stress and apoptosis, but the signal transduction pathways that lead to A-beta induced cell death are unknown. We previously showed that a human ependymin neurotrophic peptide mimetic (hEPN-1) can promote cell survival in an in vitro AD model system. This initial observation was extended in this thesis by investigating the mechanism of A-beta induced apoptosis and hEPN-1 induced survival. Immunoblots were used to assay the total cellular levels of specific caspase proteins. The results show that A-beta induced apoptosis uses an extrinsic caspase pathway involving caspases-2 and -3, and that hEPN-1 treatment can reduce those caspase levels. A caspase activity assay showed that A-beta increased caspase-3/7 activity, while hEPN-1 treatment lowered it. Moreover, in vivo studies with AD transgenic mice showed that hEPN-1 treatment increased antioxidative superoxide dismutase levels in brain. Thus, hEPN-1 holds potential as a therapeutic to treat the underlying neurodegenerative cause of AD, not merely its symptoms as with other currently approved AD drugs.

Creator
Colaboradores
Degree
Unit
Publisher
Language
  • English
Identifier
  • etd-071607-181533
Palabra Clave
Advisor
Committee
Defense date
Year
  • 2007
Date created
  • 2007-07-16
Resource type
Rights statement

Las relaciones

En Collection:

Elementos

Elementos

Permanent link to this page: https://digital.wpi.edu/show/vq27zn49p