Motion Segmentation for Autonomous Robots Using 3D Point Cloud Data Public

Downloadable Content

open in viewer

Achieving robot autonomy is an extremely challenging task and it starts with developing algorithms that help the robot understand how humans perceive the environment around them. Once the robot understands how to make sense of its environment, it is easy to make efficient decisions about safe movement. It is hard for robots to perform tasks that come naturally to humans like understanding signboards, classifying traffic lights, planning path around dynamic obstacles, etc. In this work, we take up one such challenge of motion segmentation using Light Detection and Ranging (LiDAR) point clouds. Motion segmentation is the task of classifying a point as either moving or static. As the ego-vehicle moves along the road, it needs to detect moving cars with very high certainty as they are the areas of interest which provide cues to the ego-vehicle to plan it's motion. Motion segmentation algorithms segregate moving cars from static cars to give more importance to dynamic obstacles.\rIn contrast to the usual LiDAR scan representations like range images and regular grid, this work uses a modern representation of LiDAR scans using permutohedral lattices. This representation gives ease of representing unstructured LiDAR points in an efficient lattice structure. We propose a machine learning approach to perform motion segmentation. The network architecture takes in two sequential point clouds and performs convolutions on them to estimate if 3D points from the first point cloud are moving or static. Using two temporal point clouds help the network in learning what features constitute motion. We have trained and tested our learning algorithm on the FlyingThings3D dataset and a modified KITTI dataset with simulated motion.

  • etd-3796
Defense date
  • 2020
Date created
  • 2020-05-13
Resource type
Rights statement


In Collection:


Permanent link to this page: