Etd

Bayesian Nonparametric Models for Multi-Stage Sample Surveys

Öffentlich

Herunterladbarer Inhalt

open in viewer

It is a standard practice in small area estimation (SAE) to use a model-based approach to borrow information from neighboring areas or from areas with similar characteristics. However, survey data tend to have gaps, ties and outliers, and parametric models may be problematic because statistical inference is sensitive to parametric assumptions. We propose nonparametric hierarchical Bayesian models for multi-stage finite population sampling to robustify the inference and allow for heterogeneity, outliers, skewness, etc. Bayesian predictive inference for SAE is studied by embedding a parametric model in a nonparametric model. The Dirichlet process (DP) has attractive properties such as clustering that permits borrowing information. We exemplify by considering in detail two-stage and three-stage hierarchical Bayesian models with DPs at various stages. The computational difficulties of the predictive inference when the population size is much larger than the sample size can be overcome by the stick-breaking algorithm and approximate methods. Moreover, the model comparison is conducted by computing log pseudo marginal likelihood and Bayes factors. We illustrate the methodology using body mass index (BMI) data from the National Health and Nutrition Examination Survey and simulated data. We conclude that a nonparametric model should be used unless there is a strong belief in the specific parametric form of a model.

Creator
Mitwirkende
Degree
Unit
Publisher
Language
  • English
Identifier
  • etd-042716-122126
Stichwort
Advisor
Committee
Defense date
Year
  • 2016
Date created
  • 2016-04-27
Resource type
Rights statement

Beziehungen

In Collection:

Objekte

Artikel

Permanent link to this page: https://digital.wpi.edu/show/pn89d675f