Etd

Design of open hydrogen-bonded frameworks using bis(imidazolium 2,4,6-pyridinetricarboxylate)metal complexes as secondary building units

Public

Downloadable Content

open in viewer

The supramolecular chemistry and crystal structures of four Bis(imidazolium 2,4,6-pyridinetricarboxylate) metal(II)dihydrate complexes, where M=Co2+, Ni2+, Cu2+, or Zn2+ (1-4, respectively), are reported. These complexes serve as supramolecular building blocks that self-assemble when crystallized to generate a single, well defined structure in the solid state. 2,4,6-Pyridinetricarboxylate anions and imidazolium cations form strong ionic hydrogen bonds that dominate crystal packing in compounds 1-4 by forming three-dimensional (3-D) networks of molecules. These networks consist of hydrogen-bonded layers of molecules defined by N-H…O interactions that are joined in the third dimension by O-H…O interactions. This 3-D network provides a supramolecular framework with which to control and predict molecular packing by design for engineering the structures of crystals. Furthermore, compounds 1-4 create a robust organic host lattice that accommodates a range of different transition metals without significantly altering the molecular packing. Growth of crystals from solutions that contain two or more different metal complexes results in the formation of mixed crystals in which the different metal complexes are incorporated into the crystalline lattice in the same relative molar ratio present in solution. Epitaxial growth of crystals involving deposition of one metal complex on the surface of a seed crystal that contains a second metal complex generates composite crystals in which the different metal complexes are segregated into different regions of the crystals. Compounds 1-4 form crystalline solids that represent a new class of modular materials in which the organic ligands serve as a structural component that defines a single packing arrangement that persists over a range of structures, and in which the metal serves as an interchangeable component with which vary the physical properties of material.

Creator
Contributors
Degree
Unit
Publisher
Language
  • English
Identifier
  • etd-0514103-110657
Keyword
Advisor
Defense date
Year
  • 2003
Date created
  • 2003-05-14
Resource type
Rights statement

Relations

In Collection:

Items

Items

Permanent link to this page: https://digital.wpi.edu/show/mg74qm19x